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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds
 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces
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Several definitions of the mean
Tensor moments of a random point on M

 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) 2nd moment: (0,2) tensor field

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥⊗⋯ ⊗ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) k-contravariant tensor field

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧) Mean quadratic deviation

Mean value = optimum of the variance
 Frechet mean [1944] = (global) minima of p-deviation (includes median)
 Karcher mean [1977] = local minima
 Exponential barycenters = critical points (P(C) =0)
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧) = 0 (implicit definition)

Covariance at the mean
 Σ = 𝔐𝔐2 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 ⊗ 𝑥̅𝑥𝑧𝑧 𝑑𝑑𝑑𝑑 𝑧𝑧
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Asymptotic behavior of the mean
Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11] 

 Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
 Positive curvature: [Karcher 77 & Kendall 89] concentration conditions:

Support in a regular geodesic ball of radius 𝑟𝑟 < 𝑟𝑟∗ = 1
2

min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]
 Under suitable concentration conditions [KKC], for IID n-samples:

 𝑥̅𝑥𝑛𝑛 → 𝑥̅𝑥 (consistency of empirical mean)

 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→𝑁𝑁(0, 4�𝑯𝑯−𝟏𝟏 𝜮𝜮 �𝑯𝑯−𝟏𝟏) if  �𝐻𝐻 = ∫𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑥̅𝑥 𝑑𝑑2 𝑦𝑦, 𝑥̅𝑥 𝜇𝜇(𝑑𝑑𝑑𝑑) invertible

 Problems for larger supports [Huckemann & Eltzner, H. Le]

Behavior in high concentration conditions?
 Interpretation of the mean Hessian? 
 What happens for a small sample size (non-asymptotic behavior)?
 Can we extend results to affine connection spaces?
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Concentration assumptions
 Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.
 Supp 𝜇𝜇 ⊂ 𝐵𝐵(𝑥𝑥, 𝑟𝑟) with r < 1

2
𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)

 sup
𝑥𝑥∈𝐵𝐵(𝑥𝑥,𝑟𝑟)

𝜅𝜅(𝑥𝑥) < 𝜋𝜋2/ 4𝑟𝑟 2

Affine connection spaces: Arnaudon & Li convexity cond.
 𝜌𝜌:𝑀𝑀 × 𝑀𝑀 → 𝑅𝑅+ separating function

 Separability: 𝜌𝜌 𝑥𝑥,𝑦𝑦 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦

 Convexity along geodesic: 𝜌𝜌 𝛾𝛾1 𝑡𝑡 , 𝛾𝛾2(𝑡𝑡) :𝑅𝑅 → 𝑅𝑅+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 p-convex geometry: c distp x, y ≤ 𝜌𝜌 𝑥𝑥,𝑦𝑦 ≤ 𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝 𝑥𝑥,𝑦𝑦
 Uniqueness of exponential barycenter (compact support)
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Principle and difficulty

The empirical mean 𝑥̅𝑥𝑛𝑛 of an IID n-sample with population 
mean 𝑥̅𝑥 is a random variable on M

 Locate 𝑥̅𝑥𝑛𝑛 in a normal coordinate system at 𝑥𝑥 for a given empirical law
 Compute the moments of the empirical mean 𝑥̅𝑥𝑛𝑛at 𝑥̅𝑥:

 Expectation at the population mean:  B𝐢𝐢𝐢𝐢𝐢𝐢 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
 Covariance matrix 𝐂𝐂𝐂𝐂𝐂𝐂(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
 Compare with asymptotic BP-CLT for large n

Empirical and population means are exponential barycenters
 n-sample Xn = 1

𝑛𝑛
∑𝑖𝑖 𝛿𝛿𝑥𝑥𝑖𝑖  tangent mean vector field is 𝔐𝔐1 𝑥𝑥 = 1

𝑛𝑛
∑𝑖𝑖 log𝑥𝑥(𝑥𝑥𝑖𝑖)

 Locate the zero 𝑥̅𝑥𝑛𝑛  Taylor expansion of 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙𝒗𝒗 𝒚𝒚 for 𝒙𝒙𝒗𝒗 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒙𝒙(𝒗𝒗)?
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Riemannian distance derivatives
How does the (squared) distance (Synge’s world function) 

vary with endpoints? 
 First order derivatives is easy

𝐷𝐷𝑣𝑣 dist2 𝑥𝑥𝑣𝑣,𝑦𝑦 = −2 log𝑥𝑥𝑣𝑣 𝑦𝑦 with xv = exp𝑥𝑥 𝑣𝑣
 Higher order derivatives begin to be quite involved: 

Taylor expansion in normal coordinates (Grey 1973, Brewin 1998, 2009)

 Problem: log𝑥𝑥𝑣𝑣 𝑦𝑦 ∈ 𝑇𝑇𝑥𝑥𝑣𝑣𝑀𝑀 and not to Tx𝑀𝑀: many terms due to Dexp𝑥𝑥 𝑣𝑣
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Taylor expansion of geodesic triangles
Key idea: use parallel transport rather that normal chart to relate 𝑇𝑇𝑥𝑥𝑀𝑀 to 𝑇𝑇𝑥𝑥𝑣𝑣𝑀𝑀

Gavrilov’s double exponential is a tensorial series (2006):

Neighboring log expansion [XP arXiv:1906.07418, 2019]
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𝑙𝑙𝑥𝑥 𝑣𝑣,𝑤𝑤 = Π𝑥𝑥𝑣𝑣
𝑥𝑥 log𝑥𝑥𝑣𝑣 exp𝑥𝑥(𝑤𝑤)

= 𝑤𝑤 − 𝑣𝑣 +
1
6
𝑅𝑅 𝑤𝑤, 𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 +

1
24

𝛻𝛻𝑣𝑣𝑅𝑅 𝑤𝑤,𝑣𝑣 2𝑣𝑣 − 3𝑤𝑤

+
1

24
𝛻𝛻𝑤𝑤𝑅𝑅 𝑤𝑤,𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 + 𝑂𝑂 5

ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(exp𝑥𝑥𝑣𝑣(Π𝑥𝑥
𝑥𝑥𝑣𝑣 𝑢𝑢))

= 𝑣𝑣 + 𝑢𝑢 +
1
6
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 +

1
3
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑢𝑢

+
1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢 +

1
24

𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂 5

Torsion free affine manifolds



Taylor expansion of recentered mean map

𝐱𝐱𝐯𝐯 = exp𝒙𝒙(𝒗𝒗) is an exponential barycenter if 𝔐𝔐1 𝒙𝒙𝒗𝒗 = 𝟎𝟎
 𝔑𝔑𝑥𝑥 𝑣𝑣 = Π𝑥𝑥𝑣𝑣

𝑥𝑥 𝔐𝔐1 𝑥𝑥𝑣𝑣 = ∫𝑀𝑀𝜫𝜫𝒙𝒙𝒗𝒗
𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙𝒗𝒗 𝒚𝒚 𝜇𝜇(𝑑𝑑𝑑𝑑) has a zero at v = log𝑥𝑥 𝑥̅𝑥

 𝕸𝕸𝟏𝟏 is a tensor field,    𝕹𝕹𝒙𝒙 is an analytic endomorphism of 𝑻𝑻𝒙𝒙𝑴𝑴

Taylor expansion with neighboring log:
𝔑𝔑𝑥𝑥 𝑣𝑣 = 𝔐𝔐1 − 𝑣𝑣 +

1
6𝑅𝑅 𝔐𝔐1, 𝑣𝑣 𝑣𝑣 −

1
3𝑅𝑅 ∗, 𝑣𝑣 ∗ ∶ 𝔐𝔐2

∗∗ +
1

12 𝛻𝛻𝑣𝑣𝑅𝑅 𝔐𝔐1, 𝑣𝑣 𝑣𝑣

+
1

24 𝛻𝛻∗𝑅𝑅 ∗, 𝑣𝑣 𝑣𝑣 :𝔐𝔐2
∗∗ −

1
8 𝛻𝛻𝑣𝑣𝑅𝑅 ∗, 𝑣𝑣 ∗∶ 𝔐𝔐2

∗∗ −
1

12 𝛻𝛻∗𝑅𝑅 ∗, 𝑣𝑣 ∗∶ 𝔐𝔐3
∗∗∗ + 𝑂𝑂 𝜀𝜀5

Solve for the value v = log𝑥𝑥 𝑥̅𝑥 zeroing-out the polynomial
log𝑥𝑥(𝑥̅𝑥) = 𝔐𝔐1 −

1
3𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐2 +

1
24 𝛻𝛻∗𝑅𝑅 ∗,𝔐𝔐1 𝔐𝔐1 ∶ 𝔐𝔐2

∗∗

−
1
8 𝛻𝛻𝔐𝔐1𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐2

∗∗ −
1

12 𝛻𝛻∗𝑅𝑅 ∗,𝔐𝔐1 ∗ ∶ 𝔐𝔐3
∗∗∗ + 𝑂𝑂(𝜀𝜀5)
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Expectation for a random n-sample

For one empirical n-sample 𝐗𝐗𝐧𝐧 = 𝟏𝟏
𝒏𝒏
∑𝒊𝒊 𝜹𝜹𝒙𝒙𝒊𝒊 with moments 𝔛𝔛𝒌𝒌𝒏𝒏

 log𝑥𝑥(𝑥̅𝑥𝑛𝑛) = 𝔛𝔛1𝑛𝑛 −
1
3
𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛2𝑛𝑛 + 1

24
𝛻𝛻∗𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 𝔛𝔛1𝑛𝑛 ∶ 𝔛𝔛2𝑛𝑛 ∗∗

− 1
8
𝛻𝛻𝔛𝔛1𝑛𝑛𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛2𝑛𝑛 ∗∗ −

1
12

𝛻𝛻∗𝑅𝑅 ∗,𝔛𝔛1𝑛𝑛 ∗ ∶ 𝔛𝔛3𝑛𝑛 ∗∗∗ + 𝑂𝑂(𝜀𝜀5)

Take expectation for a random IID n-sample
 𝔼𝔼 𝖃𝖃𝑘𝑘𝑛𝑛 𝑥𝑥 = 𝕸𝕸𝑘𝑘 𝑥𝑥

 𝔼𝔼 𝖃𝖃𝑝𝑝𝑛𝑛 ⊗ 𝖃𝖃𝑞𝑞𝑛𝑛 = 𝑛𝑛−1
𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞 ⊗𝕸𝕸𝑝𝑝+𝑞𝑞 + 1

𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞

 Etc…

Moments of the empirical mean at the population mean:
 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼[log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ] = 𝑛𝑛−1

6𝑛𝑛2
𝛻𝛻∗𝑅𝑅 ∗,∘ ∘ : 𝔐𝔐2

∗∗ : 𝔐𝔐2
∘∘ +𝑂𝑂(𝜀𝜀5)

 𝐂𝐂𝐂𝐂𝐂𝐂 𝑥̅𝑥𝑛𝑛 = 𝔼𝔼 log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ log𝑥̅𝑥 𝑥̅𝑥𝑛𝑛
= 1

𝑛𝑛
𝔐𝔐2 −

𝑛𝑛−1
3𝑛𝑛2

𝔐𝔐2
∗∗ : ∘⊗ 𝑅𝑅 ∗,∘ ∗ +𝑅𝑅 ∗,∘ ∗ ⊗∘ ∶ 𝔐𝔐2

∘∘ +𝑂𝑂(𝜀𝜀5)
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Asymptotic behavior of empirical Fréchet mean
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Moments of the Fréchet mean of a n-sample
 Surprising Bias in 1/n on the empirical Fréchet mean (gradient of curvature)

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
1
6𝑛𝑛

𝔐𝔐2:𝛻𝛻𝑅𝑅:𝔐𝔐2 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Concentration rate: term in 1/n modulated by the curvature:

𝐂𝐂𝐂𝐂𝐂𝐂(𝑥̅𝑥𝑛𝑛) = 𝔼𝔼 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
1
𝑛𝑛
𝔐𝔐2 +

1
3𝑛𝑛

𝔐𝔐2:𝑅𝑅:𝔐𝔐2 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Negative curvature: faster CV than Euclidean 
 Positive curvature: slower CV than Euclidean

Central-limit theorem in manifolds [Bhattacharya & Bhattacharya 2008; Kendall & Le 2011]

 Under Kendall-Karcher concentration conditions:
𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→

𝐷𝐷
𝑁𝑁(0,𝐻𝐻−1 𝛴𝛴 𝐻𝐻−1) if  𝐻𝐻 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀 𝑋𝑋, 𝑥̅𝑥𝑛𝑛 invertible

 Hessian of mean sq. dist: 1
2
�𝐻𝐻 = 𝐼𝐼𝐼𝐼 + 1

3
𝑅𝑅:𝔐𝔐2 + 1

12
𝛻𝛻𝛻:𝔐𝔐3 + 𝑂𝑂 𝜖𝜖4, 1/𝑛𝑛2

 Same expansion for large n: modulation of the CV rate by curvature
(but our non asymptotic expansion is valid for small data as well)

[XP, 2018, ARXIV : 1811.01370 ]



Isotropic distribution in constant curvature spaces

 Symmetric spaces: no bias at order 5

 Modulation of variance w.r.t. Euclidean: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥̅𝑥𝑛𝑛 = 𝛼𝛼 𝜎𝜎2

𝑛𝑛

High concentration expansion
 𝛼𝛼 = 1 + 2

3
1 − 1

𝑑𝑑
1 − 1

𝑛𝑛
𝜅𝜅𝜎𝜎2 + 𝑂𝑂(𝜖𝜖5)

Asymptotic BP-CLT expansion

 𝛼𝛼 = 1
𝑑𝑑

+ 1 − 1
𝑑𝑑
�ℎ

−2
+ 𝑂𝑂 𝑛𝑛−2

Archetypal modulation factor
 Uniform distrib on 𝑆𝑆 𝑥̅𝑥,𝜃𝜃 ⊂ 𝑀𝑀 , 

large n, large d: 𝛼𝛼 = tan2 𝜅𝜅𝜃𝜃2

𝜅𝜅𝜃𝜃2
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𝜋𝜋2

4

𝐥𝐥𝐥𝐥𝐥𝐥
𝜿𝜿𝜽𝜽𝟐𝟐=𝝅𝝅𝟐𝟐/𝟐𝟐𝟐𝟐

𝜶𝜶 = +∞

No CV for uniform 
distrib on equator

𝐥𝐥𝐥𝐥𝐥𝐥
𝜿𝜿𝜽𝜽𝟐𝟐=−∞

𝜶𝜶 = 𝟎𝟎

Immediate convergence: sticky mean 
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Accurate asymptotic expansion

High sample size
Low & large variance

Accurate expansion even with small sample

Small variance 
w.r.t. curvature



Boostrap on real spherical data from
[Fisher, Lewis, Embleton 1987] 

B15: high isotropic dispersion (stddev 32o, bbox: 76ox63o)
 94 orientations of dendritic fields in cat’s retinas [Keilson et al 1983]
 High dispersion, KKC on the sphere

 Visible modulation (isotropic formulas are good)
 Small sample expansion behavior is well predicted
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Boostrap on real projective data from
[Fisher, Lewis, Embleton 1987] 

Fisher B1: high dispersion 
 50 pole positions from Paleomagnetic

study of new Caledonian laterites 
(Falvey & Mustgrave)

Spherical (not KKC)
 Stddev 41o, bbox: 98o x 67o

 Small var and asymptotic OK

X. Pennec - Shape Analysis & Med. App. 14/02/2025 15

Projective (not KKC)
 Stddev 40o, bbox: 86o x 76o

 Prediction fails: smeary mean?
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds

 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces



 Beyond the 0-dim mean higher dimensional subspaces
 When embedding structure is already manifold (e.g. Riemannian):  

Not manifold learning (LLE, Isomap,…) but submanifold learning
 Natural subspaces for extending PCA to manifolds?

Low dimensional subspace approximation? 

X. Pennec - Shape Analysis & Med. App. 14/02/2025 17

Manifold of cerebral ventricles
Etyngier, Keriven, Segonne 2007.

Manifold of brain images
S. Gerber et al, Medical Image analysis, 2009.



Tangent PCA (tPCA)

Maximize the squared distance to the mean 
(explained variance)

 Algorithm
 Unfold data on tangent space at the mean 

 Diagonalize covariance at the mean Σ 𝑥𝑥 ∝ ∑𝑖𝑖 𝑥̅𝑥𝑥𝑥𝑖𝑖 𝑥̅𝑥𝑥𝑥𝑖𝑖
𝑡𝑡

 Generative model: 
 Gaussian (large variance) in the horizontal subspace 
 Gaussian (small variance) in the vertical space

 Find the subspace of 𝑇𝑇𝑥𝑥𝑀𝑀 that best explains the variance

X. Pennec - Shape Analysis & Med. App. 14/02/2025 18



Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low 
dimensional subspace (unexplained variance) 

 Geodesic Subspace: 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘 = exp𝑥𝑥 ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 ∈ 𝑅𝑅𝑘𝑘

 Parametric subspace spanned by geodesic rays from point x
 Beware: GS have to be restricted to be well posed [XP, AoS 2018]
 PGA (Fletcher et al., 2004, Sommer 2014)
 Geodesic PCA (GPCA, Huckeman et al., 2010) 

 Generative model:
 Unknown (uniform ?) distribution within the subspace
 Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘
 Totally geodesic at x only
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Patching the Problems of tPCA / PGA 
Improve the flexibity of the geodesics

 1D regression with higher order splines [Gu, Machado, Leite, Vialard, 
Singh, Niethammer, Absil,…]

 Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development 
[HCA, Sommer GSI 2013]
 Iterated construction of  subspaces 
 Parallel transport in frame bundle

 Intrinsic asymmetry between components

Nested “algebraic” subspaces
 Principal nested spheres [Jung, Dryden, Marron 2012]
 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 

 No general semi-direct product space structure in general 
Riemannian manifolds  

X. Pennec - Shape Analysis & Med. App. 14/02/2025 20
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Affine span in Euclidean spaces

Affine span of (k+1) points: 
weighted barycentric equation

Aff x0, x1, … xk = {x = ∑𝑖𝑖 𝜆𝜆𝑖𝑖 𝑥𝑥𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∑𝑖𝑖 𝜆𝜆𝑖𝑖 = 1} 
= x ∈ 𝑅𝑅𝑛𝑛 𝑠𝑠. 𝑡𝑡 ∑𝑖𝑖 𝜆𝜆𝑖𝑖 (𝑥𝑥𝑖𝑖−𝑥𝑥 = 0, 𝜆𝜆 ∈ 𝑃𝑃𝑘𝑘∗} 

Key ideas: 
 tPCA, PGA: Look at data points from the 
mean (mean has to be unique)

 Triangulate from several reference: 
locus of weighted means
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Barycentric subspaces and Affine span
in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)
 Normalized weighted variance: σ2(x,λ) = ∑λ𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑥𝑥𝑖𝑖 /∑λ𝑖𝑖
 Set of absolute / local minima of the 𝜆𝜆-variance
 Works in stratified spaces (may go accross different strata)

 Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span
 Weighted exponential barycenters: 𝔐𝔐1 𝑥𝑥, 𝜆𝜆 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖 = 0
 EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑥𝑥 ∈ 𝑀𝑀∗ 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 𝔐𝔐1 𝑥𝑥, 𝜆𝜆 = 0}
 Affine span = closure of EBS in M    𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, …𝑥𝑥𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥0, … 𝑥𝑥𝑘𝑘

Questions
 Local structure: local manifold? dimension? stratification? 
 Relationship between KBS ⊂ FBS, EBS and affine span?
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Analysis of Barycentric Subspaces

Exp. barycenters are critical points of 𝜆𝜆-variance on M*
 𝛻𝛻σ2(x,λ)= −2𝔐𝔐1 x, λ = 0 𝑲𝑲𝑲𝑲𝑺𝑺 ∩ 𝑴𝑴∗ ⊂ 𝑬𝑬𝑩𝑩𝑩𝑩

Caractérisation of local minima: Hessian (if non degenerate)

𝐻𝐻(x,λ) = −2�
𝑖𝑖

𝜆𝜆𝑖𝑖𝐷𝐷𝑥𝑥 log𝑥𝑥 𝑥𝑥𝑖𝑖 = 𝐈𝐈𝐈𝐈 −
𝟏𝟏
𝟑𝟑
𝐑𝐑𝐑𝐑𝐑𝐑 𝕸𝕸𝟐𝟐 𝐱𝐱,𝝀𝝀 + HOT

Regular and positive pts (non-degenerated critical points)
 𝑬𝑬𝑬𝑬𝑬𝑬𝑹𝑹𝑹𝑹𝑹𝑹 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 = 𝒙𝒙 ∈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 , 𝒔𝒔. 𝒕𝒕. 𝑯𝑯 𝒙𝒙,𝝀𝝀∗(𝒙𝒙) ≠ 𝟎𝟎
 𝑬𝑬𝑬𝑬𝑬𝑬+ 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 = { 𝒙𝒙 ∈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 , 𝒔𝒔. 𝒕𝒕. 𝑯𝑯 𝒙𝒙,𝝀𝝀∗(𝒙𝒙) 𝑷𝑷𝑷𝑷𝑷𝑷.𝒅𝒅𝒅𝒅𝒅𝒅. }

Theorem: EBS partitioned into cells by the index of the Hessian
of λ-variance: KBS = EBS+ on M*
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KBS / FBS with 3 points on the sphere
EBS: great subspheres spanned by reference points (mod cut loci)

EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ⋂𝑆𝑆𝑛𝑛 \𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ⋂𝑆𝑆𝑛𝑛

KBS/FBS: look at index of the Hessian of 𝜆𝜆-variance
H(x,𝜆𝜆) =∑λ𝑖𝑖𝜃𝜃𝑖𝑖 cot 𝜃𝜃𝑖𝑖 Id − xxt + ∑(1 − λ𝑖𝑖𝜃𝜃𝑖𝑖 cot 𝜃𝜃𝑖𝑖 ) 𝑥𝑥𝑥𝑥𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖

𝑡𝑡

 Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]
 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point            
 KBS/EBS less interesting than EBS/affine span
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Weighed Hessian index: brown = -2 (min) = KBS / green = -1 (saddle) / blue = 0 (max)



Example on the hyperbolic space
EBS = Affine span: great sub-hyperboloids spanned by reference points

EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, …𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ∩ 𝐻𝐻𝑛𝑛

KBS: locus of maximal index of the Hessian of 𝜆𝜆-variance
H(x,𝜆𝜆) =∑λ𝑖𝑖𝜃𝜃𝑖𝑖coth 𝐽𝐽 + 𝐽𝐽xxt𝐽𝐽𝑡𝑡 + ∑(1 − 𝜆𝜆𝑖𝑖coth 𝜃𝜃𝑖𝑖 )𝐽𝐽 𝑥𝑥𝑥𝑥𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖

𝑡𝑡 𝐽𝐽𝑡𝑡

 Complex algebric geometry problem
 3 points on Hn: better than for spheres, but still disconnected components
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Weighted Hessian Index: brown = -2 (min) = KBS / blue = 1 (saddle)



Geodesic subspaces are limit cases of affine span

Theorem
 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘 = {exp𝑥𝑥 ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 ∈ 𝑅𝑅𝑘𝑘 } is the limit 

of 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, exp𝑥𝑥𝑜𝑜 𝜖𝜖 𝑤𝑤1 , … exp𝑥𝑥𝑜𝑜 𝜖𝜖 𝑤𝑤𝑘𝑘 when 𝜖𝜖 → 0.

 Reference points converge to a 1st order (k,n)-jet
 PGA [Fletcher et al. 2004, Sommer et al. 2014]
 GPGA [Huckemann et al. 2010]

Conjecture
 This can be generalized to higher order derivatives 

 Quadratic, cubic splines [Vialard, Singh, Niethammer]
 Principle nested spheres [Jung, Dryden, Marron 2012]
 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 
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Application in Cardiac motion analysis

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Application in Cardiac motion analysis
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Take a triplet of 
reference images

Find weights λi and 
SVFs vi such that:

• 𝒗𝒗𝒊𝒊 registers image
to reference i

• ∑𝒊𝒊 𝝀𝝀𝒊𝒊 𝒗𝒗𝒊𝒊 = 𝟎𝟎 𝒗𝒗𝟎𝟎

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

Optimize reference 
images to achieve 
best registration 
over the sequence

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]



Application in Cardiac motion analysis
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𝝀𝝀𝟎𝟎

𝝀𝝀𝟏𝟏

𝝀𝝀𝟐𝟐

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]

Barycentric coefficients curvesOptimal Reference Frames



Cardiac Motion Signature

31

Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients

Low-dimensional representation of motion using:
Barycentric coefficients curvesOptimal Reference Frames

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)

[2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)
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Cardiac motion synthesis

32X. Pennec - Shape Analysis & Med. App. 14/02/2025

Barycentric Reconstruction 

(3 images)
Original Sequence PCA Reconstruction 

(2 modes)

3 images + 2 coeff.

Reconstr. error: 18.75
Compression ratio: 1/10

30 images 1 image + 2 SVF + 2 coeff.

Reconstr. error: 26.32 (+40%) 
Compression ratio: 1/4

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds

 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces



The natural object for PCA:
Flags of subspaces in manifolds

Subspace approximations with variable dimension
 Optimal unexplained variance  non nested subspaces
 Nested forward / backward procedures  not optimal
 Optimize first, decide dimension later  Nestedness required

[Principal nested relations: Damon, Marron, JMIV 2014]

Flags of affine spans in manifolds: 𝐹𝐹𝐹𝐹(𝑥𝑥0 ≺ 𝑥𝑥1 ≺ ⋯ ≺ 𝑥𝑥𝑛𝑛)
 Sequence of nested subspaces 
A𝑓𝑓𝑓𝑓 𝑥𝑥0 ⊂ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, 𝑥𝑥1 ⊂ ⋯𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑖𝑖 ⊂ ⋯𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑛𝑛 = 𝑀𝑀

Barycentric subspace analysis (BSA):
 Energy on flags: Accumulated Unexplained Variance
 optimal flags of subspaces in Euclidean spaces = PCA
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[ X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018 ] 



Sample-limited barycentric subspace inference 
Restrict the inference to data points only 

 Fréchet mean / template [Lepore et al 2008]
 First geodesic mode [Feragen et al. 2013, Zhai et al 2016]
 Higher orders: challenging with PGA… but not with BSA
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• FBS: Forward Barycentric Subspace 

• k-PBS: Pure Barycentric Subspace with backward ordering

• k-BSA: Barycentric Subspace Analysis up to order k



Robustness with Lp norms

Affine spans is stable to p-norms 
 σ𝑝𝑝(x,λ) = 1

𝑝𝑝
∑λ𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝 𝑥𝑥, 𝑥𝑥𝑖𝑖 /∑λ𝑖𝑖

 Critical points of σ𝑝𝑝(x,λ) are also critical points of  σ2(x,λ′) with
𝜆𝜆𝑖𝑖′ = 𝜆𝜆𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝− 2 𝑥𝑥, 𝑥𝑥𝑖𝑖 (non-linear reparameterization of affine span)

Unexplained p-variance of residuals
 2 < 𝑝𝑝 → +∞: more weight on the tail,

at the limit: penalizes the maximal distance to subspace
 0 < 𝑝𝑝 < 2: less weight on the tail of the residual errors: 

statistically robust estimation
 Non-convex for p<1 even in Euclidean space
 But sample-limited algorithms do not need gradient information
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3 clusters on a 5D sphere
 10, 9 and 8 points (stddev 6 deg) around three orthogonal 

axes plus 30 points uniformly samples on 5D sphere

Experiments on the sphere
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p=2 p=1 p=0.1

• FBS: Forward Barycentric Subspace: mean and median not in clusters

• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k



3 clusters on a 5D hyperboloid (50% outliers)
 15 random points (stddev 0.015) around an equilateral triangle of 

length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

Experiments on the hyperbolic space
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p=2 p=1 p=0.5

• FBS: Forward Barycentric Subspace: ok for 𝒑𝒑≤0.5
• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only 

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for 𝒑𝒑 ≤ 𝟏𝟏



Take home messages
Natural subspaces in manifolds

 PGA & Godesic subspaces: 
look at data points from the (unique) mean

 Barycentric subspaces: 
« triangulate » several reference points

 Justification of multi-atlases?

Critical points (affine span) rather than 
minima (FBS/KBS)
 Barycentric coordinates need not be 

positive (convexity is a problem)
 Affine notion (more general than metric)

 Generalization to Lie groups (SVFs)?

Natural flag structure for PCA
 Hierarchically embedded approximation 

subspaces to summarize / describe data
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