Additive word complexity and Walnut

Pierre Popoli (U of Liège)

Apr 23. 2025, 11:30 — 12:00

In combinatorics on words, a classical topic of study is the number of specific patterns appearing in infinite sequences. For instance, many works have been dedicated to studying the so-called factor complexity of infinite sequences, which gives the number of different factors (contiguous subblocks of their symbols), as well as abelian complexity, which counts factors up to a permutation of letters. In this paper, we consider the relatively unexplored concept of additive complexity, which counts the number of factors up to additive equivalence. We say that two words are additively equivalent if they have the same length and the total weight of their letters is equal. Our contribution is to expand the general knowledge of additive complexity from a theoretical point of view and consider various famous examples. We show a particular case of an analog of the long-standing conjecture on the regularity of the abelian complexity of an automatic sequence. In particular, we use the formalism of logic, and the software Walnut, to decide related properties of automatic sequences. This is joint work with Jeffrey Shallit and Manon Stipulanti.

Further Information
Venue:
ESI Boltzmann Lecture Hall
Files:
Slides
Associated Event:
Uniform Distribution of Sequences (Workshop)
Organizer(s):
Henk Bruin (U of Vienna)
Robbert Fokkink (TU Delft)
Jörg Thuswaldner (Montanuniversität Leoben)