All relative entropies for general nonlinear Fokker-Planck equations

Anton Arnold (TU Vienna)

Dec 12. 2025, 09:30 — 10:00

We shall revisit the entropy method for quasilinear Fokker-Planck equations with confinement to deduce exponential convergence to the equilibrium. Even for prototypical examples like the porous-medium equation, only one relative entropy has been known so far - the Ralston-Newman entropy, which is the analog of the logarithmic entropy in the linear case.

We shall give a complete characterization of all admissible relative entropies for each quasilinear Fokker-Planck equation. In particular we find that fast-diffusion equations with power-law nonlinearities admit only one entropy, while porous medium equations give rise to a whole family of admissible relative entropies (similar to linear Fokker-Planck equations). These additional entropies then imply also new moment-control estimates on the porous-medium solution.
Joint work with Jose Carrillo, Daniel Matthes.

 

Further Information
Venue:
ESI Boltzmann Lecture Hall
Recordings:
Recording
Associated Event:
Free Boundary Problems (Thematic Programme)
Organizer(s):
Serena Dipierro (UWA, Perth)
Julian Fischer (ISTA, Klosterneuburg)
Matteo Novaga (U Pisa)
Elisabetta Rocca (U of Pavia)
Xavier Ros-Oton (U of Barcelona)
Ulisse Stefanelli (U of Vienna)
Enrico Valdinoci (UWA, Perth)