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Graded Geometry Teaser

# Z»-graded geometry ~ supersymmetry

#« 7Z-graded geometry ~~ BV-BRST formalism / AKSZ sigma models

« Q-manifolds ~~ Poisson geometry / Courant algebroids / L, algebras

@ In this talk ~~ some other uses/applications
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Motivation & Goals

Description of mixed-symmetry tensors, their kinetic, mass and topological terms.

< Unified formalism for p-forms, gravitons, the Curtright field (2,1), &c. (iinear)

Interacting theories with higher derivatives but 2nd-order field equations.

+ Goal: Universal Lagrangians for mixed-symmetry tensors/classification of interactions.

Dualities: standard, exotic, double, infinite chain.

+ Goal: Systematic dualization procedure for all types of dualities & equivalences.

Mixed-symmetry fields appear in formulations of string/M theory; couple to branes.



Differential forms as functions

Basic idea: Tensor fields as functions on a graded supermanifold
Zs-graded geometry, even coordinates x’ and odd coordinates ¢,
00 =00 .

Functions on graded vector bundles ~~ p-forms or p-vector fields,

C™(T[1IM) = Q*(M) and C™(T[1]M) =T(A*TM) .
A function on T[1]M may be expanded as
D 1 . .
w(x,0) = Z Pl Wiy (x) 0" .. 0%
k=0 "

Integration is defined as usual for Grassmann variables, [ d”06'6%...6° =

1.



Mixed symmetry tensor fields as functions

For bipartite tensors of degree |w| = (p, q), consider functions on T[1]M & T[1]M,

1

S i )OO

Wp,g =

Two separate sets of odd coordinates 6" and ' which mutually commute by convention,
00 =00 X =y 0 =¥
The components of the tensor field have manifest mixed index symmetry

Wiy ..ipfy g = Wiy .iplliy - g -

N.B. Useful to think of differential forms as bipartite tensors with 1 empty slot (p or g).

N-partite tensors for M = @ N T[1]M with k := 2 | %1 | sets of degree-1 6.



Graded (Bipartite) Calculus

« Exterior derivatives d : wp,q — wpt1,g and d : wp,q — wp,g+1

d=09 and d=y'0; with d®>=d®>=0 and dd=dd.

#« Transposition 6 «» x (n.b.: applies to diff. forms too)

j9j1...9/‘7xi1...xi".

Tox =35, — P
Wp,q — W = Wap = p!qlwu»-»lphmq

« Partial Hodge stars x : Wp,q — Wp—p,q and ¥ : Wp,q F— Wp,D—q (' auxiliary odd set.)

_ 1 Toy (1 xv\D—P _ D

Here, n = 1;0'x’ is the Minkowski metric, whereas 1 " x = ;0.

Essentially, |w| = (0, p, q) and || = (0,1, 1).

cf. Hull '01; de Medeiros, Hull '02



Dual operations

« Bipartite tensors have traces, unlike differential forms.

0
ox'

o _ 9 _
tr = 77”0,‘)(/'7 where 9/’ = w and Xi =

« Codifferentials d' : wp.q — wp_1.gand df : wp g — wp.g_1:
P,q p—1,9 P,q p,q

df = (1) w4« = 18,5

« Cotraces o : wp,q — wWpt1,g—1 @NA T : Wp,q — Wp—1,g+1°
o = (—1)1+D(p+1) wtrx = —0'%;.
Criterion for GL(D)-irreducibility: for p > q: cw = 0 and also w = w when p = q.
Irreducible field: wp,q = Pjp,qiwp.q> With Young projector
I+ né cn(p,q)3"e", p>gq

= (=1)"
Plp.q) = . on(p,q) = —

, .
I+ Y an(q,p)o"", p<q Hrp—g+r+1
n=1 -

cf. de Medeiros, Hull '02



Generalized Hodge duality

To construct Lagrangians, we need a suitable inner product. (For p-forms controlied by ).

Generalized Hodge star operator for bipartite tensor fields,

1 ] 2
(xw)p-p,0—q = m’iD P qwq,p-

Note that the combination ** is different than x:

D) gy
*xw=x%(=1)° Z (Y2 n"tr"w, (c=(@-DpE+q +pg+1).

n=0

Very welcome that x also encodes all traces of the mixed-symmetry tensor.

A symmetric inner product of some w and «’ is then defined by [, N W'



Kinetic terms

« For differential forms wp, we know that Sgin = [ dw A * dw.

« For p = g =1, the linearized Einstein-Hilbert Lagrangian is

i
4

« For p =2, g =1, there exists a gauge theory for the hook Young tableaux curtright ‘80

1, 5, 1 N PR "
Lien(hp,y) = —gHiOH + Ehkka,-a,-h'f — Eh,,a'akh'k + —hOh".

1 o ) .
Leuright(wWiz,1) = > (3iwjk|/3'wlk” — 288wy — W8 wiyy —

— 4w;/|'8k8/wkj|/ — 28;wjk‘18iw/k‘/ + 28;wj'|/8kw'k‘,) o



Kinetic terms

« For differential forms wp, we know that Sgin = [ dw A * dw.

« For p = g =1, the linearized Einstein-Hilbert Lagrangian is

i
4

« For p =2, g =1, there exists a gauge theory for the hook Young tableaux curtright ‘80

1, . 1 i1 o i
Lien(hy ) = =z HiOK, + Ehkka,-a,h'f - Eh,v,-a'akh'k + —h;Oh".
1 o " .
Leunright(wpz,1) = > (3iwjk|/8'wlk” — 28w 8wy — W 8wy —
— 4w;/|'8k8/wkj|/ — 28;wjk‘18iw/k‘/ + 28;wj'|/8kw'k‘,) o

For any wp,q in Minkowski spacetime R""?~", a universal kinetic term:

Lkin(wp,q) = dw *dw.
0,x

+ Gauge invariance dw = dAp_1,q + a)\p,q_1 is basically obvious.
+ Mass termis m” [, w*w. E.g., Fierz-Pauli term, m? (h'hy — (H)?).



“Galileon” higher derivative interaction terms

What is the most general theory in flat spacetime with field equations being polynomial
in (strictly) 2" order derivatives of w?

For scalar fields, the answer is given by Galileons. Nicolis, Rattazzi, Trincherini ‘08
They are invariant under the characteristic symmetry ¢ — ¢ + ¢ and 0;¢ — 9;¢ + b;.

Originally they were found as (in 4D):

3fields:  9'¢pd 9,06 — 0'¢9ip0e

4 fields : —(0¢)2 8ip '+ 206 Digp 90 ' p +
010 0 b Ok 0¥ — 291 0V § 00k p

Sfields:  —(0¢)°0ipd'¢ + 3 (0p)° i 9jp 'V b +
+300¢ 99;¢ 8'0 ¢ p O — 6 T1p 916 0'0 p 90k h O* p +
—28,0 ¢ 30" 00'¢ 916 0'p — 38,00 OV p D Dy p ' +
+6 810’ ¢ 80k 0 0' 819

Later cast in more controllable form & generalised to p-forms Deffayet, Deser, Esposito-Farese '10



Bipartite tensor Galileons as “generalised kinetic terms”

Including Liin, such interactions for any bipartite tensor in any D are included in

Nmax
Laal(wp,q) = Z dw(ni1y * dwinity

n—o Y 0:x

where we defined w1y = w (dd w) . Note: only even field appearances here.

In the special case of p = q (scalars, gravitons &c.), an enhancement to odd fields

Nmax
,CGa|(OJp p) ﬁGaI(UJ + Z/ p+1 d(JJ(n *dw(n+1 Z/ —(p+1)n UJ(n+1) o

+ Bound on field appearances: n{? = {pf;lZJ and nlPR — {%J.

<« “Evenophilic”: (dd wp,q)z‘p+q:odd =0= (dd L’Dq,p)zlp+q:0dd . For odd, higher-0 topol. terms.

« For graviton ~~ correspondence to Lovelock invariants. Exist for 2-form too.



Generalizations

The symmetry is (with b fully antisymmetric (and constant)):

dAp_1,g + AN pg—1 + Bigiy . ipy g X00" - - 0P xlot1 .. xlora (b, >0)

dXo—1,0 + bigi..ip X00 - - O (p>0,9=0)
(5(A}p,q = ~ X . X

dNo,g—1 + bigiy i X°X" -+ X (p=0,9>0)

C+bin (,D:q:0)

A number of generalizations exist, elegantly captured in the graded formalism:

cf. Deffayet, Deser, Esposito-Farese '09, Deffayet, Esposito-Farese, Vikman '09
« Multiple interacting species of any type; allows Galileons with odd total degree too.
+ Field equations up to second order.

+ Curved spacetime; e.g. Horndeski for 4D scalar (more tricky for bipartite tensors).



Standard duality and parent actions

Typically, duality is realised at Lagrangian level via a parent £ for 2 independent fields.

Integrating out each of them leads to 2 dual theories and implements a duality relation.

« Dualization of a (p — 1)-formtoa (D — p — 1)-form.

_ 1 E. . Fhio _ 1
2+ 1) " o+ 1)

A-EOM ~ L(wp_1). F-EOM ~ Duality relation ~ £(@p_p_1 = *Ap1).

Le(Fp, Aps1) =

i1mip+1 = .
N gy By

+ Eg.D=2,p=1~ R+ 1/R(T)duality; D=4, p=2 ~ e +» 1/e (S-)duality
<+ Duality relation:
dwp_1 = FocxF =d&p_p_1.

% BI/EOM dF = 0 = df F are mapped to EOM/BI for the dual field dtF =0 = dF.



Duality for the graviton

« Dualization of the graviton h[1 ,1] West '01; Boulanger, Cnockaert, Henneaux 03
T L LN LR
Lp(f1,A3,1) = i % — > fir f™ — 1 fig " + > 0P

A-EOM ~~ Linearised Einstein-Hilbert (antisymmetric part cancels out).

f-EOM ~- Duality relation ~~ £(&p_s 1] = #Az1) St. tr A = 0.
+ E.g. D=4, graviton «+» graviton; D=5, graviton «+» Curtright; D=10, [7,1] (couple KKM).
< Duality relation: Hull 01

daw[171] =Rx *ﬁ = da@[D,&ﬂ .

+ BIdR=0~ BIdR=0.
Irreducibility cR = 0 — EOM trR = 0.
BIdR=0&EOMtrR = 0 — BIdR = 0.



“Exotic” duality

« “Exotic” dualization of 2-form, Boulanger, Cook, Ponomarev '12, Bergshoeff, Hohm, Penas, Riccioni '16

Essentially seen as bipartite with a trivial slot...

1 TR I 1 o
,CP(Q1,2, )\272) = *é f\ijll]k + 5 Q,‘\UQk‘kj + E )\,-,‘k/a’Q"k'.

A-EOM ~~ L(w2). Q-EOM ~ a theory for a ©pp_z 2] = *Xg,g st trA=0.
< Duality relation: B B
ddLU[O72] =Rxx*R= ddUAJ[D_Z,z] o

< But now, irreducibility cR = 0 — trR # 0.

+ Instead tr3R = 0, but cannot be EL of any £ ~- additional fields off-shell.

# Also double dual graviton, duals for Curtright and higher (p, 1) tensors &c.

A unified treatment of all these dualizations?



A universal first order action

A single two-parameter parent Lagrangian simultaneously accounting for

+ the standard and exotic duals for any differential p-form, and
+ the standard and double duals for any “generalized graviton” (p, 1).

LEVF N = | FoqxOFpq+ | dFoq*FApiq| for D>p+q+1.

0,x 0,x

#« F and )\ are independent GL(D)-reducible bipartite tensors.

« O = 0P is a (known in closed form) operator acting on (p, q) tensors s.t.
Odw=d[w]+d(...).

Role: Yield the kinetic term for irreducible potential [w] upon taking the A\-EOM.

# Eg. 0@ =1 - 150 (graviton), 0@ =1~ 155, 0®? = 41— 1 55 (Curtright)



Admissible domains

For four domains of values, this Lagrangian yields all possible dual theories.

p q Original field Dual field
6[17D_1] 0 [p_170] [D_p_170]
6[27D72] 1 [p7171] [Dip7171]

For the first 2, dual dynamics follow from L. For the latter 2, extra off-shell fields.
see also: Bergshoeff, Hohm, Penas, Riccioni '16

All necessary cancellations follow from general identities.
Extremal case p = 0 also admissible (domain walls).

In suitable dimensions, topological 6 terms also fit in this setting.

e.g.in 4D, the 7 — — 1 ("S” of SL(2; Z)) for the coupling T = 2 + /%g.

Multiple field generalization ~~ higher “Buscher rules” in coupling space.
In progress with Karagiannis & Ranjbar



The Fate of the Double Dual Graviton

More recently ~ the double dual graviton does not provide a truly new description.

Henneaux, Lekeu, Leonard '19
In 5D, out of the three candidate duals, Ay 1), Cpa,1}, fi2,2) two are algebraically related.

1.1y

7N

C[2,1] > ;7[2‘2]
No exchange of EOMs and Bianchi identities between h and h.

No new “doubly magnetic” solutions, only two (electric and magnetic) sources.

see also Hull '01



The Fate of the Exotic Dual of a differential form?

Take for example a 2-form in 10D. How many out of the 4 duals are independent?

Only 2! This is also true for all “infinite chain of duals” of Boulanger, Sundell, West '15.

A(O) A

1><'><1><

B(O) B(1)




Nonstandard approach to standard duality of A©® and B(©

Think of a p-form as a bipartite tensor of type (p, 0) with a “Riemann” tensor
RAD 1 = ddAD .
Its field equations and Bianchi identities are
d+dA® =0 trR*” =0 and dR*” =0=drR"”.
(The identity dtr + trd = d' turns “Maxwell” into “Einstein”.)

The dual tensor is defined in the standard way and satisfies Bls, therefore:

B 5O

R[BD(O,)p,Lﬂ = *R£1)171] ; dR = 0 = aRB(O) S R[BD(O,)p,Lﬂ = daB(O) tr R =

D—p—-2>

The potentials are related by the expected Hodge duality (not related algebraically):

dBO = +dAQ .

0.



Relation of B(® and B

Define a new irreducible tensor

(1) ~ A0 - (0)
Rio-1p11) 7= (FRps1.1) "= ++(Rp-p-11) " -

It is easily shown that it satisfies the Bls dRE" = 0 = dRE"”. Therefore, locally it is

51 _ 33/
R[thpﬂ] - ddB[D72,p] :

Using the definition of RZ" and the B®-EOMs, it is shown that RZ" o 77 RE"” | thus

dH(B“) _ 77PB(O)) -0 = B« an(O).

Also true for the associated currents/sources. Easily extended to “higher duals”.



<

<

Epilogue & Outlook

Concluding remarks

Unified approach to mixed-sym. tensor gauge theories via graded coordinates.
Offers a tractable path to search for generalizations of interacting HD theories.

General treatment of (many, all in certain domain) standard and exotic dualities.

QOutlook

Universal parent £ for multiple fields. Higher (non-stringy) “Buscher rules”?
Topological terms? Applications? e.g. in gravitoelectromagnetism, Th Ch, Karagiannis, Schupp 20

Higher gauge theory approach to mixed-sym. tensors? perhaps 4 la Griitzmann, Strobl ‘14



THANKS



Finding O

The operator O has the role of selecting the irreducible field. The requirement is

O dwp-1,g = dwpp_1.4+d(...).

; Y ) L
We find (cn(p, q) = I 1)

q
[+ cp—1,9)5"0", p>q+1

n=1
k—1

p—1 n
I+ ca(q,p—1) (cf”&”+ S (=N TI(n- m)za”*k?f”*k) , P<g+1
n=1 k=1

m=0

N.B.: For the domains of interest, only one term in the sum is relevant.

In fact, the domains are such that solving for A with this O leads to the 2nd order theory

‘C()\po(ZI shell — / dw[P 1,q] * dw[P 1,9] -

This guarantees that the first side of the duality is correctly obtained.



Comments on the dualization

Establishing the duality requires varying with respect to Fp 4. We first show that
/ 6(F*OF):2/ 0F x OF .
0,x 0,x
The F-variation then yields a duality relation, and ©~' is needed to solve it. We find
(0PN =150,
(0(2,61))71 — b1 ]I+ b20'5+ b30'252,
or trivial for the rest of the cases; b coefficients are given by

q+1
2(g+2)’

q-+1

_g+1 _
29(g+2)

by = :
1 g+2

b2 = bs =



Further comments on the dualization
Domain I: straightforward (dual field is a differential form).
Domain II: decompose the Lagrange multiplier

Ap1,1 = /)\\p+1,1 + 1 X0, tra=0.

Define & = A (irreducible dual field). The dual £ depends only on &.
Domain Ill: decompose the Lagrange multiplier

)\Z,q = /)\\2,q + 7]5\1,‘7—1 ) tra=0.

Define @ = *A. The dual £ depends not only on &, but also on .

The correct dual EOM is obtained by taking a suitable trace:
trq“ da Q[D,qu] =0.

Domain IV: decompose the Lagrange multiplier

A3,g = Xg,q + nig,q71 s trAx=0.

Define & = #A. The dual £ depends not only on @, but also on A.
The correct dual EOM is obtained by taking a suitable trace:

tl’qda@[ofs,q] =0.
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