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Part I. Q-manifolds: a general geometric
approach to the classical BV-BRST



The category of Q-manifolds

A Q-manifold (A. Schwarz) is a Z (Z2 or N) graded supermanifold
endowed with a homological degree 1 vector field.

The category of Q-manifolds QMan consists of:

• Q-manifolds;

• Q−morphisms between two Q-manifolds (M1,Q1) and
(M2,Q2) - degree preserving maps φ : M1 → M2 with the
vanishing field strength

F := Q1φ
∗ − φ∗Q2 = 0
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The category of Q-manifolds

A Q-submanifold is a graded immersed super submanifold such
that the corresponding immersion is a Q−morphism.

Given two Q−manifolds, their graded super product is again a
Q−manifold with the product Q-structure; one can show that
QMan satisfies the properties of a tensor category.

The internal homomorphisms Hom(−,−) (or the super space of
maps M1 → M2) - in good cases is a new, possibly
infinite-dimensional Q-manifold (G.Bonavolonta, A. K, 2013, the
smooth structure on Hom(−,−))
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Stable deformation Q−retract

Let (M,Q) be a Q−manifold. A stable deformation Q−retract of
M is a Q−submanifold N ⊂ M together with a projection
prN : M → N in the category of Q−manifolds and a Q−morphism
φ̃ : M × T [1]I → M, where I is the interval [0, 1] parameterized by
t, which satisfies the following properties:

1. φ0 = prN

2. φ1 = IdM

3. φt |N = IdN

Here φt = φ̃|dt=0; the third condition holds for all t ∈ I ; the
Q−structure on M × T [1]I is the product of the Q−structure on
M and the canonical de Rham Q−structure on T [1]I .



Examples of Q-manifolds

• Lie algebroids (A. Vaintrob, Q-manifolds of degree 1); the
Q-field is given by the Lichnerowicz differential

• For Lie algebras the Lichnerowicz differential is the the
Chevalley-Eilenberg differential

• T [1]M for a graded supermanifold; the Q-field is the de Rham
operator

• Lie-infinity algebroids (non-negatively or N−graded
Q-manifolds)
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Examples of Q-manifolds

• L∞−algebras (viewed as formal pointed Q-manifolds)

• symplectic Q-manifolds (graded super symplectic manifolds
whose symplectic structure is invariant under Q)

• In particular, the symplectic degree 2 Q-manifold
corresponding to a Courant algebroid (D. Roytenberg, A.
Weinstein)

• The group-like objects in the category of Q-manifolds are dg
or Q-groups (B. Jubin, A.K., N. Poncin, V. Salnikov, 2019,
integration of dg Lie algebras to dg Lie groups)

• The differential graded resolution of a (possibly) singular
variety, an example of a non-positively graded Q-manifold
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Example of a differential graded (Koszul)
resolution

Let χ : X → Σ be a vector bundle. Consider the pull-back bundle
V : = χ∗(X ) = X ×Σ X over the total space X ; V admits the
canonical section F , induced by the diagonal embedding
X ↪→ X ×Σ X , the zero locus of which, Σ = F−1(0), coincides
with the zero section of χ. One can easily verify that
(Λ•V ∗, δ = ιF ) is the Koszul resolution of Σ, i.e.

H i
δ(Γ(Λ•V ∗)) =

{
C∞(Σ) , i = 0
0 , i 6= 0



Example of a differential graded (Koszul)
resolution

If we impose that sections of ΛiV ∗ have the degree −i , so that the
whole space of sections Γ (Λ•V ∗) becomes isomorphic to the
algebra of functions on M = V [−1], then (M, δ) is a
non-positevely graded Q−manifold.

Let U be an open subset of Σ, za be local coordinates and qµ be
some linear fiber coordinates on X |U . The associated local
coordinates on V are (za, qµ, (q′)ν), such that the canonical
section F is given by (za, qµ) 7→ (za, qµ, qµ). Let pµ be local fiber
coordinates on V [−1] corresponding to (q′)µ, so that the degree of
pµ is equal to −1. Then δ will take the form

δ =
∑
µ

qµ∂pµ
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Contractible Q−manifolds

Let V be a Z−graded vector space (for simplicity, we assume that
the grading is bounded either from above or from below). We shall
call (T [1]V , dV ) a contractible Q−manifold.

By the definition, a contractible Q−manifold possesses a
homogeneous coordinate system (wα, vα), such that Qwα = vα.



Q-bundles

A Q−bundle (A.Kotov, T.Strobl, 2007) is a fibered bundle in the
category QMan, that is, a locally trivial Z−graded bundle
π : E → M over a Q−manifold M, supplied with a total
Q−structure, such that the projection map is a Q−morphism.

A Q−section is a Q−morphism σ : M → E , such that π ◦ σ = Id.

Example of a Q-bundle

Let πX : E → X be a fibered bundle over a smooth manifold, then
π = dπX : (T [1]E ,dE )→ (T [1]X ,dX ) is a Q−bundle. The
tangent map to any section of πX gives us a Q-section of π.
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Equivalent Q−manifolds

A Q−bundle λ : M ′ → M is called an equivalent reduction of
Q−manifolds (or an equivalence Q−reduction) if λ admits a global
Q−section σ : M → M ′ and a local trivialization over some open
cover {Ui} of M with a trivial Q−fiber T [1]V for some V .

The minimal equivalence relation generated by the equivalence
Q−reduction is called an equivalence of Q−manifolds.
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Example of equivalent Q−manifolds

Let g be a Lie algebra, X → Σ be a g−equivariant bundle. Then F
from the Example of Koszul resolution is an equivariant section of
a g−equivariant vector bundle V → X .

Let (Γ (Λ•V ∗ ⊗ Λ•g∗) , γ) be the Chevalley-Eilenberg complex,
corresponding to the g−action on sections of Λ•V ∗ and s = δ + γ,
where the Koszul operator δ is extended to the whole space by
linearity.

Then M = V [−1]X × (g[1]× X ) is a Q−manifold, which is
equivalent to (g[1]× Σ, γ0). Here γ0 is the Chevalley-Eilenberg
differential, corresponding to the g−action on Σ.
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Properties of equivalent Q−manifolds

• Given an equivalent reduction λ : M ′ → M, we can always find
a local trivialization (Ui ) of M which is compatible with the
section σ in the sense that σ|Ui

coincides with the canonical
inclusion Ui ↪→ Ui × T [1]V

• Two Q-manifolds (M1,Q1) and (M2,Q2) are equivalent if and
only if there is a third one (M,Q) together with equivalence
reductions λ1 : M → M1 and λ2 : M → M2.

• Equivalent Q−manifolds have the same Q−cohomology in all
natural Q−complexes

• (under some topological properties) the equivalence relation
generated by the equivalence reduction coincides with the
equivalence relation generated by stable deformation
Q−retracts
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Infinitesimal gauge symmetries

Let (M,Q) be a Q−manifold, ξ be a degree −1 vector field on M.
An infinitesimal gauge symmetry generated by ξ is the degree zero
vector field δξ = [ξ,Q] = ξQ + Qξ.

Let ι : (N,QN) ↪→ (M,Q) be a Q−submanifold. Consider
TN = (TM) |N as a graded vector bundle over N. A section of
degree k of TN can be viewed as a ι−derivation of functions on
M, F(M), with values in functions on N, F(N), that is, a degree
k linear operator

v : F(M)→ F(N)

which satisfies the ι−Leibniz rule

v(fh) = v(f )ι∗(h) + (−1)k deg f ι∗(f )v(h)

for any two functions f , h on M, where the first function is of pure
degree.
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Infinitesimal gauge symmetries

Given a vector field η on M, its restriction onto N is a section of
TN , corresponding to the ι−derivation ι∗ ◦ η : F(M)→ F(N).

The linearization of Q at N defines a nilpotent degree 1 bundle
map TN → TN , v 7→ v ◦ Q − (−1)kQN ◦ v for any v ∈ Γ(TN)k .

Let ε be a degree −1 section of TN . An infinitesimal gauge
symmetry at N generated by ε is the degree zero ι−derivation
δε = ε ◦ Q + QN ◦ ε.
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Infinitesimal gauge symmetries

• The nilpotency condition for Q asserts that any infinitesimal
gauge symmetry commutes with Q, therefore the
corresponding infinitesimal flow preserves the subspace of
Q−submanifolds.

• In particular, gauge symmetries preserve the zero locus of Q

• Given a Q−submanifold N of M, the restriction of any gauge
symmetry δξ onto N is an infinitesimal gauge symmetry at N,
generated by ε = δξ|N .
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The generalized Cartan map

Let φ : M1 → M2 be a degree preserving map between two
Q-manifolds, not necessarily a Q-morphism.

Notice that, given a
Q-manifold (M,Q), its tangent bundle with shifted degree T [1]M
is again a Q-manifold with Qtot = d + LQ , where d is the de Rham
differential and LQ is the super Lie derivation along Q.

Let us define a new degree preserving map φ̃ : M1 → T [1]M2 as
follows:

φ̃∗(f dh) = φ∗(f ) F (h)

The map φ̃ : M1 → T [1]M2 is a Q-morphism (A.K., T.Strobl,
2007)
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The equivariant generalized Cartan map

Let G be a dg Lie group (a group-like object in the category of
Q-manifolds) and Mi be G−spaces, i = 1, 2.

Let φ : M1 → M2 be a G−equivariant morphism of graded
manifolds, which is not a Q-morphism, in general.

Then φ can be canonically extended (in the same way as above) to
a G−equivariant Q-morphism, φ̃ : M1 → T [1]M2, where T [1]M2 is
supplied with the total differential d + LQ2 (A.K., T. Strobl, 2007).

We shall use that Ω(M) is canonically isomorphic to F(T [1]M).
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Construction of characteristic classes

Let G be a dg Lie group and P → M be a principal G−bundle: G
acts freely on P, such that M = P/G is a smooth Q-manifold.

Let N be a G−space, such that P ×G N → M admits a section σ.

Then σ induces a chain map

(Ω∗(N)G , d + LQ)→ (F(M),QM),

the image of which in cohomology depends only on the homotopy
class of σ (A.K., T.Strobl, 2007)

We identify σ with a G−equivariant map P → N, which induces
(by the previous Proposition) a chain map

(Ω∗(N)G ,d + LQ)→ (F(P)G ,QP) ' (F(M),QM)
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Chern-Weil characteristic classes

Let G be a Lie group and Y → X be a principal G−bundle. Then
T [1]Y → T [1]X is a principal T [1]G−bundle. T [1]G/G ' g[1] is
contractible, therefore T [1]Y /G ' T [1]Y ×T [1]G g[1] always
admits a section and all sections belong the same homotopy class.

While T [1]Y /T [1]G ' T [1](Y /G ) ' T [1]X , the quotient
T [1]Y /G gives us the structure of a Q-bundle over T [1]X with
the fiber isomorphic to g[1]. This Q−bundle corresponds to the
Lie algebroid of infinitesimal symmetries of Y → X , known as the
Atiyah algebroid. Sections of this bundle are in one-to-one
correspondence with G−connections on Y → X .

Ω∗(g[1]) 'W g , (Ω∗(g[1]))T [1]G ' (S∗g∗)G

The obtained map is the Chen-Weil map, which gives complex (or
real) Chern classes.
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The AKSZ sigma model

A remarkable description of TFTs via Q-manifolds was given by M.
Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky in
1994.

To a Q-manifold N with a Q-invariant Berezinian measure and a
symplectic Q-manifold M (of compatible degrees), whose Q-field is
determined by some Hamiltonian super function H, they assigned a
sigma model, whose (classical) fields are degree preserving maps
N → M.

The BV formalism for the AKSZ sigma model is immediately
produced by the Q-structure on Hom(N,M), which is now
endowed with a compatible symplectic structure of degree -1
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The AKSZ sigma model

• Solutions to the EOM of the AKSZ sigma model are
Q−morphisms. In terms of the space of super fields
Hom(N,M), the subset of solutions is the zero locus of the
corresponding Q−structure

• The gauge symmetries for the AKSZ sigma model is the
Hamiltonian version of the gauge symmetries for general
Q−manifolds

• Examples of the AKSZ sigma model: Chern-Simons theory;
Poisson sigma model (N. Ikeda and P.Schaller, T.Strobl)

• There exists a presymplectic version of the AKSZ action (K.
Alkalaev, M. Grigoriev; M. Grigoriev, A.K. for Q−bundles, in
preparation)
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The transgression formula for AKSZ

It is well-known that the Chern-Simons 3-form is the transgression
of the 1st Pontrjagin characteristic form.

The generalization of this fact in terms of the AKSZ action is
given by the following theorem (A.K., T.Strobl, 2007)

Let (M, ω) be a symplectic Q-manifold of degree p, Np+2 a
(p+2)-dimensional manifold with boundary ∂Np+2 = Np+1 and φ
a (degree-preserving) map from T [1]Np+2 to M. Then∫

T [1]Np+2

φ̃∗(ω)

gives us the (classical part of the) AKSZ sigma model for
N = T [1]Np+1 and M.
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The transgression formula for AKSZ

One can reformulate it as follows: for a symplectic Q−manifold
(M,Q, ω) with the symplectic form ω of degree p > 0 one has

• dω = 0

• LQω and

• Lεω = pω

where ε is the Euler vector field on M, which determines the
grading.

This implies that

ω = (d + LQ)(χ+ l)

where χ = 1
p ιεω and l = 1

p+1 ιQχ.
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In particular, one has

• ω = dχ and

• ιQω = dh, where h = p
p+1 ιQχ.

Let (M, ω) be a symplectic Q-manifold of degree p, Np+1 a
(p+1)-dimensional manifold and φ a (degree-preserving) map from
T [1]Np+1 to M. Then the (classical part of the) AKSZ sigma
model action for the source space T [1]Np+1 and the target M is

SAKSZ [φ] =

∫
T [1]Np+1

φ̃∗(χ+ l)
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