Research in Teams Project: Variational Approaches to Modelling Geophysical Waves and Flows

Rescheduled for 2021 due to Covid-19

Research Project postponed to June 29 - July 29, 2021 due to Covid-19

We will focus on the derivation of different model equations as approximations to the full water wave problem taking into account the Coriolis effect, the stratification and the vorticity. The derivation relies on an interplay of variational methods in the Lagrangian or the Hamiltonian formalism and small-parameter expansions. Integrable model equations, as weakly nonlinear approximations under various assumptions for the scale parameters, will be developed. The advantage of the integrable model equations is that they have very rich mathematical structures. The inverse scattering method will be applied to get analytic soliton solutions. By obtaining explicit multi-soliton solutions, we will reveal the wave-interactions as well as the propagation of wave packages for the obtained  models, in the context of their geophysical relevance.

Research Team: Delia Ionescu-Kruse (Simon Stoilow Institute, Bucharest), Rossen I. Ivanov (TU Dublin)

Coming soon.

There is currently no participant information available for this event.
At a glance
Type:
Research in Teams
When:
June 29, 2020 -- July 29, 2020
Where:
Erwin Schrödinger Institute
Organizer(s):
Christoph Dellago (U Vienna)