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Non-translation invariant SPDEs

Denote by (t,x) € R x T a typical spacetime point. We consider
the operator

Ll :=a'(:)02 + b'(-)0, (1<i< k),

with smooth coefficients a’ and b’. We consider systems of
parabolic equations of the form

(0 — L) ui = Fi(u)é + g'(u, Oxu), (1 <i< k),

with & = (&1,...,&n,) an no-dimensional spacetime ‘noise’.



Context

@ When the a’ and b’ are constants, Regularity Structures can
be used for solving this system (see [Hail4],[BHZ19],[CH16]
and [BCCH21)).

o If the coefficients are non constants then it has been
considered via paraconrolled calculus in some specific setting
see ([GIP15], works from Ismael Bailleul).

@ Motivation: intermediate step for defining SPDEs on a
manifold in a systematic way (Work in progress of Hairer and
Singh).



A local perturbative expansion

Oru = 02u + f(u) (Oxu) + g(u)E, v = 2v + €.

Then u cannot be described by u = v + w but through a Taylor
type expansion:

u= § CrxUrx + RT,x
TET

where

T is a finite set of decorated trees
ur x are recentered (Gaussian) stochastic processes
¢ x are coefficients of the Taylor expansion

o
o
o
@ Rt x is a remainder nicer than the u; .



A local perturbative expansion
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b, = K& = (Kx (), tgny = (- = x)*

typ = Kx (0K % §)% — (K= (0K +£)?)(x)
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@ Rt x is a remainder nicer than the u; .



Main Steps

@ Analytical step (no radial kernel K(x,y)) use the formalism
given in Tourist’s guide for regularity structures of Bailleul
and Hoshino.

@ Define the model (recentered iterated integrals), identical to
the original construction.

@ Renormalised Model (replace constants by functions).
@ Convergence of the renormalised model is open.

@ Renormalised equation (main result obtained).



Main Result

Theorem (Bailleul, B. 2021)

There exists a finite vector space T and for a map
R:(RxT)x T — T called strong preparation map, the
renormalised equation is given by

(0 — L )ui = f'(u)é + g'(u, Dxu)

+§:Fi((R(')*_Id)C/)(uvaxu)gh (1 <i< kO)?
I=0

for some explicit functions F;(7)(u, Oxu) indexed by T € T and
where (; is associated to &;.




Decorated trees

@ Rooted trees.
@ Decorations on the edges (kernels, noises and derivatives).

@ Decorations on the nodes (polynomials).

-

b\./c ’ Ia(.) _
1)

We consider a finite dimensional space of decorated tree T
generated by the equation.

e For 7 € T, |7|¢ is the number of noise symbols.

@ deg: T — R is a degree map.



Connes-Kreimer coproduct

We consider a product ® given by:

In fact, one has
(11 © T2, 73) = (T1 ® T2, AckT3)

where Ak is a variant of the Connes-Kreimer coproduct.



Deformed Connes-Kreimer coproduct (B., Manchon 2020)

B
B v a a+d fg v
< F o Ny
b ¢ « a Z w a c— 4y +
S = ’ NV o).
0 w 6=01+0> ¢ w9 — L4y — 4>
One gets:

T%0 =T QO o+ terms of lower order.
In fact, one has
(T1 % T2, 73) = (11 ® T2, Ak T3)

where ACK is a deformation of the Connes-Kreimer coproduct.



(Strong) Preparation maps

A preparation map is a linear map R : T — T such that for each
7 € T there exist finitely many 7; € T and constants A; such that

RT =71+ Z)\,-T,-, with deg(7;) > deg(7) and |7i]¢ <|7[¢

1

and one has
R* (o *7) =0 % (R*T) (1)

forallce Tt and 7€ T.

A strong preparation map will have (1) for all 0,7 € T.



Example of preparation maps

The main examples are preparation maps used for the BPHZ
renormalisation:

Ri(r) =Y é((‘;)) (r%0).

oceT—

where

@ T~ are trees of negative degree.
@ /: T~ — R is a character:

Y1) = ~E[(N%7)(0)]

with M7¢ the renormalised smooth model associated with Ry.

@ S(o) is the symmetry factor of o € T.



Renormalisation maps

A good multi-pre-Lie morphismon T isamapM: T — T
such that:

M*(Zy(1) x 0) = L,(M* 1) x M*o, M*(ex0) = ey x M* 0.

Example: BPHZ renormalisation map, Translation maps for
Branched Rough Paths,...

Given a strong preparation map R, we define My : T — T as
multiplicative and by the induction relation

Mg (T,(7) = To(ME(RD)).
Then Mg is defined as

Mg = MSR



Decorated trees expansion

Abstract solution u in T is given by:
=Y Fi(7)(u, 0x u)
TeT

where there exists an explicit expression for F;(7). The lift G of a
smooth enough function G is given for any a=aj1+a’ € T by

k
Ga)=)Y_ Di!(‘“) (a")k.

The lift of F;(7) is denoted by F;(7).



"A one page proof of [BCCH21]"

One has the following identity:

O Liyu =R (). = Y FiOow)

where
(RMRV,-)(X) = (ﬁf(Rv;(x)))(x), MR multiplicative

Then

no

Rvi(x) = Fi(R*¢) (u(x), Du(x))¢-

1=0

where the last identity uses the right morphism property of R.



"A one page proof of [BCCH21]"

Using the (crucial) multiplicativity property of ﬁf we see that
(0 = £0ur) () = (R™vi) (x) = AF (REvi(x) (x)
=2 (Fi(R*(6)((x), Du(x)) <) (x)

—ZF (R (&) ((2u(0) (0, 05 (A2u()) (1)) AEG)

- Z F(R*(x)¢1) (u(x), Oxu(x))&(x).
1=0



Conclusion

@ A short proof of the renormalised equation that works in the
non-translation invariant context.

@ Equivalence between preparation maps and BPHZ
renormalisations maps for Branched Rough Paths.
Equivalence open for Regularity Structures.

@ Convergence of the renormalised model could use the
recursive definition with R.



