Discussion: L. Foissy - Cointeracting bialgebras

J. Diehl (University of Greifswald)

ESI - Higher Structures Emerging from Renormalisationn Nov 17th '21

As users of (Hopf) algebra we are accustomed to endowing objects with algebraic structure that we might, a priori, not be interested in.

Example: if one is investigating a commutative (connected, graded) algebra and one happens to find a compatible coproduct, then the algebra is automatically free. (Milnor-Moore)

Cointeraction is another such structure.
(B, δ) coalgebra, \mathcal{C} the category of (right) B-comodules. In general it is not monoidal: let $\left(M_{1}, \rho_{1}\right),\left(M_{2}, \rho_{2}\right)$ be two right comodules. Then

$$
\left(\rho_{1} \otimes \rho_{2}\right): M_{1} \otimes M_{2} \rightarrow\left(M_{1} \otimes B\right) \otimes\left(M_{2} \otimes B\right)
$$

To turn this into a coaction we need a multiplication m_{B} in B. Then

$$
m^{1,3,24} \circ\left(\rho_{1} \otimes \rho_{2}\right): M_{1} \otimes M_{2} \rightarrow\left(M_{1} \otimes M_{2}\right) \otimes B
$$

where

$$
m^{1,3,24}\left(m_{1} \otimes b_{1} \otimes m_{2} \otimes b_{2}\right):=m_{1} \otimes m_{2} \otimes m_{B}\left(b_{1} \otimes b_{2}\right)
$$

So, if $\left(B, \delta, m_{B}\right)$ is a bialgebra, the tensor product turns \mathcal{C} monoidal.

A bimonoid in this category is a (right) comodule A with coaction ρ such that A is endowed with a bialgebra structure $\left(A, \Delta, m_{A}\right)$ satisfying ${ }^{1}$

$$
\left(\Delta \otimes \operatorname{id}_{B}\right) \circ \rho=m^{1,3,24} \circ(\rho \otimes \rho) \circ \Delta .
$$

${ }^{1} .$. and $\rho(x y)=\rho(x) \rho(y)$, and condition on counit ..

Example：QSym

The comodule：
$A=\mathbb{R}\left[\right.$ words in the alphabet $\left.\mathbb{N}_{\geq 1}\right]$
$m_{A}=$ quasi-shuffle $\stackrel{q}{\uplus}$
e.g. $21 \dot{G}$ 岁 $5=215+26+251+71+521$
$\Delta=$ deconcatenation
e.g. $\Delta 215=215 \otimes \mathrm{e}+21 \otimes 5+2 \otimes 15+\mathrm{e} \otimes 215$.
over

$$
\begin{aligned}
& B=A \\
& m_{B}=B \\
& \delta=\text { 'inner' coproduct } \\
& \text { e.g. } \delta 215=8 \otimes 215+35 \otimes\left(21 \text { 山े }_{4} 5\right)+26 \otimes\left(2 \text { 山̈ }_{4} 15\right)+215 \otimes\left(2 \text { 山̈ }_{\|} 1 \text { 岀 } 5\right) .
\end{aligned}
$$

the coaction is $\rho=\delta$ ．

Interpretation deconcatenation
Associate a quasisymmetric function to a word

$$
215 \mapsto Q_{215}(X):=\sum_{i_{1}<i_{2}<i_{3}} X_{i_{1}}^{2} X_{i_{2}} X_{i_{3}}^{5}
$$

Then, with the variables $X+Y$ ordered such:

then

$$
\begin{aligned}
Q_{215}(X+Y)= & Q_{215}(X) Q_{\mathrm{e}}(Y)+Q_{21}(X) Q_{5}(Y)+Q_{2}(X) Q_{15}(Y) \\
& +Q_{\mathrm{e}}(X) Q_{215}(Y)
\end{aligned}
$$

Interpretation inner coproduct (the coaction)
With the variables $X \cdot Z$ ordered such:

then

$$
\begin{aligned}
Q_{215}(X \cdot Z)= & Q_{8}(X) Q_{215}(Z)+Q_{35}(X) Q_{21 \stackrel{q}{b}}(Z)+Q_{26}(X) Q_{2 \amalg 15}^{q}(Z) \\
& +Q_{215}(X) Q_{2 \amalg 1 \amalg 5}^{q}(Z) .
\end{aligned}
$$

Now $(\Delta \otimes \mathrm{id}) \otimes \rho(215)$ corresponds to

$$
Q_{215}((X+Y) \cdot Z)=\sum Q_{w^{(1)}}(X) Q_{w^{(2)}}(Y) Q_{w^{(3)}}(Z)
$$

where the variables are ordered such:

What is $m^{1,3,24} \circ(\rho \otimes \rho) \circ \Delta$?

$$
3 \otimes 5 \otimes 21
$$

So, the cointeraction corresponds to a certain distributivity

$$
Q((X+Y) \cdot Z)=Q\left(X Z^{(1)}+X Z^{(2)}\right)
$$

Ehrhart polynomials

For $\mathrm{P} \subset \mathbb{R}^{d}$ a lattice polynomial (all vertices are in \mathbb{Z}^{d}).
Count the integral points in scaled versions:

Ehrhart ${ }^{\prime} 67^{2}$ showed that there is a polynomial ehr r_{P} such that

$$
\operatorname{ehr}_{P}(n)=\#\left(n \mathrm{P} \cap \mathbb{Z}^{d}\right), \quad n \in \mathbb{N}
$$

In the above picture it is $7 X^{2}+3 X+1$.
${ }^{2} \mathrm{He}$ finished his PhD 20 years later, at the age of 60 .

Loïc investigates polytopes induced by quasi posets ${ }^{3}$

$$
\left\{\begin{array}{l}
3 \\
2 \\
2 \\
1
\end{array} \mapsto\left\{\left(x_{1}, x_{2}, x_{3}\right) \in[0,1]^{3} \mid x_{1}<x_{2}<x_{3}\right\}\right.
$$

$$
2^{3} 1 \mapsto\left\{\left(x_{1}, x_{2}, x_{3}\right) \in[0,1]^{3} \mid x_{2}<x_{3} \wedge x_{1}<x_{3}\right\}
$$

The linear span of quasi posets are turned into an algebra using disjoint union. (Up to taking an orbit over permuations, this corresponds to the product of the corresponding polytopes.)

The first coproduct Δ can be thought of as "deconcatenation of downsets/upsets"

$$
+e \otimes^{2^{2}}{ }^{3} 1
$$

The second coproduct δ is a contraction / restriction operation

Loïc shows that Δ is a comodule over δ having the cointeraction property, the Ehrhart polynomial is a bialgebra morphism (on both bialgebra structures) into $\mathbb{R}[X]$ and it is unique with this property.

QUESTIONS

■ Compatibility with dendriform structure?

- Is there maybe a better name ('cointeraction' sounds symmetric ..)?

