Weak approximation for del Pezzo surfaces of low degree

Sam Streeter (U Bath)

Sep 22. 2021, 15:00 — 16:00

Work of Iskovskih shows that any geometrically rational surface is birational to a conic bundle or a del Pezzo surface. In this talk, we focus on surfaces in the intersection of these two families through the lens of weak approximation. In joint work in progress with Julian Demeio, we show that a general del Pezzo surface of degree one or two with a conic fibration satisfies weak weak approximation, or weak approximation away from finitely many places. We utilise a result of Denef connecting arithmetic surjectivity (surjectivity on local points at all but finitely many places) with the scheme-theoretic notion of splitness.

Further Information
ESI Boltzmann Lecture Hall
Associated Event:
Arithmetic Statistics and Local-Global Principles (Workshop)
Tim Browning (ISTA, Klosterneuburg)
Daniel Loughran (U Bath)
Rachel Newton (KCL, London)