

Geometric Statistics

Mathematical foundations and applications in computational anatomy

Freely adapted from "Women teaching geometry", in Adelard of Bath translation of Euclid's elements, 1310.

3/ Advanced Stats: empirical estimation and generalized PCA

ESI semester Infinite-dimensional Geometry: Theory and Applications Week 5, 02/2025

e Innía

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
- Natural subspaces in manifolds: barycentric subspaces
- Rephrasing PCA with flags of subspaces

Several definitions of the mean Tensor moments of a random point on M

■
$$\mathfrak{M}_1(x) = \int_M \overline{xz} \, dP(z)$$

■ $\mathfrak{M}_2(x) = \int_M \overline{xz} \otimes \overline{xz} \, dP(z)$
■ $\mathfrak{M}_k(x) = \int_M \overline{xz} \otimes \overline{xz} \otimes \overline{xz} \otimes \cdots \otimes \overline{xz} \, dP(z)$
■ $\mathfrak{M}_k(x) = \int_M \overline{xz} \otimes \overline{xz} \otimes \cdots \otimes \overline{xz} \, dP(z)$
■ $\mathfrak{M}_k(x) = Tr_g(\mathfrak{M}_2(x)) = \int_M dist^2(x, z) \, dP(z)$ Mean quadratic deviation

Mean value = optimum of the variance

Frechet mean [1944] = (global) minima of p-deviation (includes median)

xý >

- Karcher mean [1977] = local minima
- **Exponential barycenters** = critical points (P(C) = 0) \sqrt{D}

 $\mathfrak{M}_1(\bar{x}) = \int_M \overline{\bar{x}z} dP(z) = 0$ (implicit definition)

Covariance at the mean

$$\Box \Sigma = \mathfrak{M}_2(\bar{x}) = \int_M \overline{\bar{x}z} \otimes \overline{\bar{x}z} \, dP(z)$$

 $T_{\overline{x}}S_{2}$

Asymptotic behavior of the mean

Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11]

- Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
- Positive curvature: [Karcher 77 & Kendall 89] concentration conditions:
 Support in a regular geodesic ball of radius $r < r^* = \frac{1}{2} \min(inj(M), \pi/\sqrt{\kappa})$

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]

- Under suitable concentration conditions [KKC], for IID n-samples:
 - □ $\bar{x}_n \rightarrow \bar{x}$ (consistency of empirical mean)

 $\ \ \, \sqrt{n} \log_{\bar{x}}(\bar{x}_n) \to N(0, 4\bar{H}^{-1} \Sigma \bar{H}^{-1}) \quad \text{if } \bar{H} = \int_M Hess_{\bar{x}}(d^2(y, \bar{x})) \mu(dy) \text{ invertible}$

Problems for larger supports [Huckemann & Eltzner, H. Le]

Behavior in high concentration conditions?

- Interpretation of the mean Hessian?
- What happens for a small sample size (non-asymptotic behavior)?
- Can we extend results to affine connection spaces?

Concentration assumptions

 $_{\Box}$ Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.

□ Supp(
$$\mu$$
) ⊂ $B(x,r)$ with r < $\frac{1}{2}$ inj(x)

 $\sup_{x \in B(x,r)} \kappa(x) < \pi^2/(4r)^2$

Affine connection spaces: Arnaudon & Li convexity cond.

□ $\rho: M \times M \rightarrow R^+$ separating function

□ Separability: $\rho(x, y) = 0 \Leftrightarrow x = y$

- □ Convexity along geodesic: $\rho(\gamma_1(t), \gamma_2(t)): R \to R^+ \text{ convex}$
- □ p-convex geometry: $c \operatorname{dist}^p(x, y) \le \rho(x, y) \le C \operatorname{dist}^p(x, y)$
- Uniqueness of exponential barycenter (compact support)

Principle and difficulty

The empirical mean \bar{x}_n of an IID n-sample with population mean \bar{x} is a random variable on M

- Locate \bar{x}_n in a normal coordinate system at x for a given empirical law
- Compute the moments of the empirical mean \bar{x}_n at \bar{x} :
 - □ Expectation at the population mean: $Bias(\bar{x}_n) = \mathbb{E}(log_{\bar{x}}(\bar{x}_n))$
 - $\Box \text{ Covariance matrix } \mathbf{Cov}(\bar{x}_n) = \mathbb{E}(\log_{\bar{x}}(\bar{x}_n) \otimes \log_{\bar{x}}(\bar{x}_n))$
 - Compare with asymptotic BP-CLT for large n

Empirical and population means are exponential barycenters

- □ n-sample $X_n = \frac{1}{n} \sum_i \delta_{x_i} \rightarrow \text{tangent mean vector field is } \mathfrak{M}_1(x) = \frac{1}{n} \sum_i \log_x(x_i)$
- □ Locate the zero $\bar{x}_n \rightarrow$ Taylor expansion of $log_{x_v}(y)$ for $x_v = exp_x(v)$?

Riemannian distance derivatives

How does the (squared) distance (Synge's world function) vary with endpoints?

First order derivatives is easy

 $D_v(\operatorname{dist}^2(x_v, y)) = -2 \log_{x_v}(y)$ with $x_v = \exp_x(v)$

 Higher order derivatives begin to be quite involved: Taylor expansion in normal coordinates (Grey 1973, Brewin 1998, 2009)

$$\begin{split} D(v) &= \operatorname{dist}^{2}(\exp_{x}(v), y) = \|y\|_{x}^{2} + D_{,a}v^{a} + D_{,ab}v^{a}v^{b} + D_{,abc}v^{a}v^{b}v^{c} + D_{,abcd}v^{a}v^{b}v^{c}v^{d} + O(\epsilon^{5}), \\ D_{,a} &= -2y_{a} \\ D_{,ab} &= g_{ab} - \frac{1}{3}y^{c}y^{d}R_{acbd} - \frac{1}{12}y^{c}y^{d}y^{e}\nabla_{d}R_{acbc} - \frac{1}{180}y^{c}y^{d}y^{e}y^{f}(44R_{eaf}^{g}R_{gcbd} - 3\nabla_{ef}R_{acbd}) \\ D_{,abc} &= -\frac{1}{12}y^{d}y^{c}\nabla_{c}R_{aebd} + \frac{1}{60}y^{d}y^{e}y^{f}(\nabla_{da}R_{bfce} - 2\nabla_{ad}R_{bfce} + 32R_{dbe}^{g}R_{gacf}) \\ &- \frac{1}{108}y^{d}y^{e}y^{f}y^{g}(8R_{eaf}^{h}\nabla_{g}R_{hbcd} + 9R_{eaf}^{h}\nabla_{h}R_{bgcd} + 20R_{eaf}^{h}\nabla_{b}R_{hgcd} - 6R_{abe}^{h}\nabla_{f}R_{hgcd}) \\ D_{,abcd} &= +\frac{1}{180}y^{e}y^{f}(8R_{cde}^{g}R_{gabf} - 9\nabla_{cd}R_{aebf} - 8R_{dac}^{g}R_{gcbf} + 9\nabla_{dc}R_{afbc} - 44R_{daf}^{g}R_{gcbe} - 3\nabla_{db}R_{ccaf}) \\ &+ \frac{1}{45}y^{e}y^{f}y^{g}(4R_{ccf}^{h}\nabla_{a}R_{hbdg} + 4R_{cae}^{h}\nabla_{b}R_{hfdg} + 4R_{cae}^{h}\nabla_{f}R_{hbdg} - 3\nabla_{dae}R_{bfcg}) \\ &+ \frac{1}{108}y^{e}y^{f}y^{g}(8R_{eaf}^{h}\nabla_{d}R_{hbcg} + 8R_{daf}^{h}\nabla_{g}R_{hbce} + 9R_{caf}^{h}\nabla_{h}R_{bdcg} + 9R_{daf}^{h}\nabla_{h}R_{bgce} \\ &+ 20R_{eaf}^{h}\nabla_{b}R_{hdcg} + 20R_{daf}^{h}\nabla_{b}R_{hgce} - 6R_{abe}^{h}\nabla_{f}R_{hdcg} - 6R_{abe}^{h}\nabla_{d}R_{hbcf}) \end{split}$$

□ Problem: $\log_{x_v}(y) \in T_{x_v}M$ and not to T_xM : many terms due to $Dexp_x(v)$

Taylor expansion of geodesic triangles

Key idea: use parallel transport rather that normal chart to relate $T_x M$ to $T_{x_n} M$

Gavrilov's double exponential is a tensorial series (2006):

Neighboring log expansion [XP arXiv:1906.07418, 2019]

$$l_{x}(v,w) = \Pi_{x_{v}}^{x} \log_{x_{v}}(\exp_{x}(w))$$

= $w - v + \frac{1}{6}R(w,v)(v - 2w) + \frac{1}{24}\nabla_{v}R(w,v)(2v - 3w)$
+ $\frac{1}{24}\nabla_{w}R(w,v)(v - 2w) + O(5)$

Torsion free affine manifolds

Taylor expansion of recentered mean map

 $\mathbf{x}_{\mathbf{v}} = \exp_{\mathbf{x}}(\mathbf{v})$ is an exponential barycenter if $\mathfrak{M}_1(\mathbf{x}_{\mathbf{v}}) = \mathbf{0}$

- $\Pi_{x}(v) = \Pi_{x_v}^x \mathfrak{M}_1(x_v) = \int_M \Pi_{x_v}^x \log_{x_v}(y) \mu(dy) \text{ has a zero at } v = \log_x(\bar{x})$
- **\square** \mathfrak{M}_1 is a tensor field, \mathfrak{N}_x is an analytic endomorphism of $T_x M$

Taylor expansion with neighboring log:

$$\mathfrak{M}_{x}(v) = \mathfrak{M}_{1} - v + \frac{1}{6}R(\mathfrak{M}_{1}, v)v - \frac{1}{3}R(*, v) *: \mathfrak{M}_{2}^{**} + \frac{1}{12}(\nabla_{v}R)(\mathfrak{M}_{1}, v)v + \frac{1}{24}(\nabla_{v}R)(*, v)v : \mathfrak{M}_{2}^{**} - \frac{1}{8}(\nabla_{v}R)(*, v) *: \mathfrak{M}_{2}^{**} - \frac{1}{12}(\nabla_{v}R)(*, v) *: \mathfrak{M}_{3}^{***} + O(\varepsilon^{5})$$

Solve for the value $\mathbf{v} = \log_{\chi}(\bar{x})$ zeroing-out the polynomial $\log_{\chi}(\bar{x}) = \mathfrak{M}_{1} - \frac{1}{3}R(*,\mathfrak{M}_{1}) *: \mathfrak{M}_{2} + \frac{1}{24}(\nabla_{*}R)(*,\mathfrak{M}_{1})\mathfrak{M}_{1}:\mathfrak{M}_{2}^{**}$ $-\frac{1}{8}(\nabla_{\mathfrak{M}_{1}}R)(*,\mathfrak{M}_{1}) *: \mathfrak{M}_{2}^{**} - \frac{1}{12}(\nabla_{*}R)(*,\mathfrak{M}_{1}) *: \mathfrak{M}_{3}^{***} + O(\varepsilon^{5})$

Expectation for a random n-sample

For one empirical n-sample $X_n = \frac{1}{n} \sum_i \delta_{x_i}$ with moments \mathfrak{X}_k^n

$$\log_{\mathcal{X}}(\bar{x}_{n}) = \mathfrak{X}_{1}^{n} - \frac{1}{3}R(*,\mathfrak{X}_{1}^{n}) * :\mathfrak{X}_{2}^{n} + \frac{1}{24}(\nabla_{*}R)(*,\mathfrak{X}_{1}^{n})\mathfrak{X}_{1}^{n} :\mathfrak{X}_{2}^{n} * \\ - \frac{1}{8}(\nabla_{\mathfrak{X}_{1}^{n}}R)(*,\mathfrak{X}_{1}^{n}) * :\mathfrak{X}_{2}^{n} * - \frac{1}{12}(\nabla_{*}R)(*,\mathfrak{X}_{1}^{n}) * :\mathfrak{X}_{3}^{n} * + O(\varepsilon^{5})$$

Take expectation for a random IID n-sample

$$\mathbb{E}[\mathfrak{X}_k^n(x)] = \mathfrak{M}_k(x)$$

$$\square \mathbb{E}[\mathfrak{X}_p^n \otimes \mathfrak{X}_q^n] = \frac{n-1}{n} \mathfrak{M}_{p+q} \otimes \mathfrak{M}_{p+q} + \frac{1}{n} \mathfrak{M}_{p+q}$$

Etc...

Moments of the empirical mean at the population mean:

$$\square \quad \mathbf{Bias}(\bar{x}_n) = \mathbb{E}[\log_{\bar{x}}(\bar{x}_n)] = \frac{n-1}{6n^2} \left(\nabla_* R \right) (*, \circ) \circ : \mathfrak{M}_2^{**} : \mathfrak{M}_2^{\circ \circ} + O(\varepsilon^5)$$

$$Cov(\bar{x}_n) = \mathbb{E}[\log_{\bar{x}}(\bar{x}_n) \otimes \log_{\bar{x}}(\bar{x}_n)]$$

= $\frac{1}{n} \mathfrak{M}_2 - \frac{n-1}{3n^2} \mathfrak{M}_2^{**} : (\circ \otimes R(*, \circ) * + R(*, \circ) * \otimes \circ) : \mathfrak{M}_2^{\circ \circ} + O(\varepsilon^5)$

Asymptotic behavior of empirical Fréchet mean

Moments of the Fréchet mean of a n-sample

- Surprising Bias in 1/n on the empirical Fréchet mean (gradient of curvature) Bias $(\bar{x}_n) = \mathbb{E}(log_{\bar{x}}(\bar{x}_n)) = \frac{1}{6n} (\mathfrak{M}_2: \nabla R: \mathfrak{M}_2) + O(\epsilon^5, 1/n^2)$
- Concentration rate: term in 1/n modulated by the curvature:

 $\mathbf{Cov}(\bar{x}_n) = \mathbb{E}\left(\log_{\bar{x}}(\bar{x}_n) \otimes \log_{\bar{x}}(\bar{x}_n)\right) = \frac{1}{n}\mathfrak{M}_2 + \frac{1}{3n}\mathfrak{M}_2: R:\mathfrak{M}_2 + O(\epsilon^5, 1/n^2)$

- Negative curvature: faster CV than Euclidean
- Positive curvature: slower CV than Euclidean

Central-limit theorem in manifolds [Bhattacharya & Bhattacharya 2008; Kendall & Le 2011]

Under Kendall-Karcher concentration conditions:

 $\sqrt{n} \log_{\bar{x}}(\bar{x}_n) \xrightarrow{D} N(0, H^{-1} \Sigma H^{-1})$ if $H = Hess(MSD(X, \bar{x}_n))$ invertible

- Hessian of mean sq. dist: $\frac{1}{2}\overline{H} = Id + \frac{1}{3}R$: $\mathfrak{M}_2 + \frac{1}{12}\nabla R$: $\mathfrak{M}_3 + O(\epsilon^4, 1/n^2)$
- Same expansion for large n: modulation of the CV rate by curvature (but our non asymptotic expansion is valid for small data as well)

Isotropic distribution in constant curvature spaces

- Symmetric spaces: no bias at order 5
- Modulation of variance w.r.t. Euclidean: $Var(\bar{x}_n) = \alpha \frac{\sigma^2}{n}$

High concentration expansion

$$\alpha = 1 + \frac{2}{3} \left(1 - \frac{1}{d} \right) \left(1 - \frac{1}{n} \right) \kappa \sigma^2 + O(\epsilon^5)$$

$\lim_{\kappa\theta^2=\pi^2/2^2} \alpha = +\infty$

No CV for uniform distrib on equator

X. Pennec - Shape Analysis & Med. App. 14/02/2025 Immediate convergence: sticky mean2

Accurate expansion even with small sample

Boostrap on real spherical data from [Fisher, Lewis, Embleton 1987]

B15: high isotropic dispersion (stddev 32°, bbox: 76°x63°)

- 94 orientations of dendritic fields in cat's retinas [Keilson et al 1983]
- High dispersion, KKC on the sphere

- Visible modulation (isotropic formulas are good)
- Small sample expansion behavior is well predicted

Boostrap on real projective data from [Fisher, Lewis, Embleton 1987]

Fisher B1: high dispersion

 50 pole positions from Paleomagnetic study of new Caledonian laterites (Falvey & Mustgrave)

Spherical (not KKC)

- Stddev 41°, bbox: 98° x 67°
- Small var and asymptotic OK

X. Pennec - Shape Analysis & Med. App. 14/02/2025

Projective (not KKC)

- Stddev 40°, bbox: 86° x 76°
- Prediction fails: smeary mean?

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
 - Natural subspaces in manifolds: barycentric subspaces
 - Rephrasing PCA with flags of subspaces

Low dimensional subspace approximation?

Manifold of cerebral ventricles Etyngier, Keriven, Segonne 2007.

Manifold of brain images S. Gerber et al, Medical Image analysis, 2009.

- Beyond the 0-dim mean \rightarrow higher dimensional subspaces
- When embedding structure is already manifold (e.g. Riemannian):
 Not manifold learning (LLE, Isomap,...) but submanifold learning
- Natural subspaces for extending PCA to manifolds?

Tangent PCA (tPCA)

Maximize the squared distance to the mean (explained variance)

- a Algorithm
 - Unfold data on tangent space at the mean
 - Diagonalize covariance at the mean $\Sigma(x) \propto \sum_i \overline{\bar{x}x_i} \, \overline{\bar{x}x_i}^t$
- Generative model:
 - Gaussian (large variance) in the horizontal subspace
 - Gaussian (small variance) in the vertical space
- □ Find the subspace of $T_{\chi}M$ that best explains the variance

X. Pennec - Shape Analysis & Med. App. 14/02/2025

Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low dimensional subspace (unexplained variance)

□ **Geodesic Subspace**: $GS(x, w_1, ..., w_k) = \{\exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k\}$

Parametric subspace spanned by geodesic rays from point x

Beware: GS have to be restricted to be well posed [XP, AoS 2018]

□ PGA (Fletcher et al., 2004, Sommer 2014)

□ Geodesic PCA (GPCA, Huckeman et al., 2010)

- Generative model:
 - Unknown (uniform ?) distribution within the subspace
 - Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in $GS(x, w_1, ..., w_k)$

Totally geodesic at x only

Patching the Problems of tPCA / PGA Improve the flexibity of the geodesics

- ID regression with higher order splines [Gu, Machado, Leite, Vialard, Singh, Niethammer, Absil,...]
 - Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development [HCA, Sommer GSI 2013]

- Iterated construction of subspaces
- Parallel transport in frame bundle
 - Intrinsic asymmetry between components

Nested "algebraic" subspaces

- Principal nested spheres [Jung, Dryden, Marron 2012]
- Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]

No general semi-direct product space structure in general Riemannian manifolds

X. Pennec - Shape Analysis & Med. App. 14/02/2025

closest point, 2nd component

closest point, 1st component

Courtesy of S. Sommer

Affine span in Euclidean spaces

Affine span of (k+1) points: weighted barycentric equation

Aff
$$(x_0, x_1, \dots x_k) = \{x = \sum_i \lambda_i x_i \text{ with } \sum_i \lambda_i = 1\}$$

= $\{x \in \mathbb{R}^n \text{ s. } t \sum_i \lambda_i (x_i - x) = 0, \lambda \in \mathbb{P}_k^*\}$

Key ideas:

■ tPCA, PGA: Look at data points from the mean (mean has to be unique)

Triangulate from several reference:
 locus of weighted means

Barycentric subspaces and Affine span in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)

Normalized weighted variance: σ²(x,λ) = ∑λ_idist²(x, x_i)/∑λ_i
 Set of absolute / local minima of the λ-variance
 Works in stratified spaces (may go accross different strata)
 Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span

- Weighted exponential barycenters: $\mathfrak{M}_1(x,\lambda) = \sum_i \lambda_i \overrightarrow{xx_i} = 0$
- □ $\mathsf{EBS}(x_0, ..., x_k) = \{ x \in M^*(x_0, ..., x_k) | \mathfrak{M}_1(x, \lambda) = 0 \}$
- □ Affine span = closure of EBS in M $Aff(x_0, ..., x_k) = \overline{EBS(x_0, ..., x_k)}$

Questions

- Local structure: local manifold? dimension? stratification?
- □ Relationship between KBS \subset FBS, EBS and affine span?

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. arXiv:1607.02833]

Analysis of Barycentric Subspaces

Exp. barycenters are critical points of λ **-variance on M*** $\Box \nabla \sigma^2(\mathbf{x},\lambda) = -2\mathfrak{M}_1(\mathbf{x},\lambda) = 0$ *KBS* $\cap M^* \subset EBS$

Caractérisation of local minima: Hessian (if non degenerate) $H(\mathbf{x},\lambda) = -2\sum_{i} \lambda_{i} D_{x} \log_{x}(x_{i}) = \mathrm{Id} - \frac{1}{3} \mathrm{Ric}(\mathfrak{M}_{2}(\mathbf{x},\lambda)) + \mathrm{HOT}$

Regular and positive pts (non-degenerated critical points)

$$BBS^{Reg}(x_0, ..., x_k) = \{ x \in Aff(x_0, ..., x_k), s.t. H(x, \lambda^*(x)) \neq 0 \}$$

 $BBS^{+}(x_{0}, ..., x_{k}) = \{ x \in Aff(x_{0}, ..., x_{k}), s.t. H(x, \lambda^{*}(x)) Pos.def. \}$

Theorem: EBS partitioned into cells by the index of the Hessian of λ -variance: KBS = EBS⁺ on M^{*}

[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. arXiv:1607.02833]

KBS / FBS with 3 points on the sphere

EBS: great subspheres spanned by reference points (mod cut loci) $EBS(x_0, ..., x_k) = Span(X) \cap S_n \setminus Cut(X)$ $Aff(x_0, ..., x_k) = Span(X) \cap S_n$

KBS/FBS: look at index of the Hessian of λ -variance

 $H(\mathbf{x},\lambda) = \sum \lambda_i \theta_i \cot(\theta_i) (\mathrm{Id} - \mathbf{x}\mathbf{x}^{\mathrm{t}}) + \sum (1 - \lambda_i \theta_i \cot(\theta_i)) \overline{xx_i} \overline{xx_i}^{\mathrm{t}}$

Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]
 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point
 KBS/EBS less interesting than EBS/affine span

Weighed Hessian index: **brown = -2 (min) = KBS** / green = -1 (saddle) / blue = 0 (max)

Example on the hyperbolic space

EBS = Affine span: great sub-hyperboloids spanned by reference points $EBS(x_0, ..., x_k) = Aff(x_0, ..., x_k) = Span(X) \cap H_n$

KBS: locus of maximal index of the Hessian of λ -variance

 $H(\mathbf{x},\lambda) = \sum \lambda_i \theta_i \coth(J + J \mathbf{x} \mathbf{x}^t J^t) + \sum (1 - \lambda_i \coth(\theta_i)) J \,\overline{xx_i} \,\overline{xx_i}^t J^t$

Complex algebric geometry problem

3 points on Hⁿ: better than for spheres, but still disconnected components

Weighted Hessian Index: **brown = -2 (min) = KBS** / blue = 1 (saddle)

Geodesic subspaces are limit cases of affine span

Theorem

- □ $GS(x, w_1, ..., w_k) = \{\exp_x(\sum_i \alpha_i w_i) \text{ for } \alpha \in \mathbb{R}^k\} \text{ is the limit } of Aff(x_0, \exp_{x_o}(\epsilon w_1), ... \exp_{x_o}(\epsilon w_k)) \text{ when } \epsilon \to 0.$
- Reference points converge to a 1st order (k,n)-jet
 - D PGA [Fletcher et al. 2004, Sommer et al. 2014]
 - □ GPGA [Huckemann et al. 2010]

Conjecture

- This can be generalized to higher order derivatives
 - Quadratic, cubic splines [Vialard, Singh, Niethammer]
 - Principle nested spheres [Jung, Dryden, Marron 2012]
 - Quotient of Lie group action [Huckemann, Hotz, Munk, 2010]

Application in Cardiac motion analysis

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Application in Cardiac motion analysis

- *v_i* registers image to reference i
- $\sum_i \lambda_i v_i = \mathbf{0}$

Optimize reference images to achieve best registration over the sequence

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Application in Cardiac motion analysis

Barycentric coefficients curves Optimal Reference Frames $\boldsymbol{\lambda} = (0, 1, 0)$ Ko $\lambda_3 < 0$ N $\lambda_2 < 0$ $\lambda = (0, 0, 1)$ $\lambda = (1, 0, 0)$

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Cardiac Motion Signature

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)
 [2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)

Cardiac motion synthesis

Original Sequence

Barycentric Reconstruction

(3 images)

PCA Reconstruction

(2 modes)

30 images

3 images + 2 coeff.

1 image + 2 SVF + 2 coeff.

Reconstr. error: 18.75 Compression ratio: 1/10 Reconstr. error: 26.32 (+40%) Compression ratio: 1/4

[Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018]

Geometric Statistics: Mathematical foundations and applications in computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups

Advances Statistics: CLT & PCA

- Estimation of the empirical Fréchet mean & CLT
- Principal component analysis in manifolds
 - Natural subspaces in manifolds: barycentric subspaces
 - Rephrasing PCA with flags of subspaces

The natural object for PCA: Flags of subspaces in manifolds

Subspace approximations with variable dimension

- Optimal unexplained variance \rightarrow non nested subspaces
- Nested forward / backward procedures \rightarrow not optimal
- □ Optimize first, decide dimension later → Nestedness required [Principal nested relations: Damon, Marron, JMIV 2014]

Flags of affine spans in manifolds: $FL(x_0 \prec x_1 \prec \cdots \prec x_n)$

Sequence of nested subspaces

 $Aff(x_0) \subset Aff(x_0, x_1) \subset \cdots Aff(x_0, \dots x_i) \subset \cdots Aff(x_0, \dots x_n) = M$

Barycentric subspace analysis (BSA):

Energy on flags: Accumulated Unexplained Variance

→ optimal flags of subspaces in Euclidean spaces = PCA

[X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018]

Sample-limited barycentric subspace inference

Restrict the inference to data points only

- Fréchet mean / template [Lepore et al 2008]
- □ First geodesic mode [Feragen et al. 2013, Zhai et al 2016]
- Higher orders: challenging with PGA... but not with BSA

- FBS: Forward Barycentric Subspace
- k-PBS: Pure Barycentric Subspace with backward ordering
- k-BSA: Barycentric Subspace Analysis up to order k

Robustness with L_p norms

Affine spans is stable to p-norms

$$\Box \sigma^p(\mathbf{x}, \lambda) = \frac{1}{p} \sum \lambda_i dist^p(x, x_i) / \sum \lambda_i$$

□ Critical points of $\sigma^p(\mathbf{x},\lambda)$ are also critical points of $\sigma^2(\mathbf{x},\lambda')$ with $\lambda'_i = \lambda_i \operatorname{dist}^{p-2}(x,x_i)$ (non-linear reparameterization of affine span)

Unexplained p-variance of residuals

- □ 2 : more weight on the tail,at the limit: penalizes the maximal distance to subspace
- 0 : less weight on the tail of the residual errors: statistically robust estimation
 - Non-convex for p<1 even in Euclidean space</p>
 - But sample-limited algorithms do not need gradient information

Experiments on the sphere

3 clusters on a 5D sphere

 10, 9 and 8 points (stddev 6 deg) around three orthogonal axes plus 30 points uniformly samples on 5D sphere

- FBS: Forward Barycentric Subspace: mean and median not in clusters
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k

Experiments on the hyperbolic space

3 clusters on a 5D hyperboloid (50% outliers)

 15 random points (stddev 0.015) around an equilateral triangle of length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

- FBS: Forward Barycentric Subspace: ok for $p \leq 0.5$
- 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only
- 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for $p \leq 1$

Take home messages

Natural subspaces in manifolds

- PGA & Godesic subspaces:
 look at data points from the (unique) mean
- Barycentric subspaces:
 « triangulate » several reference points
 - Justification of multi-atlases?

Critical points (affine span) rather than minima (FBS/KBS)

- Barycentric coordinates need not be positive (convexity is a problem)
- Affine notion (more general than metric)
 - Generalization to Lie groups (SVFs)?

Natural flag structure for PCA

 Hierarchically embedded approximation subspaces to summarize / describe data

A. Manesson-Mallet. La géométrie Pratique, 1702

References

1/ Intrinsic Statistics on Riemannian Manifolds

- XP. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging & Vision 25 (1), 2006, pp.127-154. [DOI: 10.1007/s10851-006-6228-4][Preprint]
- XP, P. Fillard, N. Ayache. A Riemannian Framework for Tensor Computing. Int. J. of Computer Vision, 66(1):41-66, Jan. 2006. [DOI: 10.1007/s11263-005-3222-z]. [Preprint]
- XP. Manifold-valued image processing with SPD matrices. In Riemannian Geometric Statistics in Medical Image Analysis, Chap. 3, pp.75-134, Elsevier, 2020. [DOI: 10.1016/B978-0-12-814725-2.00010-8] [Preprint]

2/ Metric and affine geometric settings for Lie groups

- XP, M. Lorenzi. Beyond Riemannian Geometry The affine connection setting for transformation groups. In Riemannian Geometric Statistics in Medical Image Analysis, Chap. 5, pp.169-229 RGSMIA. Elsevier, 2020. [DOI: 10.1016/B978-0-12-814725-2.00012-1] [Preprint].
- XP, M. Lorenzi. Geodesics, Parallel Transport and One-parameter Subgroups for Diffeomorphic Image Registration. Int. J. of Computer Vision 105(2):111-127. 2013. [DOI: 10.1007/s11263-012-0598-4] [Preprint]
- XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine Connection Spaces which is Exact in Affine Symmetric Spaces. 2018. [arXiv:1805.11436]
- N. Guigui, XP. Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. Foundations of Computational Mathematics, 22:757-790, 2022. [DOI: <u>10.1007/s10208-021-09515-x</u>]

3/ Advanced statistics: central limit theorem and extension of PCA

- XP. Curvature effects on the empirical mean in Riemannian and affine Manifolds. 2019. [arXiv:1906.07418]
- XP. Barycentric Subspace Analysis on Manifolds. Annals of Statistics.46(6A):2711-2746, 2018. [DOI: 10.1214/17-AOS1636]