Adjoint L-values and the Tate conjecture

Haruzo Hida (UCLA)

Sep 03. 2025, 10:00 — 11:00

We sketch a strategy to prove the Tate conjecture on algebraic cycles for a good amount of quaternionic Shimura varieties. 
A key point is a twisted adjoint L-value formula relative to each quaternion algebra  D/F  for a totally real field  F  and its scalar extension  B  to a totally real quadratic extension  E/F.  The theta base-change lift  f  of a Hilbert modular form  f  to  the multiplicative group of B has period integral over the Shimura subvariety  Sh(D)  inside  Sh(B)  given by the adjoint L-value  for  twisted by the quadratic character of  E/F  at  1.  Since the adjoint L-value at  1  does not vanish (its abscissa of convergence),  Sh(D)  gives rise to a non-trivial Tate cycle  in  the degree  2r  cohomology group of  Sh(D)  for  the dimension   of  Sh(D).

Further Information
Venue:
ESI Boltzmann Lecture Hall
Recordings:
Recording
Associated Event:
Eisenstein Series, Spaces of Automorphic Forms, and Applications (Workshop)
Organizer(s):
Neven Grbac (UNIPU)
Marcela Hanzer (U Zagreb)
Stephen S. Kudla (U Toronto)
Joachim Schwermer (U of Vienna)