Weaving Frames and Riesz bases

Ursula Molter (U of Buenos Aires)

May 08. 2025, 11:00 — 12:00

This talk is about woven frames in separable Hilbert spaces. I will start 

focusing on the finite-dimensional case. We begin by simplifying the problem to bases, for

which we obtain a unique characterization. We establish a condition that is both nec-

essary and sufficient for vector reconstruction, which is applicable to Fourier matrices.

Furthermore, we show that these characterizations are still valid in the infinite dimen-

sional case, for Riesz bases. Finally, we obtain several results for weaving Riesz bases of

translations.

Further Information
Venue:
ESI Boltzmann Lecture Hall
Associated Event:
Quantum Harmonic Analysis (Workshop)
Organizer(s):
Markus Faulhuber (U of Vienna)
Hans G. Feichtinger (U of Vienna)
Franz Luef (NTNU, Trondheim)