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Basic example of emergence from large N : AdS5/CFT4

String theory on AdS5 × S5 geometry and its fluctuations are
captured by N = 4 SYM with U(N) gauge group.



CFT operators : Half-BPS

General half-BPS gauge invariant operators of dimension n can
be parameterised by using permutations σ ∈ Sn :
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· · ·Z in

iσ(n)

Different choices of permutation σ give rise to different trace structures.
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CFT operators :

For fixed n < N, the number of trace structures is equal to the
number of partitions of n (more on general n shortly).

From the permutation parameterisation,

Oσ(Z ) = Oγσγ−1(Z )

Operators associated to conjugate permutations are the same.
Conjugacy classes in Sn are in 1-1 correspondence with cycle
structures. For a multi-trace operator of dimension n of the form

(tr(Z ))p1(tr(Z 2))p2 · · · (tr(Z n))pn

with p1 + 2p2 + · · ·+ npn = n, we can pick a permutation σ(p)

with cycle structure [1p1 ,2p2 , · · · ] and write

(tr(Z ))p1(tr(Z 2))p2 · · · (tr(Z n))pn = Oσ(p)(Z ) =
1
|Cp|

|Cp|∑
i=1

O
σ

(p)
i

(Z )



CFT operators

Formal linear combinations of permutations with complex
coefficients live in the group algebra C(Sn). Combinations of
this form

Tp =
1
|Cp|

∑
i

σ
(p)
i

live in the centre of the group algebra, denoted Z(C(Sn)).

As p ranges over all partitions of n, the Tp form a basis for
Z(C(Sn)).



Projector basis for Z(C(Sn)

There is a basis for Z(C(Sn)) consisting of orthogonal
projectors. The elements of the basis are labelled by Young
diagrams R

PR =
dR

n!

∑
σ∈Sn

χR(σ) σ =
dR

n!

∑
p`n

χR(σ(p)) (Tp|Cp|)

PRPS = δRSPS



Projectors and Schur-basis of CFT operators

The projectors are directly related to the Schur-basis operators

OR(Z ) =
1
n!

∑
σ∈Sn

χR(σ) Oσ(Z )

which were defined and shown to have orthogonal 2-point
functions in free-field N = 4 SYM :

〈OR(Z (x1))OR(Z †(x2))〉 =
1

|x1 − x2|2n fR(N)

Corley, Jevicki, Ramgoolam, "Exact Correlators of Giant Gravitons from dual N=4 SYM”, ATMP-2001,

https://arxiv.org/abs/hep-th/0111222

The orthogonality of projectors is directly related
(diagrammatic) to the orthogonality of the two-point functions.
Corley, Ramgoolam, "Finite Factorization equations and Sum Rules for BPS correlators in N=4 SYM theory"

JHEP-2002, https://arxiv.org/abs/2201.12917



Complex matrix model and background fields
The combinatorial computations are essentially computations
in a complex matrix model with partition function

Z =

∫
[dZ ] e−trZZ †

The combinatorial computations (neatly simplified using
algebras and diagrams) are reviewed and extended to actions
with background fields of the form

Z =

∫
[dZ ] e−trZAZ †

A is hermitian matrix background field.
Ramgoolam and Sword, “Matrix and tensor witnesses of hidden symmetry algebras” , JHEP-2023,

https://arxiv.org/abs/2302.01206



Complex matrix model and background fields
In these cases the normalisation factors are replaced by
Schur-functions of the background field

fR(N)→ OR(A)

This makes contact with the super-integrability program of
Morozov-Mironov
A. Mironov, A. Morozov, "Superintegrability summary" https://arxiv.org/abs/2201.12917



Young diagrams and giants.

It was argued that the Young diagram basis allows the
identification of operators dual to semi-classical giants which
are large in the AdS as well as the sphere directions
(CJR-2001).

There is an underlying free-fermion picture for this half-BPS
sector which sheds further light on the dictionary between
Young diagram operators and giants (CJR-2001,
Berenstein-2004).
Berenstein “A toy model for the AdS/CFT correspondence” , https://arxiv.org/abs/hep-th/0403110

Extensive evidence in subsequent papers : DB, Robert de
Mello Koch, SR, many others ... multi-matrix operators related
to strings attached to giants ...



Many giants and LLM geometries

Giant gravitons are described in space-time in terms of
solutions to 3-brane actions with embedding in AdS5 × S5 bulk
space-time. They correspond to operators of dimension n ∼ N.

For n ∼ N2, the giant gravitons back-react and produce large
deformations of space-time, with AdS5 × S5 asymptotics. The
general half-BPS super-gravity solutions were characterised by
Lin, Lunin, Maldacena (2004) - LLM-2004.

A distinguished role is played by a 2-dimensional plane in
space-time, which can be identified with a free-fermion phase
space. Colourings of the plane by concentric black rings in a
white background can be mapped to Young diagram row
lengths and equivalently excitations of N free fermions in a 1D
harmonic oscilliator potential, making contact with the
free-fermion/Young-diagram connection from the matrix model
of a complex scalar.



Outline of Talk :

I Detecting the R label of projectors PR ( using the Hilbert space structure

of Z(C(Sn)) and a system of eigenvalue equations ).

I Detecting the LLM geometry corresponding to R using
measurements of the LLM metric

I Quantum detection of projectors ( the eigenvalue system and obtain

complexity estimates using standard results in quantum information and group theory )

I Holographic Classical detection ( estimates comparable to above ( modulo

assumptions) ; Classical detection by randomised algorithms .. exponentially harder. ).



Part 1 : Detecting PR in Z(C(Sn))

Number of PR = Number of Tp = Number of partitions of n
∼ e

√
n.

R is a Young diagram ( an irrep of Sn ) ; p is a partition of n
associated with a cycle structure.

PR satisfy eigenvalue equations, with known simple
eigenvalues.

TpPR =
χR(Tp)

dR
PR



Part 1 : Detecting PR in Z(C(Sn))

A subset of the Tp are inretesting: when p corresponds to a
partition associated with a single cycle of length k and
remaining cycles of length 1, i.e. p = [k ,1n−k ] :

Tp=[k ,1n−k ] ≡ Tk

The eigenvalues for Tk have nice expressions in terms of power
sums of contents of boxes in Young diagrams.
Math papers by Lasalle and by Corteel, Goupille, Schaeffer

NUmber of Tk = n.

The eigenvalues of the set of Tk , for k = 1 · · · n, uniquely
specify the PR.

Kemp, Ramgoolam, "BPS states in N = 4 SYM theory and centres of symmetric group algebras" JHEP



Part 1 : Detecting PR in Z(C(Sn))

In fact, for any given finite n, we only need a small number of Tk
to distinguish the PR

E.g. for n ∈ {2,3,4,5,7} it suffices to know T2.

With {T2,T3} we can distinguish all PR for n up to 14.

For general n, there is some k∗(n), such that

{T2,T3, · · · ,Tk∗(n)}

uniquely specify the R. Such subsets non-linearly generate the
centre Z(C(Sn).
We computed this for n up to 80 .. e.g. k∗(n = 80) = 6. !

Kemp, Ramgoolam, "BPS states in N = 4 SYM theory and centres of symmetric group algebras" JHEP-2020



Part 2 : Detecting LLM geometries

Lin-Lunin-Maldacena (2004) classified the half-BPS super-gravity
solutions with AdS5 × S5 asymptotics, which take the form:

ds2 = −h−2(dt +
2∑

i=1

Vidxi )
2 + h2(dy2 +

2∑
i=1

dxidxi ) + R2dΩ2 + R2dΩ̃2

The functions V1,V2,h,R appearing above are all functions of
(x1, x2, y), and are all determined by one function u(x1, x2, y). The
function obeys a harmonic equation in y and is determined by its
value on the y = 0 plane.

The function u(x1, x2) on the LLM plane is determined by using a
Wigner phase space distribution associated to the quantum
many-body fermion state ( associated with Young diagram R ).
Vijay Balasubramanian, Bartlomiej Czech, Klaus Larjo, Joan Simon, "Integrability vs. Information Loss: A Simple
Example," -2006, https://arxiv.org/abs/hep-th/0602263 ( BGLS-2006)



Part 2 : Detecting LLM geometries
The upshot of this discussion gives an expression for u that
allows the determination of the conserved charges from the
semi-classical geometry :

u(ρ, θ) = 2 cos2
θ

∞∑
l=0

∑
f∈F Al (f )

ρ2l+2
(−1)l (l + 1) 2F1(−l, l + 1; 1; sin2

θ)

Here ρ ∈ [0,∞], θ ∈ [0, π2 ], F = {f1, f2, . . . , fN} a set of
increasing integers related to the eigenvalues of individual
Fermion Ei = ~(fi + 1

2), i = 1,2, . . . ,N. In such an expansion,
Al(f ) is a polynomial of order l in f (its explicit form can be
found in BGLS-2006).



Part 2 : Detecting LLM geometries

These polynomials ∑
f∈F

Al(f ) = Cl(R)

are Casimirs of U(N).
These are in turn related to the eigenvalues of χR(Tp)

dR
- for

example there are relations of the form

C2(R) = Nn +
χR(T2)

dR

Such relations follow from Schur-Weyl duality which relates
U(N) rep theory to rep theory of

∞⊕
n=0

C(Sn)

Knowledge of Casimirs C2(R), · · · ,Ck (R) is equivalent to
knowing the normalised characters χR(T2)

dR
, · · · , χR(Tk )

dR
.



Part 2 : Detecting LLM geometries

The point made in BGLS-2006 was that determining a general
Young diagram and corresponding LLM geometry requires
knowing N Casimirs, while the Planck scale cutoff means we
have access to far fewer Casimirs/multi-pole moments – order
N1/4 - an interpretation of information loss as a toy model for
black holes.

We can give a more careful discussion of this argument by
defining a k∗(n,N) - number of cycle central elements (
Casimirs) needed to distinguish all Young diagrams with n
boxes and no more than N rows.

When n < N, k∗(n,N) = k∗(n) which is the case we stick with
for now.



Part 3: Quantum detection of projectors PR

The task of identifying the projector PR using the Tk eigenvalue
equations lends itself to standard quantum algorithms -
quantum phase estimation, which come with associated
complexity estimates (query and gate complexity).
JBG-SR-2023 : J. Ben Geloun and S. Ramgoolam, "The quantum detection of projectors in finite-dimensional

algebras and holography," JHEP-2023

This allows the exploitation of exponential improvements
provided by quantum algorithms ( compared to classical
algorithms) for certain computational tasks in linear algebra,
along the lines of
Harrow, Hassidim, Lloyd, "Quantum algorithm for solving linear systems of equations," PRL-2009,
https://arxiv.org/abs/0811.3171



Part 3: Quantum detection of projectors PR

The algorithm uses black box unitaries Uk = e
2πi
χmax

k
Tk and

UkPR = e
2πi
χmax

k
χ̂R(Tk )

PR

χmax
k is the maximum of the eigenvalues χR(Tk )

dR
as R ranges

over Young diagrams with n boxes.

Quantum phase estimation involves applications of powers of
Uk - assumed to be available as black boxes - to the initial state
PR, which is assumed to be given as a quantum state in the
Hilbert space Z(C(Sn)).

Query complexity counts the number of uses of these black
boxes in the quantum circuit. Known results for QPE are used
from standard texts e.g. Nielsen and Chuang. Gate complexity
counts the total number of other boxes in the circuit.



Part 3: Quantum detection of projectors PR

|0〉 H . . .

...

|0〉 H . . .

|0〉 H . . .

|ψ〉 U20
U21 . . . U2t−1

1st register

t-qbits

2nd register
{

QFT−1

Figure 1: Quantum phase estimation by a quantum circuit acting on the initial state
|0〉⊗t ⊗ |ψ〉: H-boxes are Hadamard gates, U2i-boxes stand for CU-operators, i =
0, . . . , t − 1, QFT−1 for the inverse quantum Fourier transform, and the last stage in-
volves a measurement on the first register.

|j1〉 H R2
. . . Rt−1 Rt

|j2〉 . . . H R2
. . . Rt−2 Rt−1

...
...

. . .

|jt−1〉 . . . H R2

|jt〉 . . . H

Figure 2: A circuit for quantum Fourier transform |j1j2 . . . jt〉: H-boxes are Hadamard
gates, Rk-boxes stand for C-Rk-operators, k = 2, . . . , t.
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Part 3: Quantum detection of projectors PR

Standard result in QPE - for one unitary - gives query
complexity O(t) and gate complexity O(t2) , where t is the
number of bits needed to code the eigenvalues of interest.

Sn group theory input – about values of the normalised
characters χR(Tk )

dR
- relates this to n.

In our application we have a range of unitaries {U2, · · · ,Uk∗(n)}.
We argued for a heuristic approximate lower bound
k∗(n) ' n1/4 in the large n limit (JBG-SR-2023), and we
assumed k∗(n) ∼ nα with 1/4 ≤ α < 1/2.

k∗(n) ≤ n1/2 has been argued more recently in
Kemp, " A generalized dominance ordering for 1/2-BPS states" - https://arxiv.org/abs/2305.06768



Part 3: Quantum detection of projectors PR

Based on the input from Quantum information, and the Sn rep
theory estimates, we arrived at the complexity estimate for the
detection of the projectors PR :

Query complexity : O(n2α log n)

Gate complexity : O(n3α(log n)2)

These are both bounded by n3/2+ε with ε > 0.

Hence the quantum projector detection is polynomially
bounded in n - although p(n) ∼ e

√
n and n! ∼ en log n−n.



Part 4: Holographic classical detection of projectors PR

Remarkably - Because of AdS/CFT, the same task of detecting
PR has a classical counterpart. Use the long-distance
behaviour of the metric/form-fields, which are determined by
one function u(ρ, θ), to identify the Casimirs Cl up to a cut-off
l ∼ k∗(n) ∼ nα and estimate the complexity of the task.

In JBG-SR-2023, we described how to use the standard "Fast
Fourier Transform algorithm" - along with known analytic
properties of u(ρ, θ) from LLM and BGLS-2006, to reconstruct
the Casimirs from the values of u(ρ, θ) at different values of θ.

And we used standard results on the complexity of FFT, along
with the k∗(n) ∼ nα with 1/4 ≤ α < 1/2, to obtain complexity
estimates.



Part 4: Holographic classical detection of projectors PR

Formula for u(ρ, θ) :

u(ρ, θ) = 2 cos2
θ

∞∑
l=0

∑
f∈F Al (f )

ρ2l+2
(−1)l (l + 1) 2F1(−l, l + 1; 1; sin2

θ)

Introduce a cut-off Λ ∼ nα and expressing the 2F1 in terms of
Jacobi polynomials

u(ρ, θ) = 2 cos2
θ

Λ∑
l=0

∑
f∈F Al (f )

ρ2l+2
(−1)l (l + 1)P0,0

l (cos 2θ)

A rescales form of u :

ũ(ρ, X , Λ) =
u(ρ, X , Λ)

(1 + X)
=

Λ∑
l=0

U(l, ρ)P0,0
l (X)

where the Casimirs of interest are given by
∑
f∈F

Al (f ) = (−1)l
ρ

2l+2 U(l, ρ)

l + 1



Part 4: Holographic classical detection of projectors PR
With a little re-organisation

ũ(ρ, θ,Λ) =
Λ∑

l=0

U(l , ρ)
l∑

m=−l

p̃l,m e2iθm

=
Λ∑

m=−Λ

[ Λ∑
l=|m|

U(l , ρ) p̃l,m

]
e2iθm =

Λ∑
m=−Λ

C̃m(ρ,Λ) e2iθm

C̃m(ρ,Λ) :=
Λ∑

l=|m|
U(l , ρ) p̃l,m

We have a Fourier expansion, with coefficients that know about
the Casimirs- and needs solution of a linear system involving
Jacobi polynomial coeffs. - to go from Fourier coeffs. to
Casimirs.



Part 4: Holographic classical detection of projectors PR

The physical input into the algorithm (FFT and linear-system
inversion) is a set of values of u(ρ, θ) at Λ discrete values of θ.

We assume that the computational complexity of measuring the ũ(ρ, θl = πl
Λ+1 , Λ), l = 0, . . . , Λ, is bounded from

above by a certain function cũ(Λ), the complexity of measuring ũ at separations of 2π/(Λ + 1). The estimation of

cũ(Λ) will require a complexity analysis of measurements in classical gravity, which we leave for future discussion

and calculation.

Putting everything together, we arrive at the complexity of
detecting the PR/corresponding-LLM-geometry :

f (Λ) ≤ c0 Λ cũ(Λ) + c1Λ log Λ + c2Λ2

where c0, c1 and c2 are n-independent constants.



Part 4: Holographic classical detection of projectors PR

Recalling Λ ∼ k∗(n) ∼ nα with 1/4 ≤ α < 1/2, and assuming
cũ(Λ) grows at most polynomially with Λ, we find that this
holographic classical detection of R has a complexity which is
polynomial in n - like the quantum phase estimation algorithm
we described before.

Quantum Linear algebra algorithms (of HHL type) have been
compared to randomised classical algorithms. In concrete real
world-applications (recommendation systems) where the data
is classical - and has to be converted to a quantum state vector
- the (quantum-inspired ) randomised classical algorithms were
found to be competitive with the quantum algorithm.
Ewin Tang "A quantum-inspired classical algorithm for recommendation systems"

For the projector detection task at hand - intrinsically a more
quantum problem - the corresponding “quantum-inspired
classical algorithms” we came up with in JBG-SR-2023 were
exponentially worse than the quantum algorithm.



Summary and Outlook

We defined a "quantum detection of projectors in algebras" task
inspired by AdS/CFT.

In the simplest case considered, motivated by half-BPS states,
the algebra is Z(C(Sn)).

Other algebras considered in JBG-SR-2023 are related to
Littlewood-Richardson coefficients and Kronecker coefficients.

Our discussion on the classical gravity side is a "proof of
concept” complexity claculation – important and interesting
conceptual questions remain on the intrinsic compolexities of
the gravitational merasurements. Are there classical
gravitational analogs of the query v/s gate complexities in the
quantum side.

Explore similar classical/quantum comparisons in other
instances of quantum-state/classical-geometry
correspondences in string theory, e.g. Mathur programme,
AdS3 etc.


