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Anatomy

Gall (1758-1828) : Phrenology
Talairach (1911-2007) 

Vésale (1514-1564)
Paré (1509-1590)

2007

Science that studies the structure and the relationship in 
space of different organs and tissues in living systems 

[Hachette Dictionary]

Revolution of observation means (~1990):
 From dissection to in-vivo in-situ imaging
 From the description of one representative individual 

to generative statistical models of the population

Galien (131-201)

1er cerebral atlas, Vesale, 1543

Visible Human Project, NLM, 1996-2000
Voxel-Man, U. Hambourg, 2001

Talairach & Tournoux, 1988

Sylvius (1614-1672)
Willis (1621-1675)

Paré, 1585
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Statistics of organ shapes across subjects in species, 
populations, diseases… 
 Mean shape (atlas), subspace of normal vs pathologic shapes
 Shape variability (Covariance)
 Model development across time (growth, ageing, ages…)

Use for personalized medicine (diagnostic, follow-up, etc)

Computational Anatomy



Geometric features in Computational Anatomy

Noisy geometric features
 Curves, sets of curves (fiber tracts)
 Surfaces, SPD matrices
 Transformations

Statistical modeling at the population level
 Simple Statistics on non-linear manifolds?

 Mean, covariance of its estimation, PCA, PLS, ICA
 GS: Statistics on manifolds vs IG: manifolds of statistical models
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Shape of RV in 18 patients

Methods of computational anatomy
Remodeling of the right ventricle of the heart in tetralogy of Fallot

 Mean shape
 Shape variability
 Correlation with clinical variables
 Predicting remodeling effect



Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Reference template = Mean (atlas)
 Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?
Consistency with group operations (non commutative)?

Patient 3

Atlas

Patient 1

Patient 2

Patient 4

Patient 5

φ1

φ2
φ3

φ4

φ5
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Atlas and Deformations Joint Estimation

Average RV anatomy 
of 18 ToF patients 10 Deformation Modes = 90% of spectral energy

Method: LDDMM to compute atlas + PLS on momentum maps
 Find modes that are significantly correlated to clinical variables 

(body surface area, tricuspid and pulmonary valve regurgitations).
 Create a generative model by regressing shape vs age (BSA)

6 modes significantly correlated to BSA

[ Mansi et al, MICCAI 2009, TMI 2011]
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Statistical Remodeling of RV in Tetralogy of Fallot

Predicted remodeling effect 

[ Mansi et al, MICCAI 2009, TMI 2011]

Volume 
increases

Valve 
annuli 
deform

Pulmonary 
stenosis
reduces

RV 
pressure 

decreases

Septum 
pushed 
inwards

RV free-
wall 

outwards

… has a clinical interpretation

[ Mansi et al, MICCAI 2009, TMI 2011]



Longitudinal deformation analysis

9

time

Dynamic obervations

How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?  
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Patient A

Patient B

? ?Template



Impact of geometry on statistical learning
Data most often belong to non-linearity spaces

 Images, shapes, diffeomorphisms, texture, segmentations…
 Computational anatomy : Brain, heart, liver, 
 Other applications: shape of molecules, OMICS correlation matrices…

Non-linear structures: invariance  geometry 
 Big data: locally flat (Euclidean)
 Small data: geometry is the key to interpolate

Bases of statistics in non-linear spaces
 Simple Statistics on non-linear manifolds?
 Mean, confidence region, PCA, PLS, ICA, transfer learning
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Normal aging

Additional AD specific 
Connectomics
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and diffusion tensor imaging
 Conclusion

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA



Which non-linear space?

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Homogeneous spaces, Lie groups and symmetric spaces

Riemannian or affine connection spaces

Towards non-smooth quotient and stratified spaces
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Part 1: Foundations
 1: Riemannian geometry [Sommer, Fetcher, Pennec]
 2: Statistics on manifolds [Fletcher]
 3: Manifold-valued image processing with SPD matrices [Pennec]
 4: Riemannian Geometry on Shapes and Diffeomorphisms 

[Marsland, Sommer]
 5: Beyond Riemannian: the affine connection setting for 

transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]
 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]
 8: Statistics in stratified spaces [Ferage, Nye]
 9: Bias in quotient space and its correction [Miolane, 

Devilier,Pennec]
 10: Probabilistic Approaches to Statistics on Manifolds: 

Stochastic Processes, Transition Distributions, and Fiber Bundle 
Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 
Their Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

To appear 09-2019, Elsevier



Differentiable manifolds

Computing on a manifold
 Extrinsic

 Embedding in ℝ𝑛𝑛

 Intrinsic
 Coordinates : charts
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 Measuring?
 Lengths
 Straight lines
 Density, volumes



Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector
><= vvv ,

p

v
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γ(t)• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



Bernhard Riemann 
1826-1866

Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector

pp
vvv ><= ,

Bernhard Riemann 
1826-1866

wpGvwv t
p )(, =><
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑝𝑝 𝑑𝑑𝑑𝑑



• Geodesics
• Shortest path between 2 points

• Calculus of variations (E.L.) :
2nd order differential equation
(specifies acceleration)

• Free parameters: initial speed 
and starting point 

wpGvwv t
p )(, =><

Bernhard Riemann 
1826-1866

Riemannian manifolds

Basic tool: the scalar product

Bernhard Riemann 
1826-1866
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑝𝑝 𝑑𝑑𝑑𝑑
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε

)(yLogxy x=
xyxy +=

xyyx −=),(dist
x

xyyx =),(dist
)(xyExpy x=

))( ( txt xCExpx
t

∇−=+ εε

xyxy −=

Reformulate algorithms with expx and logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent
 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 
 Geodesic completeness: covers M \ Cut(x)
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Cut locus
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and diffusion tensor imaging
 Conclusion

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA



Basic probabilities and statistics

Measure:               random vector x of pdf 

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Principal component analysis

Statistical distance: Mahalanobis and

dzzpz ).(. )  E(x xx ∫==

)x( xxΣx ,  ~ 

)(zpx

[ ]T)x).(x(E −−=Σ xxxx

( ) 








∂
∂

∂
∂

=
x

..
x

, x)(
Thh h ~ h xxΣxy

χ 2
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Random variable in a Riemannian Manifold

Intrinsic pdf of x
 For every set H 

𝑃𝑃 𝐱𝐱 ∈ 𝐻𝐻 = �
𝐻𝐻
𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑦𝑦)

 Lebesgue’s measure 

 Uniform Riemannian Mesure 𝑑𝑑𝑑𝑑 𝑦𝑦 = det 𝐺𝐺 𝑦𝑦 𝑑𝑑𝑑𝑑

Expectation of an observable in M
 𝑬𝑬𝐱𝐱 𝜙𝜙 = ∫𝑀𝑀𝜙𝜙 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦
 𝜙𝜙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 (variance) :  𝑬𝑬𝐱𝐱 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . , 𝑦𝑦 2 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦, 𝑧𝑧 2𝑝𝑝 𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧)
 𝜙𝜙 = log 𝑝𝑝 (information) :  𝑬𝑬𝐱𝐱 log 𝑝𝑝 = ∫𝑀𝑀 𝑝𝑝 𝑦𝑦 log(𝑝𝑝 𝑦𝑦 )𝑑𝑑𝑑𝑑 𝑦𝑦

 𝜙𝜙 = 𝑥𝑥 (mean) :  𝑬𝑬𝐱𝐱 𝐱𝐱 = ∫𝑀𝑀 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦
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First statistical tools

From the mean to the Fréchet mean set 
 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧)

 Fréchet mean [1948] = global minima of Mean Sq. Dev.
 Exponential barycenters [Emery & Mokobodzki 1991]
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝐿𝐿𝐿𝐿𝑔𝑔𝑥̅𝑥(𝑧𝑧) 𝑃𝑃(𝑑𝑑𝑧𝑧) = 0 [critical points if P(C) =0]

Moments of a random variable: tensor fields
 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 ⊗ 𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) Second moment: (0,2) tensor field
 Tangent covariance field: 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝔐𝔐2(𝑥𝑥) −𝔐𝔐1(𝑥𝑥) ⊗𝔐𝔐1(𝑥𝑥)

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 ⊗ 𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 … ⊗𝐿𝐿𝐿𝐿𝑔𝑔𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) k-contravariant tensor field
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Maurice Fréchet 
(1878-1973)



Fréchet expectation (1944)
Minimizing the variance

Existence

 Finite variance at one point

Characterization as an exponential barycenter (P(C)=0)

Uniqueness Karcher 77 / Kendall 90 / Afsari 10 / Le 10
 Unique Karcher mean (thus Fréchet) if distribution has support in a
regular geodesic ball with radius 𝑟𝑟 < 𝑟𝑟∗ = 1

2
min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅 (k upper

bound on sectional curvatures on M)
 Empirical mean: a.s. uniqueness [Arnaudon & Miclo 2013]

Other central primitives

[ ] [ ]( )),dist(E argmin 2xx y
y M∈

=Ε

( ) [ ] 0)().(.xxE           0  )(grad 2 ==⇒= ∫
M

M zdzpy xx xxσ

[ ] [ ]( ) ααα
1

),dist(E argmin xx y
y M∈

=Ε
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Algorithms to compute the mean
Karcher flow (gradient descent)

𝑥̅𝑥𝑡𝑡+1 = exp𝑥̅𝑥𝑡𝑡 𝜖𝜖𝑡𝑡 𝑣𝑣𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑣𝑣𝑡𝑡 = E y𝐱𝐱 = 1
n
∑𝑖𝑖 log𝑥̅𝑥𝑡𝑡(𝑥𝑥𝑖𝑖)

 Usual algorithm with 𝜖𝜖𝑡𝑡 = 1 can diverge on SPD matrices 
[Bini & Iannazzo, Linear Algebra Appl., 438:4, 2013]

 Convergence for non-negative curvature (p-means) 
[Afsari, Tron and Vidal, SICON 2013]

Inductive / incremental weighted means

 𝑥̅𝑥𝑘𝑘+1 = exp𝑥̅𝑥𝑘𝑘
1
𝑘𝑘
𝑣𝑣𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑣𝑣𝑘𝑘 = log𝑥̅𝑥𝑘𝑘 𝑥𝑥𝑘𝑘+1

 On negatively curved spaces [Sturm 2003], 
BHV centroid [Billera, Holmes, Vogtmann, 2001]

 On non-positive spaces [G. Cheng, J. Ho, H. Salehian, B. C. Vemuri 2016]

Stochastic algorithm 
 [Arnaudon & Miclo, Stoch. Processes and App. 124, 2014]
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A gradient descent (Gauss-Newton) algorithm

Vector space

Manifold

vHvvfxfvxf f
TT

..2
1.)()( +∇+=+

fHvvxx ftt ∇−=+= −

+ .      with  )1(

1

),()()())((exp 2
1 vvHvfxfvf fx +∇+=

∇ 𝜎𝜎𝐱𝐱2(y) = −2 E y𝐱𝐱 =
−2
𝑛𝑛
�
𝑖𝑖

yx𝑖𝑖

𝑯𝑯𝝈𝝈𝒙𝒙𝟐𝟐 ≈ 𝟐𝟐 𝑰𝑰𝒅𝒅 (for Euclidean spaces…)

[ ]xyE     with  )(expx x1 ==+ vv
tt

Geodesic marching
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Distributions for parametric tests
Uniform density:

 maximal entropy knowing X

Generalization of the Gaussian density:
 Stochastic heat kernel p(x,y,t) [complex time dependency] 
 Wrapped Gaussian [Infinite series difficult to compute]
 Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

 Any distribution:

 Gaussian:

( ) ( ) 




= 2/x..xexp.)(

T
xΓxkyN

)Vol(/)(Ind)( Xzzp X=x

( ) ( ) ( )( )rOk n /1.)det(.2 32/12/ σεσπ ++= −− Σ

( ) ( )rO /  Ric3
1)1( σεσ ++−= −ΣΓ

yx..yx)y( )1(2 −Σ= xxx

t
µ

[ ] n=)(E 2 xxµ

( )rOn /)()( 322 σεσχµ ++∝xx

[ Pennec, JMIV06, NSIP’99 ]
X. Pennec - Shape Analysis & Med. App. 11/02/2025



31

Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx ππθ −∈=

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac

:∞→r

:∞→γ

:0→γ
3/).( 22 rπσ =
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Extending PCA: tangent PCA vs PGA
Tangent PCA

 Generative model: Gaussian
 Find the subspace that best explains the variance

Maximize the squared distance to the mean

PGA (Fletcher 2004, Sommer 2014)
 Generative model:

 Implicit uniform distribution within the subspace
 Gaussian distribution in the vertical space

 Find a low dimensional subspace (geodesic subspaces?) that 
minimizes the error 
 Minimize the squared Riemannian distance from the measurements to that 
sub-manifold (no closed form)

Different models in curved spaces (no Pythagore thm)
Extension to BSA in course 3
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and diffusion tensor imaging
 Conclusion

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
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Statistical Analysis of the Scoliotic Spine

Database
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
 3D Geometry from multi-planar X-rays

Mean
 Main translation variability is axial (growth?)
 Main rot. var. around anterior-posterior axis 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III
• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes 
have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009



Manifold data on a manifold
 Anatomical MRI and DTI
 Diffusion tensor on a 3D shape

Freely available at http://www-sop.inria.fr/asclepios/data/heart

A Statistical Atlas of the Cardiac Fiber Structure
[ J.M. Peyrat, et al., MICCAI’06, TMI 26(11), 2007]

36X. Pennec - Shape Analysis & Med. App. 11/02/2025

• Average cardiac structure
• Variability of fibers & collagen sheets



A Statistical Atlas of the Cardiac Fiber Structure
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[ R. Mollero, M.M Rohé, et al,  FIMH 2015]

10 human ex vivo hearts (CREATIS-LRMN, France)
 Classified as healthy (controlling weight, septal 

thickness, pathology examination)
 Acquired on 1.5T MR Avento Siemens

 bipolar echo planar imaging, 4 repetitions, 12 
gradients

 Volume size: 128×128×52, 2 mm resolution
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Manifold-valued image processing:
Diffusion Tensor Imaging

Covariance of the Brownian motion of water
 Architecture of axonal fibers
 Filtering, regularization to remove noise
 Interpolation / extrapolation

Symmetric positive definite matrices
 Cone in Euclidean space (not complete)
 Convex operations are stable 

 mean, interpolation
 More complex operations are not

 PDEs, gradient descent…

All invariant metrics under GL(n)

 Exponential map

 Log map

 Distance
X. Pennec - Shape Analysis & Med. App. 11/02/2025

2/12/12/12/1 )..exp()( ΣΣΣΨΣΣ=ΣΨ −−
ΣExp

2/12/12/12/1 )..log()( ΣΣΨΣΣ=Ψ=ΣΨ −−
ΣLog

22/12/12 )..log(|),(
Id

dist −−

Σ
ΣΨΣ=ΣΨΣΨ=ΨΣ

( ) -1/n)(    )Tr().Tr( Tr| 212121 >+= ββ WWWWWW T
Id
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Manifold-valued image processing
Integral or sum in M: weighted Fréchet mean

 Interpolation
 Linear between 2 elements: interpolation geodesic
 Bi- or tri-linear or spline in images: weighted means

 Gaussian filtering: convolution = weighted Fréchet mean

PDEs for regularization and extrapolation: 
the exponential map (partially) accounts for curvature

 Gradient of Harmonic energy = Laplace-Beltrami    ΔΣ(𝑥𝑥) ≅ 1
𝜀𝜀
∑𝑢𝑢∈𝑆𝑆 Σ(𝑥𝑥)Σ(𝑥𝑥 + 𝜀𝜀𝜀𝜀)

 Anisotropic regularization using robust functions    Reg Σ = ∫Φ ∇Σ 𝑥𝑥 Σ 𝑥𝑥
2 𝑑𝑑𝑑𝑑

 Simple intrinsic numerical schemes thanks the exponential maps!

∑ ΣΣ−=Σ
i iixxGx ),(dist  )(min)( 2

σ

[ Pennec, Fillard, Arsigny, IJCV 66(1), 2005, ISBI 2006]

[ Pennec, Fillard, Arsigny, IJCV 66(1), 2006]



Impact of geometry on data analysis
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Classification in BCI
[Barachant et al. 2012]

Regularization of a DTI image

Raw 
estimation

Euclidean
regularization

Affine-invariant
anisotropic
Riemannian

regularization

Riemannian algorithms on SPD matrices

[ Pennec, Fillard, Arsigny, IJCV 66(1), 2005, ISBI 2006]
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and diffusion tensor imaging
 Conclusion

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
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Expx / Logx and Fréchet mean are the basis of algorithms 
to compute on Riemannian/affine manifolds

Instead of a minimal # of non-linear charts, use a chart per point!
 Normal coordinate system = most linear chart at each point

Simple statistics
 Mean through an exponential barycenter iteration 
 Covariance matrices and higher order moments 
 Tangent PCA or more complex PGA / BSA

Manifold-valued image processing [XP, IJCV 2006]
 Interpolation / filtering / convolution: weighted means
 Diffusion, extrapolation: 

Discrete Laplacian in tangent space = Laplace-Beltrami 



http://geomstats.ai : A Python Package for 
Geometry in Statistics and Machine Learning

Specific & generic manifolds
 Exp/Log map to generalize Euclidean tools
 20+ specific manifolds / Lie groups with 

closed-forms (SPD, H(n), SE(n), etc)
 Generic manifolds with geodesics by 

integration / optimization

Algorithms
 Fréchet mean, geodesic regression, 

tangent / geodesic PCA, Riemannian k-
means, mean-shift, parallel transport

 scikit-learn API (GPU & learning tools)
 Collaboration with pyriemann for BCI
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and many more collaborators

http://geomstats.ai/


http://geomstats.ai : A Python Package for 
Geometry in Statistics and Machine Learning

Collaborative development
 10 introductory tutorials
 ~ 35000 lines of code 
 ~20 academic developers
 10 hackathons in 2020-2024

Semestre thématique IHP Geometry and Statistics in Data Science 
Hackathon IHP Oct 17-21+ Journée Math & entreprises Nov 08, 2022

Pushing geometry in Machine Learning
 Miolane, Guigui, et al. SciPy Int. Conf. (2020).
 Miolane et al. Journal of Machine Learning Research (2020)
 Guigui, Miolane, Pennec. Intro. to Riem. Geom. and Geom. Stats: from 

basic theory to implementation with Geomstats. Monography of 164 p.
Foundations and Trends in Machine Learning (2023, 16 (3):329-493). 
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and many more collaborators

http://geomstats.ai/
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