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Objects of study: Alphabet, word

Alphabet A: finite set of symbols, called letters.
→ {a, b, c, . . . , z}, {0, 1}, {∪, ∧, Γ} . . .

Word over A: finite or infinite list of letters chosen in A.
→ A∗: set of finite words with letters in A: 010, kayak, . . ..
→ Aω: set of (right)-infinite word: 010101 · · · , 001101010001 · · · , . . ..
→ For a word w , |w | is the length of w and |w |i is the number of occurrences of i

in w .
→ ε is the empty word, i.e. the only word of length 0.
→ words ⇔ sequences.

Natural non-commutative operation on finite words: concatenation

(ab)(ba) = abba ̸= baab.

→ A∗ is a monoid equipped with the concatenation and neutral element ε.
→ For n ≥ 1, wn = w · · · w .
→ A morphism h is a map h : A∗ → B∗ such that h(xy) = h(x)h(y).
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Pattern avoidance: birth of Combinatorics on Words

Thue noticed in 1906 that over a 2-letter alphabet, every word of length ≥ 4 contains a
square, i.e. a consecutive subblock of the form xx , |x | ≥ 1:

ε

0

00 01

010

0100 0101

011

1

10

100 101

1010 1011

11

And in 1912, Thue construct an infinite word avoiding squares over a 3-letter alphabet

012021012102012 · · · ,

that is based on the Thue–Morse sequence (s2(n) mod 2)n.
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Erdös problem about abelian squares

Figure: Some unsolved problems, Erdös (1957).

First point was also proved by Thue.

x , y ∈ Σ∗ are abelian equivalent, x ∼ab y , if |x | = |y | and |x |a = |y |a for every letter a.
An abelian square is a word of the form xy ,with x ∼ab y .
Then second point can be reformulated in terms of abelian squares. One can easily check
that every word over a 3-letter alphabet of length ≥ 8 contains an abelian square and
Erdös suggested that the problem over 4 letters is worth studying.
Over alphabets of size ≥ 4, the story is long and with many intermediate results. The
final answer is given by Keränen in 1992, where an infinite word abelian squarefree over
an alphabet of four letters is given.
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Additive framework

One can generalize this study to any equivalence relation: Given an equivalence relation
∼, what is the least number of letters that are needed to avoid ∼-squares ? ∼-cubes ?

Fix an alphabet Σ = {a1, a2, . . . , aℓ} ⊂ N.
u, v ∈ Σ∗ are additively equivalent, u ∼add v , if |u| = |v | and

∑ℓ

i=1 ai |u|i =
∑ℓ

i=1 ai |v |i .

020 ∼add 101, 020 ≁ab 101, 020 ≁add 11.

→ Over an alphabet of size 2, abelian and additive problems are the same.

Conjecture: Brown–Freedman (1987)
There is no infinite word over the alphabet {1, . . . , K} that is additive squarefree.

→ Still open. The conjecture is solved if we get rid of the assumption of equal length.
Cassaigne, Currie, Schaeffer and Shallit (2014): Infinite word over the alphabet
{0, 1, 3, 4} with no additive cubes. Still open over {0, 1, 2, 3}.
Rao (2015): infinite word over an alphabet of size 3 with no additive cubes (use the
morphism of CCSS).
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Factor complexity/Subword complexity

A factor of a word is one of its (contiguous) subblocks.

01101001100101101001011001101001 · · ·

For a given word x, for all n ≥ 0, we let Ln(x) denote the set of length-n factors of x.

Factor complexity: Let x be an infinite word on Σ, ρx : N → N, n 7→ #(Ln(x)).

Theorem: Morse–Hedlund (1938)
The factor complexity of x is bounded if and only if x is ultimately periodic.

Standard complexity in many works in combinatorics on words, subshifts, . . .
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Abelian complexity

Recall that u, v ∈ Σ∗ are abelian equivalent, u ∼ab v , if |u| = |v | and |u|i = |v |i .

Abelian complexity: Let x be an infinite word on Σ, the abelian complexity ρab
x of x is

ρab
x : N → N, n 7→ #(Ln(x)/∼ab).

Abelian k-power: word w = x1x2 · · · xk such that xi ∼ab xj for every i , j.

Theorem: Richomme, Saari and Zamboni (2011)
If the abelian complexity of x is bounded, then x contains an abelian k-power for every
k ≥ 1.

→ proof is based on van der Waerden’s theorem.
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Additive complexity

Fix an alphabet Σ = {a1, a2, . . . , aℓ} ⊂ N.
u, v ∈ Σ∗ are additively equivalent, u ∼add v , if |u| = |v | and

∑ℓ

i=1 ai |u|i =
∑ℓ

i=1 ai |v |i .
→ Depends on the values of the alphabet: not common in combinatorics on words.

Additive complexity: Let x be an infinite word on Σ, the additive complexity ρadd
x of

x is
ρadd

x : N → N, n 7→ #(Ln(x)/∼add).

Since u ∼ab v =⇒ u ∼add v , we have ρadd
x (n) ≤ ρab

x (n).
Additive k-power: word w = x1x2 · · · xk such that xi ∼add xj for every i , j.

Theorem: Ardal, Brown, Jungić and Sahasrabudhe (2012)
If the additive complexity of x is bounded, then x contains an additive k-power for every
k ≥ 1.

→ proof also based on van der Waerden’s theorem.
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Classical automatic sequences

q0/0(n)2 q1/0

q2/1q3/1

1

0

0

1

0

1

1

0

Figure: DFAO generating the Rudin–Shapiro
sequence R = (rn)n.

Since (6)2 = 110, then r6 = 1.

Automatic sequence
S = (sn) is k-automatic over A if there
exists M = (Q, Σk , δ, q0, A, τ) with

Q: set of states.
q0: initial state.
Σk = {0, 1, . . . , k − 1}.
δ: transition function
A: Alphabet.
τ : Q → A coding.

such that sn = τ(δ(q0, (n)k)), n ≥ 0.
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Generalized automatic sequence
Abstract Numeration System U: triple (L, A, <) where A alphabet, < total order on A
and L an infinite regular language over A.

q0 q1

0

1

0

Figure: Zeckendorf numeration system

To each integer, we associate its unique representation, denoted repU(n), without leading
zeros: ε, 1, 10, 100, 101, 1000, 1001, 1010, . . ..

Automatic sequence: x is U-automatic if there exists a DFAO A such that, for all
n ≥ 0, the nth term x(n) of x is given by the output A(repU(n)) of A.

A x is morphic if it is a fixed point of a prolongable morphism, under a coding.

Theorem: Rigo and Maes (2002)
A word is morphic if and only if it is U-automatic for some abstract numeration system U.

P. Popoli (Université de Liège) Additive word complexity and Walnut April, 23th 2025 10 / 29



Ostrowski numeration system

Ostrowski numeration system (Ostrowski, 1922)
Let α be a real number with continued fraction [a0, a1, . . .] and pn/qn = [a0, . . . , an].
Then every natural number N can be written uniquely as N =

∑ℓ

k=0 bkqk where
0 ≤ b0 < a1,
0 ≤ bk ≤ ak+1,
If bk = ak+1, then bk−1 = 0.

Examples:
For φ = 1+

√
5

2 = [1, 1, . . .], we get the Zeckendorf numeration system.
For

√
2 = [1, 2, 2, . . .], we get the Pell numeration system.

Theorem: Shallit (1994)
The Ostrowski numeration system of α is regular if and only if α is quadratic.
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Synchronized sequences

Synchronized sequence: x is U-synchronized if there exists a DFA that recognizes
the language of U-representations of n and x(n) in parallel.

→ Sequence of odious numbers on (n such that tn = 1), . . .

0 1 2

3

[0, 0]

[0, 1] [1, 0]

[1, 1]

[0, 0]

[0, 1][1, 0]

[1, 1]

For instance the pair of words [0110, 1101] is accepted, this means that o6 = 13.
The odious numbers are 1, 2, 4, 7, 8, 11, 13, . . ..

→ The factor complexity of any k-automatic sequence is synchronized.
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Regular sequences

Regular sequence: x is U-regular if it admits a linear representation, i.e. there exist a
column vector λ, a row vector γ and matrix-valued morphism µ such that

x(n) = λµ(repU(n))γ.

→ Sum of digits function s2(n) satisfies
{

s2(2n) = s2(n),
s2(2n + 1) = s2(n) + 1.

And provides the following linear representation

λ =
(
1 0

)
, γ =

(
0
1

)
, µ(0) =

(
1 0
0 1

)
, µ(1) =

(
1 0
1 1

)
.

Since (13)2 = 1101, this gives that s2(13) = λµ(1)µ(1)µ(0)µ(1)γ = 3.

Automatic =⇒ Synchronized =⇒ Regular.
Regular and finitely many values =⇒ Automatic.
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Long standing conjecture

Conjecture: Parreau, Rigo, Rowland and Vandomme (2015)
The abelian complexity of a U-automatic sequence is a U-regular sequence.

→ Widely open. Some examples:
The abelian complexity of the Thue–Morse sequence is automatic.
The abelian complexity of the Rudin–Shapiro sequence is regular.
Madill and Rampersad (2013): The abelian complexity of the paper-folding word is
2-regular (and unbounded).

This conjecture can be formulated for any complexity, including the additive complexity.
Chen, Wen and Wu (2019): Let x be the fixed point of 0 7→ 01, 1 7→ 12, 2 7→ 20.
Then ρadd

x (n) = 2⌊log2 n⌋ + 3 for all n ≥ 1. In particular, (ρadd
x (n))n≥0 is 2-regular.
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General results

Let Σ = {a1, . . . , ak}.
Parikh vector: for w ∈ Σ∗, Ψ(w) = (|w |a1 , . . . , |w |ak ).

Theorem: P., Shallit and Stipulanti (2024)
Let x be an U-automatic sequence for some ANS U. Assume that

the additive complexity ρadd
x of x is bounded above by a constant,

the Parikh vectors of length-n prefixes of x form a synchronized sequence.
Then ρadd

x is U-automatic and the DFAO computing it is effectively computable.

The second condition is a strong assumption but this applies to well-known families.
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Parikh-collinear morphism

A morphism φ : Σ∗ → ∆∗ is Parikh-collinear if the Parikh vectors Ψ(φ(b)), b ∈ Σ, are
collinear.

Lemma: Rigo, Stipulanti and Whiteland (2023)
Let x := φω(a) for φ : Σ∗ → Σ∗ a Parikh-collinear morphism prolongable on the letter a.
For all b ∈ Σ, the sequence (|prefn(x)|b)n≥0 is k-synchronized for k =

∑
b∈Σ |φ(b)|b.

Corollary: P., Shallit and Stipulanti (2024)
Let x := φω(a) for φ : Σ∗ → Σ∗ a Parikh-collinear morphism prolongable on the letter a.
Then the additive complexity function ρadd

x of x is k-automatic for k =
∑

b∈Σ |φ(b)|b.
Moreover, the automaton generating ρadd

x can be effectively computed given φ and a.
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Example of Parikh-collinear morphism

Let f : {0, 1, 2}∗ → {0, 1, 2}∗ be defined by 0 7→ 012, 1 7→ 112002, 2 7→ ε.
Consider x = f ω(0) = 012112002112002 · · · the fixed point of f starting by 0.

Then we have ρab
x = 135(377)ω and ρadd

x = 134(355)ω.

→ Performed with Walnut.
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Tribonacci word 1/3: Definition

The Tribonacci word tr is the fixed point of the morphism 0 7→ 01, 1 7→ 02, 2 7→ 0.
Episturmian word: ρtr(n) = 2n + 1 for every n ≥ 0.
Tribonacci numeration system: Based on the Tribonacci numbers
Tn+3 = Tn+2 + Tn+1 + Tn, n ≥ 0, T0 = 0, T1 = 1, T2 = 1. Supported by Walnut.

q0

q1

q2

0
1

0
1

0

Figure: Tribonacci numeration system

ε, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, . . .

→ Tribonacci NS is not Ostrowski NS based on the dominant root of X 3 = X 2 + X + 1.
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Tribonacci word 2/3: Abelian complexity

Theorem: Richomme, Saari and Zamboni (2010)
The abelian complexity function of tr satisfies ρab

tr (n) ∈ {3, 4, 5, 6, 7}, for n ≥ 1.

These values are taken infinitely often:
Values {3, 7} by RSZ (2010),
Values {4, 5, 6} by Turek (2013).

Main strategy: find an infinite parametric family xn that satisfies ρab
tr (xn) = k.

For instance ρab
tr (n) = 3 ⇔ n = 1 or n = 1

2 (Tm+2 + Tm − 1) for some m ≥ 0.

Theorem: Turek (2013), Shallit (2021)
The abelian complexity function ρab

tr is computed by a 78-state Tribonacci DFAO.

And this automaton allows to prove that each value is taken infinitely often very easily.
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Tribonacci word 3/3: Additive complexity

Theorem: P., Shallit and Stipulanti (2024)
The additive complexity function of tr satisfies ρadd

tr (n) ∈ {3, 4, 5}, for n ≥ 1.
Furthermore, each of the three values is taken infinitely often and ρadd

tr is computed by a
76-state Tribonacci DFAO.

→ Also performed with Walnut.
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Thue–Morse over three letters: Bounded additive and abelian complexities

The ternary Thue–Morse word t3 is the fixed point of the morphism

0 7→ 012, 1 7→ 120, 2 7→ 201.

This word satisfies t3(n) = s3(n) mod 3.

Theorem: Kaboré and Kientéga (2017)
The abelian complexity function ρab

t3 is the periodic infinite word 136(766)ω.

Theorem: P., Shallit and Stipulanti (2024)
The additive complexity function ρadd

t3 is the periodic infinite word 135ω.

Two possible proofs:
by “hand”. Not difficult, study the form of every factor of length n.
Or by Walnut of course.
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Variant of Thue–Morse: Bounded additive and unbounded abelian
complexities
Let vtm be the fixed point of f : 0 7→ 012, 1 7→ 02, 2 7→ 1, starting with 0.
The word vtm = 012021012102012021012 · · · is squarefree.

Theorem: Blanchet-Sadri, Currie, Rampersad and Fox (2014)
The abelian complexity of vtm is O(log n) and it is Ω(1) with constant 3.

Theorem: P., Shallit and Stipulanti (2024)
The additive complexity of vtm is the periodic infinite word 13ω.

→ The proof is actually really simple and does not require Walnut.
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First order logic in Combinatorics on Words

Many properties of words can be phrased in first-order logic. For instance, the following
formula if the two factors in x starting at positions i and j of length n are equal:

FactorEq(i , j, n) := ∀t < n =⇒ x[i + t] = x[j + t].

For abelian/additive equivalence, this is not possible to write such a formula in general.

But with the extra assumption of synchronicity of occurrences of any given letter in a
length-n prefix, we can make it work. Suppose that we have a DFA for Prefa(n, t),
where t is the number of a in the prefix of length n. Then

Faca(i , n, s) := ∃t, u Prefa(n, t) ∧ Prefa(i + n, u) ∧ (t + s = u).

And then we can test the additive equivalence of two factors (over 0, 1, 2 for example) as:

AddEq(i , j, n) := ∃p, q, r , s Fac1(i , n, p) ∧ Fac2(i , n, q)
∧Fac1(j, n, r) ∧ Fac2(j, n, s)
∧(p + 2 × q = r + 2 × s).
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Walnut: automatic theorem prover
Walnut is a free software program (in Java) designed by Mousavi (2016) that allows one
to automatically decide the truth of assertions about many properties in CoW.

Let U be an abstract numeration system.

Theorem: Base of Walnut
There is an algorithm that, given a formula φ with no free variables, phrased in first-order
logic, using only the universal and existential quantifiers, addition and subtraction of
variables and constants, logical operations, comparisons, and indexing into a given
U-automatic sequence x, will decide the truth of that formula.
Furthermore, if φ has t ≥ 1 free variables, the algorithm produces a DFA M that
recognizes the language of all U-representations of t-tuples of natural numbers that make
φ evaluate to true.

→ Based on works of Büchi and Bruyère et al. about decidability on ⟨N, +, Vk⟩.
Walnut essentially implements the decision procedure of this theorem. It can handle any
abstract numeration systems such as

The classical k-numeration systems.
Tribonacci, Dumont–Thomas, . . ..
Ostrowski numeration systems based on a quadratic number.
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Use of Walnut

morphism h "0->01 1->02 2->0":
promote TR h:

The sequences |tr[0..n − 1]|a are synchronized for all a ∈ {0, 1, 2}.

def Fac0 "?msd_tri Aq Ar ($Pref0(i+n,q) & $Pref0(i,r)) => (q=r+s)":

And the additive equivalence of tr[i ..i + n − 1] and tr[j..j + n − 1] is tested like this:

def triAddEq "?msd_tri Ep,q,r,s $Fac1(i,n,p) & $Fac2(i,n,q)
& $Fac1(j,n,r) & $Fac2(j,n,s) & p+2*q=r+2*s":

→ This step can be very long for some examples (and even not end). Here, it has 4584
states
And, we obtain a linear representation of the additive complexity as follows

eval triAddComp n "?msd_tri Aj j<i => ˜$triAddEq(i,j,n)":

→ We count novel occurrences with such a formula. See Walnut’s book of Shallit for
more details about this procedure. This returns a linear representation of size 184, and of
size 62 after minimization.
→ Finally, we apply the “Semigroup trick algorithm” to deduce an 76-states automaton.

P. Popoli (Université de Liège) Additive word complexity and Walnut April, 23th 2025 25 / 29



Each value is obtained infinitely often

First solution: look for loops in the automaton.

Then every n such that (n)T = 100(100)k for k ≥ 0 satisfies ρadd
tr (n) = 3.

Second solution: with Walnut like this:

eval triAddComp_3 "?msd_tri An Em (m>n) & TAC[m]=@3":
eval triAddComp_4 "?msd_tri An Em (m>n) & TAC[m]=@4":
eval triAddComp_5 "?msd_tri An Em (m>n) & TAC[m]=@5":

and Walnut then returns TRUE each time.
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Changing the letters: Thue–Morse word over three letters

The additive complexity depends on the values of the letters.
We can always suppose that one value is 0.

Let ℓ, m be integers such that 1 ≤ ℓ < m.
The (ℓ, m)-Thue–Morse word tℓ,m is the fixed point of the morphism

0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ.

This does not change the abelian complexity: ρab
tℓ,m = 136(766)ω.

Theorem: P., Shallit and Stipulanti (2024)
Let ℓ, m be integers such that 1 ≤ ℓ < m.

The additive complexity of tℓ,m satisfies ρadd
tℓ,m =

{
ρab

tℓ,m if m ̸= 2ℓ

135ω if m = 2ℓ.

→ Combinatorial proof, not possible with Walnut.
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Changing the letters: Variant of Thue–Morse

Let fλ :


0 7→ 01λ,

1 7→ 0λ,

λ 7→ 1,

and vtmλ = f ω
λ (0) = 01λ0λ101λ10λ · · · .

For λ = 2, we have ρadd
vtm2 (n) = 3 for all n ≥ 1.

For λ = 3, ρadd
vtm3 (n) = ρab

vtm3 (n) for all 1 ≤ n ≤ 11.
For λ = 4, ρadd

vtm4 (n) = ρab
vtm4 (n) for all 1 ≤ n ≤ 43.

Theorem: P., Shallit and Stipulanti (2024)
We have ρadd

vtmλ
(n) = ρab

vtmλ
(n) for every λ ≥ 5.

→ The value 5 forces that every two additive equivalent factors are actually abelian
equivalent.
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Extensions and open problems
Theorem: Couvreur, Delacourt, Ollinger, Shallit, P. and Stipulanti (2025+)
The abelian complexity of the fixed point of a prolongable Pisot type morphism is an
automatic sequence in the associated Dumont–Thomas numeration system and the
DFAO computing it is effectively computable.

→ the case of k-abelian complexity is also treated under assumptions on the sliding-block
code.

Recall that:
Morse–Hedlund’s theorem: Bounded factor complexity =⇒ there exists a k-power
for all k ≥ 1.
RSZ theorem: Bounded abelian complexity =⇒ there exists an abelian k-power for
all k ≥ 1.
ABJS theorem: Bounded additive complexity =⇒ there exists an additive k-power
for all k ≥ 1.

→ this is also true for k-abelian complexity, cyclic complexity, . . .

Open problem
Characterize complexities such that the latter property is true.

Thank you for your attention !
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