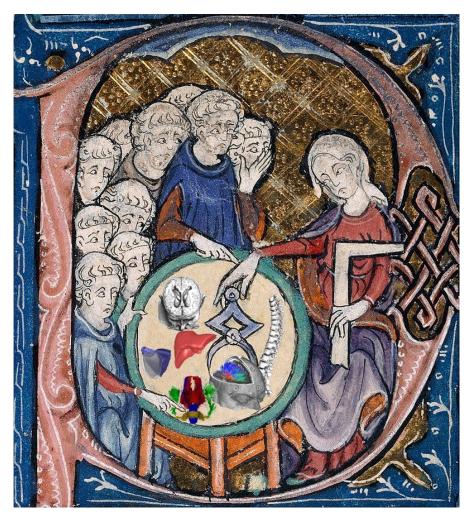


Geometric Statistics

Mathematical foundations and applications in computational anatomy



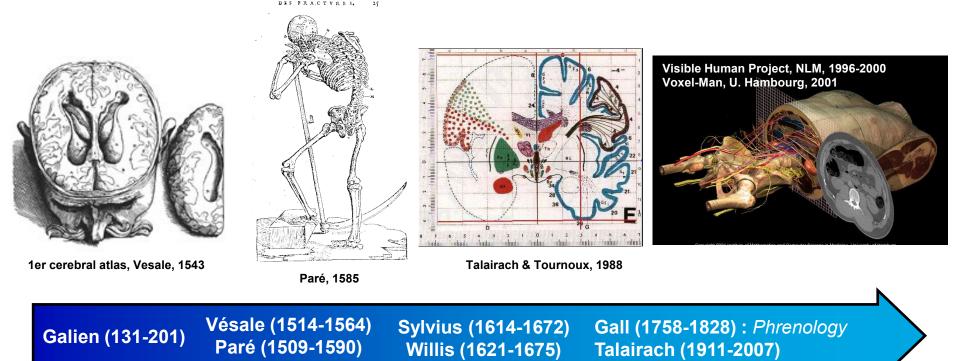
Freely adapted from "Women teaching geometry", in Adelard of Bath translation of Euclid's elements, 1310.

1/ Intrinsic Statistics on Riemannian Manifolds

ESI semester Infinite-dimensional Geometry: Theory and Applications Week 5, 02/2025

e Innía

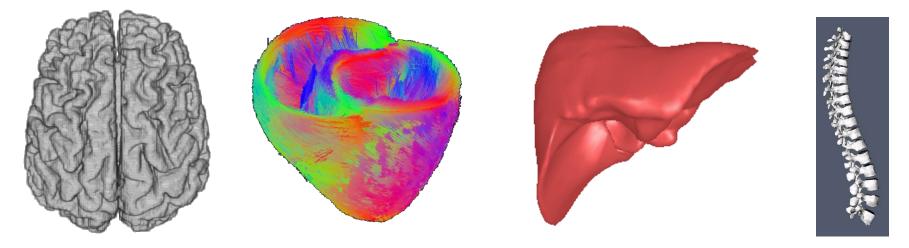
Science that studies the structure and the relationship in space of different organs and tissues in living systems [Hachette Dictionary]



Revolution of observation means (~1990):

- From dissection to in-vivo in-situ imaging
- From the description of one representative individual to generative statistical models of the population

Computational Anatomy



Statistics of organ shapes across subjects in species, populations, diseases...

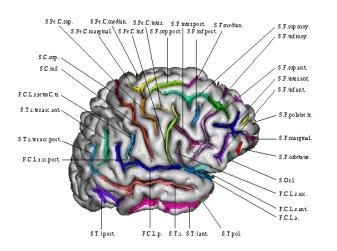
- Mean shape (atlas), subspace of normal vs pathologic shapes
- Shape variability (Covariance)
- Model development across time (growth, ageing, ages...)

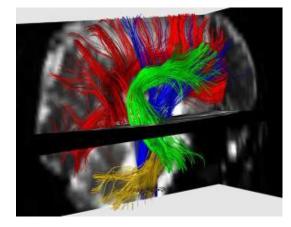
Use for personalized medicine (diagnostic, follow-up, etc)

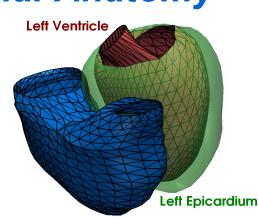
Geometric features in Computational Anatomy

Noisy geometric features

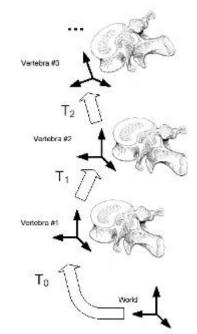
- Curves, sets of curves (fiber tracts)
- Surfaces, SPD matrices
- Transformations







Right Ventricle



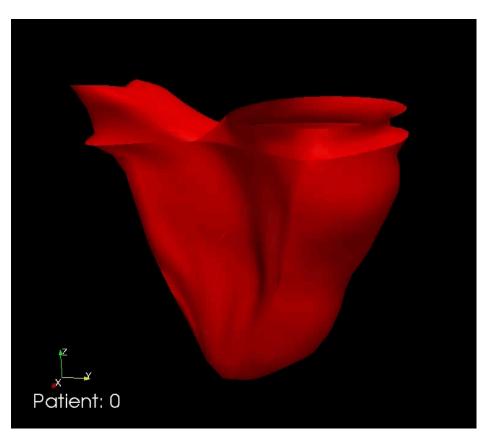
Statistical modeling at the population level

- Simple Statistics on non-linear manifolds?
 - Mean, covariance of its estimation, PCA, PLS, ICA
- **GS**: Statistics on manifolds vs **IG**: manifolds of statistical models

Methods of computational anatomy

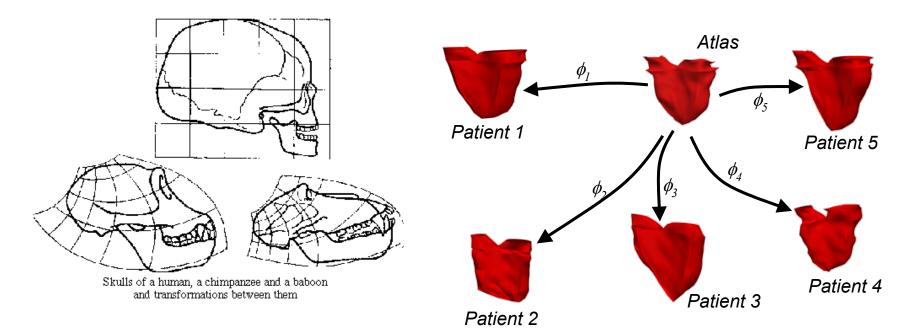
Remodeling of the right ventricle of the heart in tetralogy of Fallot

- Mean shape
- Shape variability
- Correlation with clinical variables
- Predicting remodeling effect



Shape of RV in 18 patients

Morphometry through Deformations



Measure of deformation [D'Arcy Thompson 1917, Grenander & Miller]

- Observation = "random" deformation of a reference template
- Reference template = Mean (atlas)
- Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?

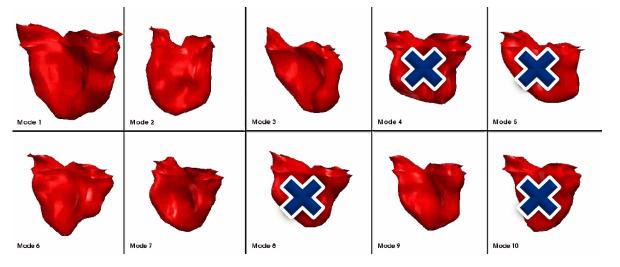
Consistency with group operations (non commutative)?

Atlas and Deformations Joint Estimation

Method: LDDMM to compute atlas + PLS on momentum maps

- Find modes that are significantly correlated to clinical variables (body surface area, tricuspid and pulmonary valve regurgitations).
- Create a generative model by regressing shape vs age (BSA)

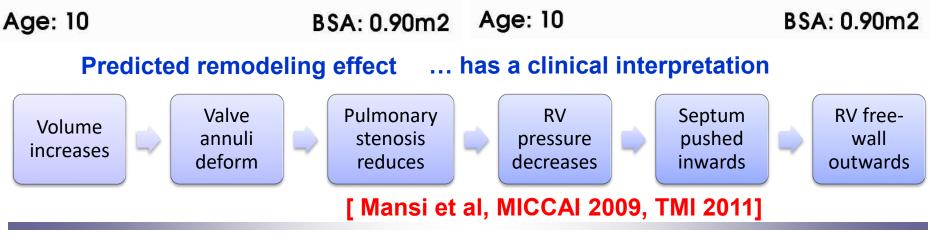
Average RV anatomy of 18 ToF patients



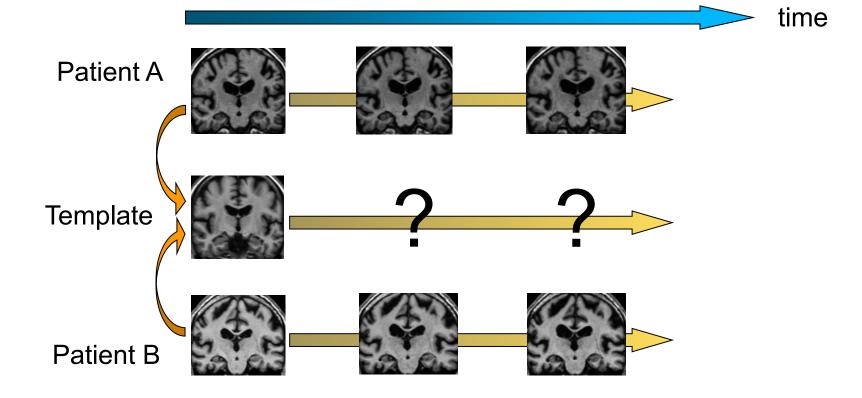
10 Deformation Modes = 90% of spectral energy 6 modes significantly correlated to BSA

[Mansi et al, MICCAI 2009, TMI 2011]

Statistical Remodeling of RV in Tetralogy of Fallot [Mansi et al, MICCAI 2009, TMI 2011]



Longitudinal deformation analysis Dynamic obervations



How to transport longitudinal deformation across subjects? What are the convenient mathematical settings?

Impact of geometry on statistical learning

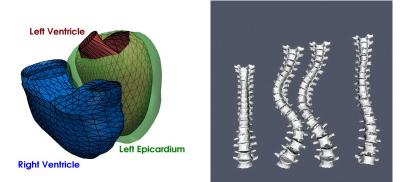
Data most often belong to non-linearity spaces

- Images, shapes, diffeomorphisms, texture, segmentations... п
- Computational anatomy : Brain, heart, liver, п
- Other applications: shape of molecules, OMICS correlation matrices...

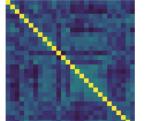
Non-linear structures: invariance \rightarrow geometry

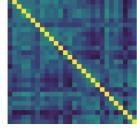
Big data: locally flat (Euclidean)

Small data: geometry is the key to interpolate



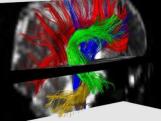
Healthy control

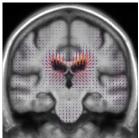




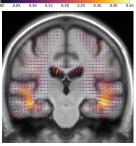
Schizophrenic

Connectomics





Normal aging



Additional AD specific

Bases of statistics in non-linear spaces

- Simple Statistics on non-linear manifolds?
- Mean, confidence region, PCA, PLS, ICA, transfer learning

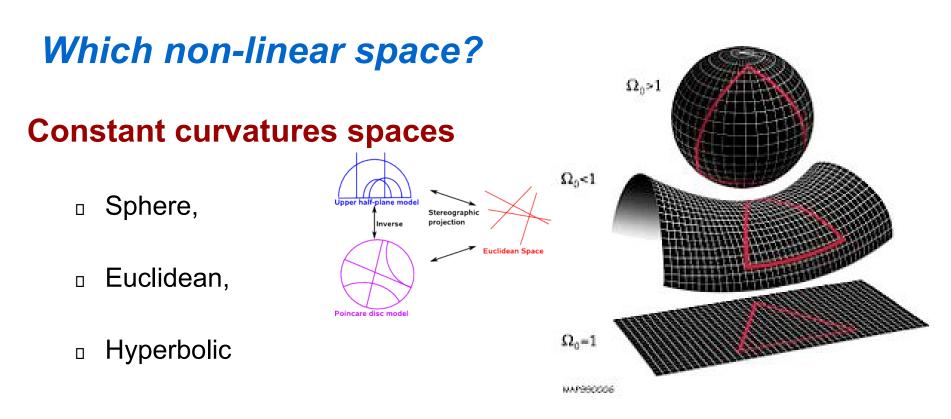
Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

- Introduction to computational anatomy
- The Riemannian manifold computational structure
- Simple statistics on Riemannian manifolds
- Applications to the spine shape and diffusion tensor imaging
- Conclusion

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

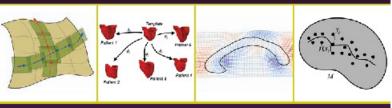


Homogeneous spaces, Lie groups and symmetric spaces

Riemannian or affine connection spaces

Towards non-smooth quotient and stratified spaces

RIEMANNIAN GEOMETRIC STATISTICS IN MEDICAL IMAGE ANALYSIS



To appear 09-2019, Elsevier

Edited by Xavier Pennec, Stefan Sommer, Tom Fletcher

Part 1: Foundations

- 1: Riemannian geometry [Sommer, Fetcher, Pennec]
- 2: Statistics on manifolds [Fletcher]
- 3: Manifold-valued image processing with SPD matrices [Pennec]
- 4: Riemannian Geometry on Shapes and Diffeomorphisms [Marsland, Sommer]
- 5: Beyond Riemannian: the affine connection setting for transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces

- 6: Object Shape Representation via Skeletal Models (s-reps) and Statistical Analysis [Pizer, Maron]
- 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with Applications [Chakraborty, Vemuri]
- 8: Statistics in stratified spaces [Ferage, Nye]
- 9: Bias in quotient space and its correction [Miolane, Devilier,Pennec]
- 10: Probabilistic Approaches to Statistics on Manifolds: Stochastic Processes, Transition Distributions, and Fiber Bundle Geometry [Sommer]
- 11: Elastic Shape Analysis, Square-Root Representations and Their Inverses [Zhang, Klassen, Srivastava]

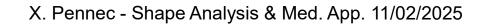
Part 3: Deformations, Diffeomorphisms and their Applications

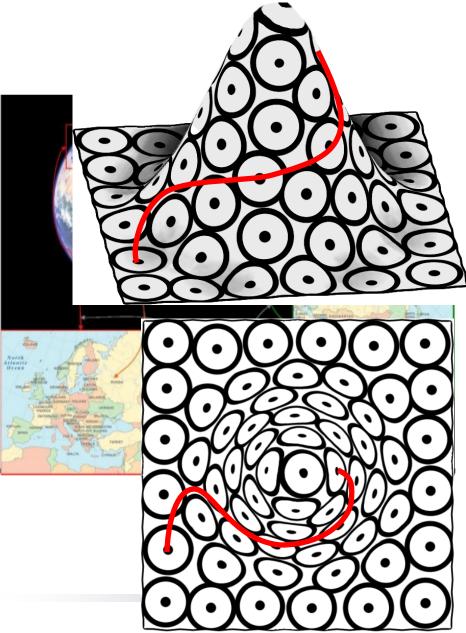
- 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, fshapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
- 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
- 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
- 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
- 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

Differentiable manifolds

Computing on a manifold

- Extrinsic
 - \square Embedding in \mathbb{R}^n
- Intrinsic
 - Coordinates : charts
- Measuring?
 - Lengths
 - Straight lines
 - Density, volumes





Measuring extrinsic distances

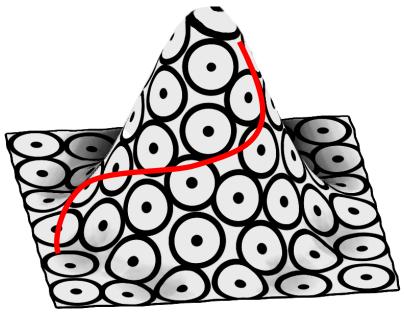
Basic tool: the scalar product

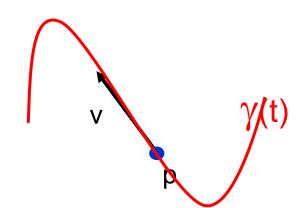
 $\langle v, w \rangle = v^t w$

• Norm of a vector $||v|| = \sqrt{\langle v, v \rangle}$

• Length of a curve

 $L(\gamma) = \int \|\dot{\gamma}(t)\| dt$





Measuring extrinsic distances

Basic tool: the scalar product

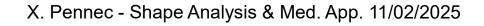
 $\langle \mathbf{v}, \mathbf{w} \rangle = \mathcal{F}^{t} \mathcal{W}^{t} G(p) \mathcal{W}$

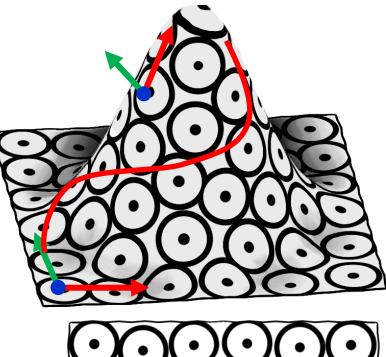
Norm of a vector

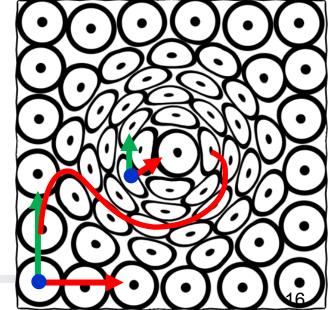
$$\left\| v \right\|_p = \sqrt{\langle v, v \rangle_p}$$

Bernhard Riemann 1826-1866

• Length of a curve $L(\gamma) = \int \|\dot{\gamma}(t)\|_p dt$







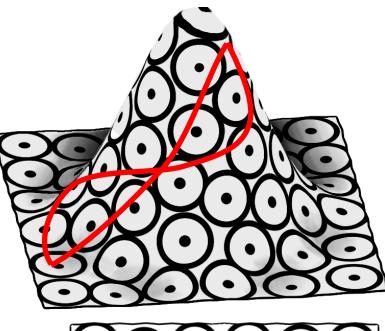
Riemannian manifolds

Basic tool: the scalar product

 $\langle v, w \rangle_p = v^t G(p) w$

- Bernhard Riemann 1826-1866
 - Shortest path between 2 points
 - Calculus of variations (E.L.): Length of a curve order differential equation (specifies=accelic(ration)t
 - Free parameters: initial speed and starting point





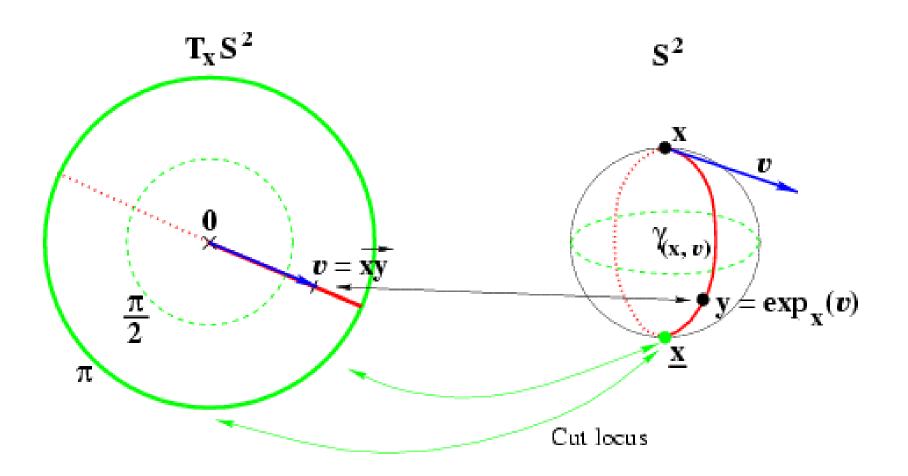
Bases of Algorithms in Riemannian Manifolds

Exponential map (Normal coordinate system):

- \square **Exp_x** = geodesic shooting parameterized by the initial tangent
- Log_x = unfolding the manifold in the tangent space along geodesics
 - Geodesics = straight lines with Euclidean distance
 - Geodesic completeness: covers M \ Cut(x)

Reformulate algorithms with exp _x and log _x Vector -> Bi-point (no more equivalence classes)				
Operation	Euclidean space	Riemannian		
Subtraction	$\overrightarrow{xy} = y - x$	$\overrightarrow{xy} = Log_x(y)$	M	
Addition	$y = x + \overrightarrow{xy}$	$y = Exp_x(\overrightarrow{xy})$		
Distance	$\operatorname{dist}(x, y) = \left\ y - x \right\ $	$\operatorname{dist}(x, y) = \left\ \overrightarrow{xy} \right\ _{x}$		
Gradient descent	$x_{t+\varepsilon} = x_t - \varepsilon \nabla C(x_t)$	$x_{t+\varepsilon} = Exp_{x_t}(-\varepsilon \nabla C(x_t))$		

Cut locus



Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

- Introduction to computational anatomy
- The Riemannian manifold computational structure
- Simple statistics on Riemannian manifolds
- Applications to the spine shape and diffusion tensor imaging
- Conclusion

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

Basic probabilities and statistics

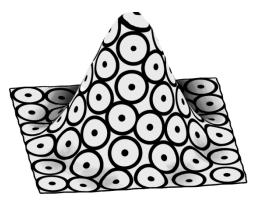
Measure: random vector x of pdf $p_x(z)$ $\mathbf{X} \sim (\overline{\mathbf{X}}, \Sigma_{\mathbf{x}\mathbf{x}})$ **Approximation:** $\overline{\mathbf{x}} = \mathbf{E}(\mathbf{x}) = \int z \cdot p_{\mathbf{x}}(z) \cdot dz$ • Mean: $\Sigma_{\mathbf{x}\mathbf{x}} = \mathbf{E}\left[(\mathbf{x} - \overline{\mathbf{x}}) \cdot (\mathbf{x} - \overline{\mathbf{x}})^T\right]$ • Covariance: **Propagation:** $\mathbf{y} = h(\mathbf{x}) \sim \left(h(\overline{\mathbf{x}}), \frac{\partial h}{\partial \mathbf{x}} \cdot \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} \cdot \frac{\partial h}{\partial \mathbf{x}}\right)$ Noise model: additive, Gaussian... **Principal component analysis Statistical distance:** Mahalanobis and χ^2

Random variable in a Riemannian Manifold

Intrinsic pdf of x

For every set H

$$P(\mathbf{x} \in H) = \int_{H} p(y) dM(y)$$



□ Lebesgue's measure

→ Uniform Riemannian Mesure $dM(y) = \sqrt{\det(G(y))} dy$

Expectation of an observable in M

$$E_{\mathbf{x}}[\phi] = \int_{M} \phi(y)p(y)dM(y)$$

$$\phi = dist^{2} \text{ (variance)} : E_{\mathbf{x}}[dist(.,y)^{2}] = \int_{M} dist(y,z)^{2}p(z)dM(z)$$

$$\phi = \log(p) \text{ (information)} : E_{\mathbf{x}}[\log(p)] = \int_{M} p(y)\log(p(y))dM(y)$$

$$\varphi = x \text{ (mean)} : E_{\mathbf{x}}[\mathbf{x}] = \int_{\mathcal{M}} y p(y)dM(y)$$

First statistical tools

From the mean to the Fréchet mean set

Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

$$\sigma^2(x) = Tr_g(\mathfrak{M}_2(x)) = \int_M dist^2(x, z) P(dz)$$

- Fréchet mean [1948] = global minima of Mean Sq. Dev. Maurice Fréchet (1978-1072)
- Exponential barycenters [Emery & Mokobodzki 1991] $\mathfrak{M}_1(\bar{x}) = \int_M Log_{\bar{x}}(z) P(dz) = 0$ [critical points if P(C) =0]

Moments of a random variable: tensor fields

- $\square \mathfrak{M}_1(x) = \int_M Log_x(z) P(dz)$ Tangent mean: (0,1) tensor field
- $\square \mathfrak{M}_2(x) = \int_M Log_x(z) \otimes Log_x(z) P(dz)$ Second moment: (0,2) tensor field
 - □ Tangent covariance field: $Cov(x) = \mathfrak{M}_2(x) \mathfrak{M}_1(x) \otimes \mathfrak{M}_1(x)$
- $\square \mathfrak{M}_k(x) = \int_M Log_x(z) \otimes Log_x(z) \dots \otimes Log_x(z) P(dz)$ k-contravariant tensor field

(1878 - 1973)

Fréchet expectation (1944)

Minimizing the variance

Existence

$$\mathsf{E}[\mathbf{x}] = \operatorname*{argmin}_{y \in \mathsf{M}} \left(\mathsf{E}[\operatorname{dist}(y, \mathbf{x})^2] \right)$$

Finite variance at one point

Characterization as an exponential barycenter (P(C)=0)

grad
$$(\sigma_{\mathbf{x}}^{2}(y)) = 0 \implies E\left[\overrightarrow{\mathbf{x}\mathbf{x}}\right] = \int_{M} \overrightarrow{\overline{\mathbf{x}\mathbf{x}}} p_{\mathbf{x}}(z) d\mathbf{M}(z) = 0$$

Uniqueness Karcher 77 / Kendall 90 / Afsari 10 / Le 10

□ Unique Karcher mean (thus Fréchet) if distribution has support in a regular geodesic ball with radius $r < r^* = \frac{1}{2} \min(inj(M), \pi/\sqrt{\kappa})$ (k upper bound on sectional curvatures on M) □ Empirical mean: a.s. uniqueness [Arnaudon & Miclo 2013]

Other central primitives

$$\mathsf{E}^{\alpha}[\mathbf{x}] = \operatorname*{argmin}_{y \in \mathsf{M}} \left(\mathsf{E}[\operatorname{dist}(y, \mathbf{x})^{\alpha}] \right)^{\frac{1}{\alpha}}$$

Algorithms to compute the mean

Karcher flow (gradient descent)

 $\bar{x}_{t+1} = \exp_{\bar{x}_t}(\epsilon_t v_t) \text{ with } v_t = \mathrm{E}(\overline{\mathrm{y}\mathbf{x}}) = \frac{1}{n} \sum_i \log_{\bar{x}_t}(x_i)$

Usual algorithm with $\epsilon_t = 1$ can diverge on SPD matrices
 [Bini & Iannazzo, Linear Algebra Appl., 438:4, 2013]

 Convergence for non-negative curvature (p-means) [Afsari, Tron and Vidal, SICON 2013]

Inductive / incremental weighted means

$$\bar{x}_{k+1} = \exp_{\bar{x}_k} \left(\frac{1}{k} v_k \right) \text{ with } v_k = \log_{\bar{x}_k} (x_{k+1})$$

 On negatively curved spaces [Sturm 2003], BHV centroid [Billera, Holmes, Vogtmann, 2001]

On non-positive spaces [G. Cheng, J. Ho, H. Salehian, B. C. Vemuri 2016]

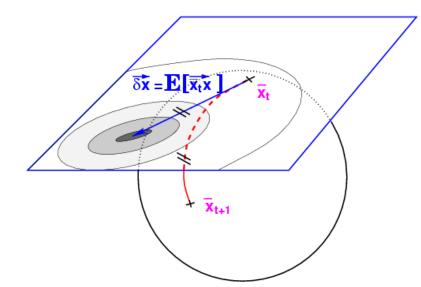
Stochastic algorithm

[Arnaudon & Miclo, Stoch. Processes and App. 124, 2014]

A gradient descent (Gauss-Newton) algorithm

Vector space $f(x+v) = f(x) + \nabla f^T \cdot v + \frac{1}{2} v^T \cdot H_f \cdot v$ $x_{t+1} = x_t + v \quad \text{with} \quad v = -H_f^{(-1)} \cdot \nabla f$

$$f(\exp_x(v)) = f(x) + \nabla f(v) + \frac{1}{2}H_f(v,v)$$



Manifold

$$\nabla(\sigma_{\mathbf{x}}^{2}(\mathbf{y})) = -2 \operatorname{E}\left[\overrightarrow{\mathbf{y}\mathbf{x}}\right] = \frac{-2}{n} \sum_{i} \overrightarrow{\mathbf{y}\mathbf{x}_{i}}$$

 $H_{\sigma_x^2} \approx 2 I_d$ (for Euclidean spaces...)

Geodesic marching

$$\overline{\mathbf{x}}_{t+1} = \exp_{\overline{\mathbf{x}}_t}(v) \quad \text{with} \quad v = \mathrm{E}\left[\overrightarrow{\mathbf{yx}}\right]$$

Distributions for parametric tests

Uniform density:

 \square maximal entropy knowing X

$$p_{\mathbf{x}}(z) = \operatorname{Ind}_{X}(z) / \operatorname{Vol}(X)$$

Generalization of the Gaussian density:

- Stochastic heat kernel p(x,y,t) [complex time dependency]
- Wrapped Gaussian [Infinite series difficult to compute]
- Maximal entropy knowing the mean and the covariance

$$N(y) = k . \exp\left(\left(\overrightarrow{\mathbf{x}\mathbf{x}}\right)^{\mathrm{T}} . \mathbf{\Gamma} . \left(\overrightarrow{\mathbf{x}\mathbf{x}}\right)/2\right) \qquad \qquad \mathbf{\Gamma} = \mathbf{\Sigma}^{(-1)} - \frac{1}{3} \operatorname{Ric} + O(\sigma) + \varepsilon(\sigma/r)$$
$$k = (2\pi)^{-n/2} . \operatorname{det}(\mathbf{\Sigma})^{-1/2} . \left(1 + O(\sigma^{3}) + \varepsilon(\sigma/r)\right)$$

Mahalanobis D2 distance / test:

Any distribution:

$$\mu_{\mathbf{x}}^{2}(\mathbf{y}) = \overline{\mathbf{x}} \mathbf{y}^{t} . \Sigma_{\mathbf{xx}}^{(-1)} . \overline{\mathbf{x}} \mathbf{y}$$
$$E[\mu_{\mathbf{x}}^{2}(\mathbf{x})] = n$$
$$\mu_{\mathbf{x}}^{2}(\mathbf{x}) \propto \chi_{n}^{2} + O(\sigma^{3}) + \varepsilon(\sigma/r)$$

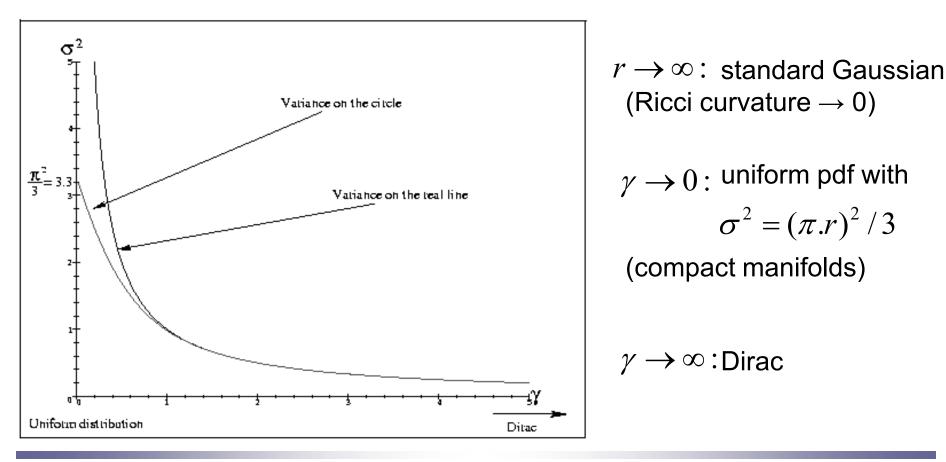
Gaussian:

[Pennec, JMIV06, NSIP'99]

Gaussian on the circle

Exponential chart: $x = r\theta \in \left[-\pi . r; \pi . r\right]$

Gaussian: truncated standard Gaussian



Extending PCA: tangent PCA vs PGA

Tangent PCA

- Generative model: Gaussian
- Find the subspace that best explains the variance
 - ightarrow Maximize the squared distance to the mean

PGA (Fletcher 2004, Sommer 2014)

- Generative model:
 - Implicit uniform distribution within the subspace
 - Gaussian distribution in the vertical space
- Find a low dimensional subspace (geodesic subspaces?) that minimizes the error

 \rightarrow Minimize the squared Riemannian distance from the measurements to that sub-manifold (no closed form)

Different models in curved spaces (no Pythagore thm) Extension to BSA in course 3

Geometric Statistics: Mathematical foundations and applications in computational anatomy

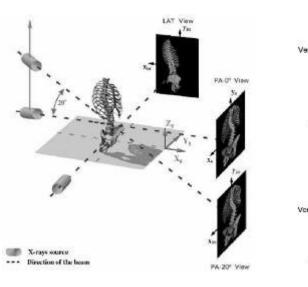
Intrinsic Statistics on Riemannian Manifolds

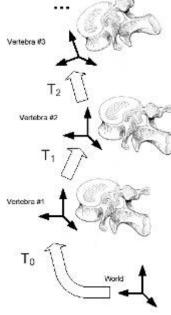
- Introduction to computational anatomy
- The Riemannian manifold computational structure
- Simple statistics on Riemannian manifolds
- Applications to the spine shape and diffusion tensor imaging
- Conclusion

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

Statistical Analysis of the Scoliotic Spine [J. Boisvert et al. ISBI'06, AMDO'06 and IEEE TMI 27(4), 2008]



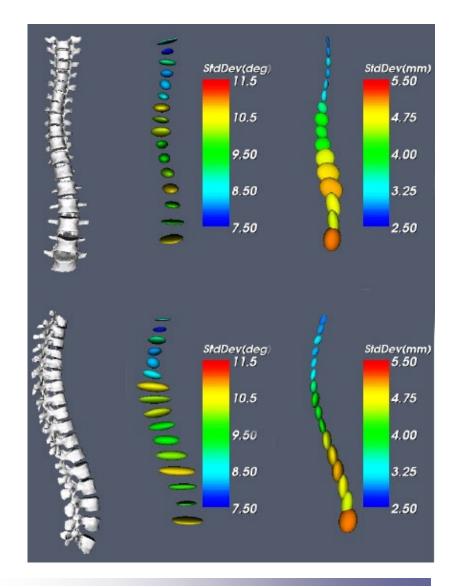


Database

- 307 Scoliotic patients from the Montreal's Sainte-Justine Hospital.
- 3D Geometry from multi-planar X-rays

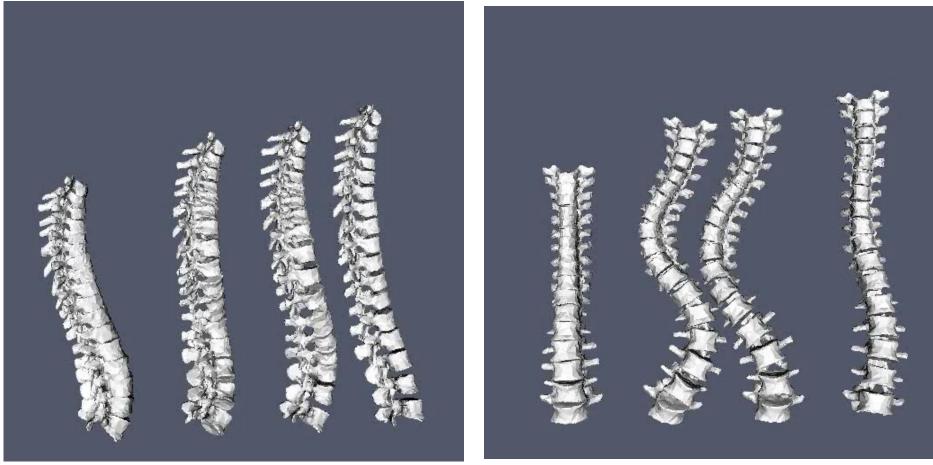
Mean

- Main translation variability is axial (growth?)
- Main rot. var. around anterior-posterior axis



Statistical Analysis of the Scoliotic Spine [J. Boisvert et al. ISBI'06, AMDO'06 and IEEE TMI 27(4), 2008]

AMDO'06 best paper award, Best French-Quebec joint PhD 2009



PCA of the Covariance:

4 first variation modes have clinical meaning

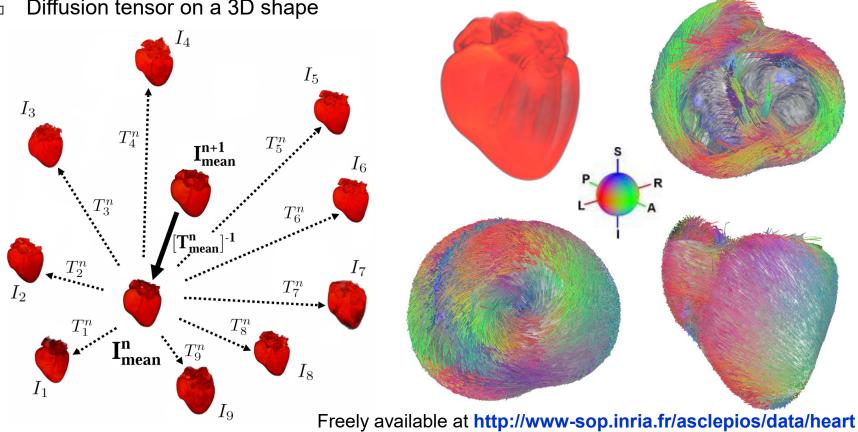
Mode 1: King's class I or III
Mode 3: King's class IV + V
Mode 2: King's class I, II, III
Mode 4: King's class V (+II)

A Statistical Atlas of the Cardiac Fiber Structure [J.M. Peyrat, et al., MICCAI'06, TMI 26(11), 2007]

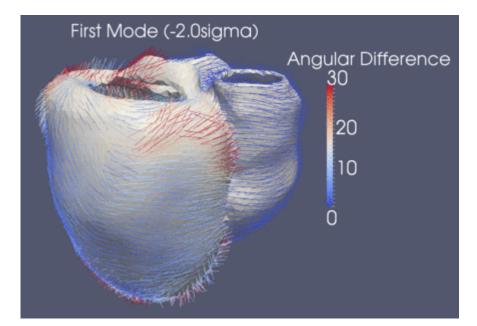
Manifold data on a manifold

- Anatomical MRI and DTI
- Diffusion tensor on a 3D shape

- Average cardiac structure
- Variability of fibers & collagen sheets



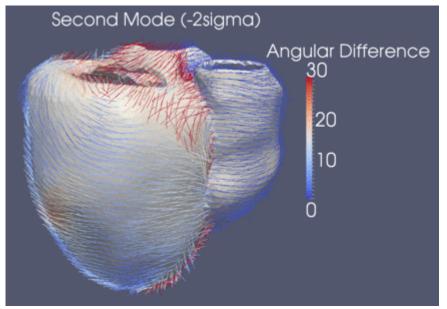
A Statistical Atlas of the Cardiac Fiber Structure

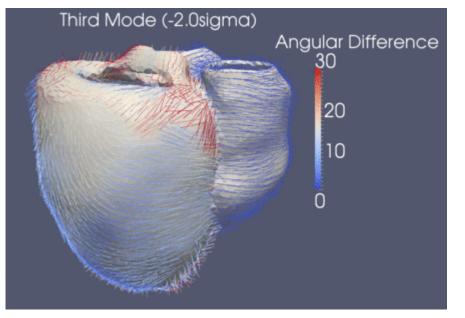


10 human ex vivo hearts (CREATIS-LRMN, France)

- Classified as healthy (controlling weight, septal thickness, pathology examination)
- Acquired on 1.5T MR Avento Siemens
 - bipolar echo planar imaging, 4 repetitions, 12 gradients
- Volume size: 128×128×52, 2 mm resolution

[R. Mollero, M.M Rohé, et al, FIMH 2015]





Manifold-valued image processing: Diffusion Tensor Imaging

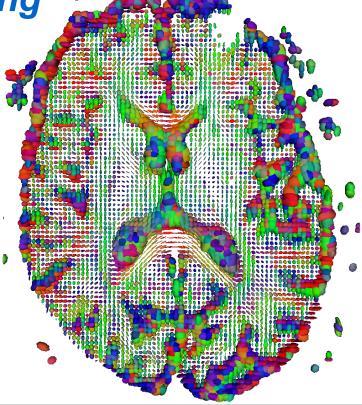
Covariance of the Brownian motion of water

- Architecture of axonal fibers
- Filtering, regularization to remove noise
- Interpolation / extrapolation

Symmetric positive definite matrices

- Cone in Euclidean space (not complete)
- Convex operations are stable
 - mean, interpolation
- More complex operations are not
 - Des, gradient descent...

All invariant metrics under GL(n)



$$\left\langle W_{1} | W_{2} \right\rangle_{Id} = \operatorname{Tr}\left(W_{1}^{T}W_{2}\right) + \beta \operatorname{Tr}(W_{1}).\operatorname{Tr}(W_{2}) \quad (\beta > -1/n)$$

$$= \operatorname{Exponential\,map} \qquad Exp_{\Sigma}(\overrightarrow{\Sigma\Psi}) = \Sigma^{1/2} \exp(\Sigma^{-1/2}.\overrightarrow{\Sigma\Psi}.\Sigma^{-1/2})\Sigma^{1/2}$$

$$= \operatorname{Log\,map} \qquad \overrightarrow{\Sigma\Psi} = Log_{\Sigma}(\Psi) = \Sigma^{1/2} \log(\Sigma^{-1/2}.\Psi.\Sigma^{-1/2})\Sigma^{1/2}$$

$$= \operatorname{Distance} \qquad dist(\Sigma,\Psi)^{2} = \left\langle \overrightarrow{\Sigma\Psi} | \overrightarrow{\Sigma\Psi} \right\rangle_{\Sigma} = \left\| \log(\Sigma^{-1/2}.\Psi.\Sigma^{-1/2}) \right\|_{Id}^{2}$$

Manifold-valued image processing

Integral or sum in M: weighted Fréchet mean

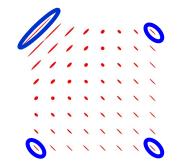
- Interpolation
 - Linear between 2 elements: interpolation geodesic
 - Bi- or tri-linear or spline in images: weighted means
- Gaussian filtering: convolution = weighted Fréchet mean

[Pennec, Fillard, Arsigny, IJCV 66(1), 2006] $\Sigma(x) = \min \sum_{i} G_{\sigma}(x - x_{i}) \operatorname{dist}^{2}(\Sigma, \Sigma_{i})$

PDEs for regularization and extrapolation: the exponential map (partially) accounts for curvature

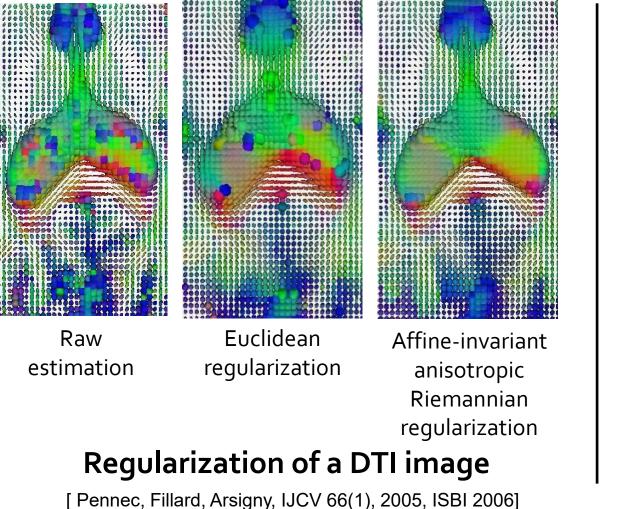
- □ Gradient of Harmonic energy = Laplace-Beltrami $\Delta \Sigma(x) \cong \frac{1}{s} \sum_{u \in S} \overline{\Sigma(x)\Sigma(x + \varepsilon u)}$
- Anisotropic regularization using robust functions $\operatorname{Reg}(\Sigma) = \int \Phi(\|\nabla \Sigma(x)\|_{\Sigma(x)}^2) dx$
- Simple intrinsic numerical schemes thanks the exponential maps!

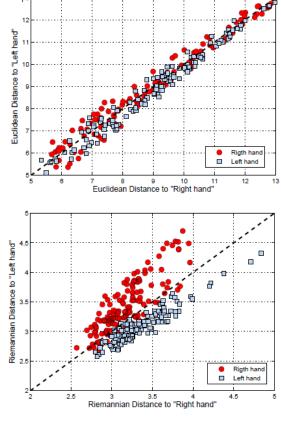
[Pennec, Fillard, Arsigny, IJCV 66(1), 2005, ISBI 2006]



Riemannian algorithms on SPD matrices

Impact of geometry on data analysis





Classification in BCI

[Barachant et al. 2012]

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

- Introduction to computational anatomy
- The Riemannian manifold computational structure
- Simple statistics on Riemannian manifolds
- Applications to the spine shape and diffusion tensor imaging
- Conclusion

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

Exp_x / Log_x and Fréchet mean are the basis of algorithms to compute on Riemannian/affine manifolds

Instead of a minimal # of non-linear charts, use a chart per point!

Normal coordinate system = most linear chart at each point

Simple statistics

- Mean through an exponential barycenter iteration
- Covariance matrices and higher order moments
- Tangent PCA or more complex PGA / BSA

Manifold-valued image processing [XP, IJCV 2006]

- Interpolation / filtering / convolution: weighted means
- Diffusion, extrapolation:
 Discrete Laplacian in tangent space = Laplace-Beltrami

X. Pennec - Shape Analysis & Med. App. 11/02/2025

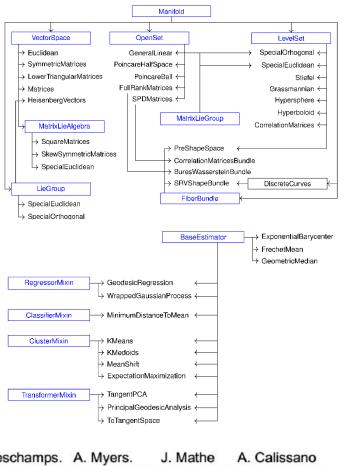
<u>http://geomstats.ai</u> : A Python Package for Geometry in Statistics and Machine Learning

Specific & generic manifolds

- Exp/Log map to generalize Euclidean tools
- 20+ specific manifolds / Lie groups with closed-forms (SPD, H(n), SE(n), etc)
- Generic manifolds with geodesics by integration / optimization

Algorithms

- Fréchet mean, geodesic regression, tangent / geodesic PCA, Riemannian kmeans, mean-shift, parallel transport
- scikit-learn API (GPU & learning tools)
- Collaboration with pyriemann for BCI



<u>http://geomstats.ai</u> : A Python Package for Geometry in Statistics and Machine Learning

Collaborative development

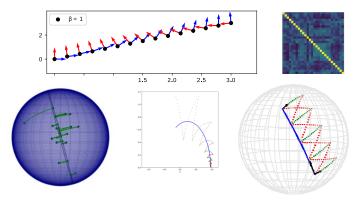
- 10 introductory tutorials
- □ ~ 35000 lines of code
- ~20 academic developers
- 10 hackathons in 2020-2024

Semestre thématique IHP Geometry and Statistics in Data Science Hackathon IHP Oct 17-21+ Journée Math & entreprises Nov 08, 2022

Pushing geometry in Machine Learning

- Miolane, Guigui, et al. SciPy Int. Conf. (2020).
- Miolane et al. Journal of Machine Learning Research (2020)
- Guigui, Miolane, Pennec. Intro. to Riem. Geom. and Geom. Stats: from basic theory to implementation with Geomstats. Monography of 164 p.
 Foundations and Trends in Machine Learning (2023, 16 (3):329-493).

oypi package	5.0 Downloads 93k DOI 10.5281/zenodo.647872			
希 Geomstats latest	* • Geomstats View page source			
arch docs	Geomstats GitHub			
	Geomstats			
t steps	Geomstats is an open-source Python package for computations and statistics on nonlinear			
nples	manifolds. The mathematical definition of manifold is beyond the scope of this documentation.			
Reference	However, in order to use Geomstats, you can visualize it as a smooth subset of the Euclidean space.			
tributing	Simple examples of manifolds include the sphere or the space of 3D rotations.			
orial: Data on Manifolds	Data from many application fields are elements of manifolds. For instance, the manifold of 3D			
orial: From vector spaces to	rotations SO(3), or the manifold of 3D rotations and translations SE(3), appear naturally when			
lifolds	performing statistical learning on articulated objects like the human spine or robotics arms. Other			
rial: Learning on Tangent Data	examples of data that belong to manifolds are introduced in our paper.			
rial: Fréchet Mean and Tangent	Computations on manifolds require special tools of differential geometry. Computing the mean of			
Tutorial: Hyperbolic Embedding of	two rotation matrices R_1, R_2 as $rac{R_1+R_2}{2}$ does not generally give a rotation matrix. Statistics for			
aphs	data on manifolds need to be extended to "geometric statistics" to perform consistent operations.			
	In this context, Geomstats provides code to fulfill four objectives:			



The G-Statistics group

Yann Thanwerdas

Morten Pedersen

Luis G. Pereira

Dimbihery Rabenoro

erc

Geometric

UNIVERSITÉ CÔTE D'AZUR

Anna Calissano

Statistics

3iA Côte d'Azur

Interdisciplinary Institute for Artificial Intelligence

James Benn

Olivier Bisson

Nicolas Guigui

Elodie Maignant

Tom Szwagier

Collaborators

Researchers from Epione / Asclepios / Epidaure team

- Maxime Sermesant
- Nicholas Ayache

Former PhD students

- Jonathan Boisvert
- Pierre Fillard
- Vincent Arsigny
- Kristin McLeod
- Nina Miolane
- Loic Devillier
- Marc-Michel Rohé
- Tom Vercauteren
- Stanley Durrleman
- Marco Lorenzi
- Christof Seiler

- Yann Thanwerdas
- Nicolas Guigui
- Shuma Jia
- Elodie Maignant
- Morten Akhoj Pedersen

D

Current PhD students

- Tom Szwagier
- Olivier Bisson

References

1/ Intrinsic Statistics on Riemannian Manifolds

- XP. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging & Vision 25 (1), 2006, pp.127-154. [DOI: 10.1007/s10851-006-6228-4][Preprint]
- XP, P. Fillard, N. Ayache. A Riemannian Framework for Tensor Computing. Int. J. of Computer Vision, 66(1):41-66, Jan. 2006. [DOI: 10.1007/s11263-005-3222-z]. [Preprint]
- XP. Manifold-valued image processing with SPD matrices. In Riemannian Geometric Statistics in Medical Image Analysis, Chap. 3, pp.75-134, Elsevier, 2020. [DOI: 10.1016/B978-0-12-814725-2.00010-8] [Preprint]

2/ Metric and affine geometric settings for Lie groups

- XP, M. Lorenzi. Beyond Riemannian Geometry The affine connection setting for transformation groups. In Riemannian Geometric Statistics in Medical Image Analysis, Chap. 5, pp.169-229 RGSMIA. Elsevier, 2020. [DOI: 10.1016/B978-0-12-814725-2.00012-1] [Preprint].
- XP, M. Lorenzi. Geodesics, Parallel Transport and One-parameter Subgroups for Diffeomorphic Image Registration. Int. J. of Computer Vision 105(2):111-127. 2013. [DOI: 10.1007/s11263-012-0598-4] [Preprint]
- XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine Connection Spaces which is Exact in Affine Symmetric Spaces. 2018. [arXiv:1805.11436]
- N. Guigui, XP. Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022. [DOI: <u>10.1007/s10208-021-09515-x</u>]

3/ Advanced statistics: central limit theorem and extension of PCA

- XP. Curvature effects on the empirical mean in Riemannian and affine Manifolds. 2019. [arXiv:1906.07418]
- XP. Barycentric Subspace Analysis on Manifolds. Annals of Statistics.46(6A):2711-2746, 2018. [DOI: 10.1214/17-AOS1636]