Dimensional reduction for Manin triples

Miquel Cueca Ten
(joint with Alejandro Cabrera)

Georg-August-Universität
Göttingen, Germany

September 9, 2020
AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data = \[
\left\{ \begin{array}{l}
\Sigma \text{ } d\text{-dimensional manifold,} \\
(\mathcal{M}, \omega_\mathcal{M} = d\alpha_\mathcal{M}, \theta) \text{ } d - 1 \text{ symplectic } Q\text{-manifold.}
\end{array} \right.
\]
AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $= \left\{ \begin{array}{l}
\Sigma \text{ } d\text{-dimensional manifold,} \\
(\mathcal{M}, \omega_\mathcal{M} = d\alpha_\mathcal{M}, \theta) \text{ } d - 1 \text{ symplectic } Q\text{-manifold.}
\end{array} \right.$

- Fields: $\mathcal{F}_{BV} = Maps(T[1]\Sigma, \mathcal{M})$
AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data = \[
\begin{cases}
\Sigma \quad d\text{-dimensional manifold}, \\
(M, \omega_M = d\alpha_M, \theta) \quad d - 1 \text{ symplectic } Q\text{-manifold}.
\end{cases}
\]

- **Fields:** $\mathcal{F}_{BV} = Maps(T[1]\Sigma, M)$
- **Action:** $S: \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{T[1]\Sigma} i_{d\Sigma} ev^* \alpha_M + ev^* \theta$.
AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data = \[\left\{ \begin{array}{l}
\Sigma \text{ d-dimensional manifold, } \\
(\mathcal{M}, \omega_{\mathcal{M}} = d\alpha_{\mathcal{M}}, \theta) \text{ $d - 1$ symplectic } Q\text{-manifold.}
\end{array} \right. \]

- **Fields:** $\mathcal{F}_{BV} = Maps(T[1]\Sigma, \mathcal{M})$

- **Action:** $S : \mathcal{F}_{BV} \rightarrow \mathbb{R}$ given by $S = \int_{T[1]\Sigma} i_{\tilde{d}_{\Sigma}} ev^*\alpha_{\mathcal{M}} + ev^*\theta$.

- **Symplectic form:** $\omega_{BV} = \int_{T[1]\Sigma} ev^*\omega_{\mathcal{M}}$ of degree -1.
AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $= \{ \Sigma \text{ d-dimensional manifold,} \quad (\mathcal{M}, \omega_{\mathcal{M}} = d\alpha_{\mathcal{M}}, \theta) \text{ d} - 1 \text{ symplectic } Q\text{-manifold.} \}$

- **Fields:** $\mathcal{F}_{BV} = \{ \phi \in Maps(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial\Sigma) \subset B \}$.

- **Action:** $S : \mathcal{F}_{BV} \rightarrow \mathbb{R}$ given by $S = \int_{T[1]\Sigma} i_{\hat{d}_{\Sigma}} ev^* \alpha_{\mathcal{M}} + ev^* \theta$.

- **Symplectic form:** $\omega_{BV} = \int_{T[1]\Sigma} ev^* \omega_{\mathcal{M}}$ of degree -1.

- **Possible boundary conditions:** $\Phi(T[1]\partial\Sigma) \subseteq B$ for some $B \subseteq \mathcal{M}$ Lagrangian Q-submanifold.
AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data = \(\{ \sum \text{d-dimensional manifold}, \)
\[(\mathcal{M}, \omega_M = d\alpha_M, \theta) \text{ d} - 1 \text{ symplectic Q-manifold}. \]

- **Fields:** \(\mathcal{F}_{BV} = \{ \phi \in Maps(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial \Sigma) \subset \mathcal{B} \} \).

- **Action:** \(S : \mathcal{F}_{BV} \rightarrow \mathbb{R} \) given by \(S = \int_{T[1]\Sigma} i_{\bar{\partial}_\Sigma} ev^*\alpha_M + ev^*\theta \).

- **Symplectic form:** \(\omega_{BV} = \int_{T[1]\Sigma} ev^*\omega_M \) of degree \(-1\).

- **Possible boundary conditions:** \(\Phi(T[1]\partial \Sigma) \subset \mathcal{B} \) for some \(\mathcal{B} \subset \mathcal{M} \) Lagrangian Q-submanifold.

- **Path integral:** \(\langle \mathcal{O} \rangle = \int_{\Phi \in \mathcal{L}_{BV} \subset \mathcal{F}_{BV}} \mathcal{O} \ e^{\frac{i}{\hbar} S(\Phi)} \) “\(\mathcal{D}\Phi \)”.
AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data = $\left\{ \Sigma \text{ d-dimensional manifold}, \right.$
\((\mathcal{M}, \omega_\mathcal{M} = d\alpha_\mathcal{M}, \theta) \text{ d} - 1 \text{ symplectic Q-manifold.} \)

- **Fields:** $\mathcal{F}_{BV} = \{ \phi \in \text{Maps}(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial\Sigma) \subset B \}$.
- **Action:** $S : \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{T[1]\Sigma} i_{\partial\Sigma} \text{ev}^*\alpha_\mathcal{M} + \text{ev}^*\theta$.
- **Symplectic form:** $\omega_{BV} = \int_{T[1]\Sigma} \text{ev}^*\omega_\mathcal{M}$ of degree -1.
- **Possible boundary conditions:** $\Phi(T[1]\partial\Sigma) \subset B$ for some $B \subset \mathcal{M}$ Lagrangian Q-submanifold.
- **Path integral:** $\langle O \rangle = \int_{\Phi \in \mathcal{L}_{BV} \subset \mathcal{F}_{BV}} O \ e^{i \frac{S(\Phi)}{\hbar}} \text{“} \mathcal{D}\Phi \text{”}$.
- **Gauge fixing:** \mathcal{L}_{BV} Lagrangian submanifold of $(\mathcal{F}_{BV}, \omega_{BV})$.
Geometric data = \{ \Sigma \text{ Surface}, (T^*[1]M, \omega_{can} = d\alpha_{can}, \theta = \pi) \text{ Poisson manifold.} \}
The classical space of fields

\[\mathcal{F}^{cl} = \text{Hom}(T\Sigma, T^* M) = \{ Y : \Sigma \to M, \eta \in \Omega^1(\Sigma; Y^* T^* M) \} . \]
\(d = 2, \textbf{Poisson } \sigma\)-model

\textit{Ikeda, Schaller, Strobl}

Geometric data = \(\left\{ \Sigma \text{ Surface, } (T^*[1]M, \omega_{can} = d\alpha_{can}, \theta = \pi) \right\} \) Poisson manifold.

- The classical space of fields

\[\mathcal{F}^{cl} = \text{Hom}(T\Sigma, T^*M) = \{ Y : \Sigma \to M, \eta \in \Omega^1(\Sigma; Y^* T^* M) \} \].

- The classical action

\[S^P(Y, \eta) = \int_\Sigma \eta_i \wedge dY^i + \frac{1}{2} \pi^{ij}(Y) \eta_i \wedge \eta_j \]

where \(\eta = \eta_i dy^i \) for some \(\{ y^i \}_{i=1}^m \) coordinates on \(M \).
The classical space of fields

\[\mathcal{F}^{cl} = \text{Hom}(T\Sigma, T^*M) = \{ Y : \Sigma \to M, \eta \in \Omega^1(\Sigma; Y^* T^* M) \}. \]

The classical action

\[S^P(Y, \eta) = \int_{\Sigma} \eta_i \wedge dY^i + \frac{1}{2} \pi^{ij}(Y) \eta_i \wedge \eta_j \]

where \(\eta = \eta_i dy^i \) for some \(\{ y^i \}_{i=1}^m \) coordinates on \(M \).

Some boundary conditions: are given by Coisotropic submanifolds of \((M, \pi) \).

When \(\Sigma = \text{Disk} \) Cattaneo, Felder obtain the Kontsevich \(\star \)-product.
$d = 3$, **Courant σ-model**

Roytenberg, Severa

The correspondence asserts that:

- Degree 2 symplectic Q-manifolds \leftrightarrow Courant algebroids.
- Lagrangian Q-submanifolds \leftrightarrow Dirac structures.
$d = 3$, **Courant σ-model**

Roytenberg, Severa

The correspondence asserts that:

- Degree 2 symplectic Q-manifolds \leftrightarrow Courant algebroids.
- Lagrangian Q-submanifolds \leftrightarrow Dirac structures.

Geometric data $= \begin{cases}
\Sigma^{(3)} & \text{3-dimensional manifold}, \\
(E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho) & \text{Courant algebroid}.
\end{cases}$
$d = 3$, **Courant σ-model**

Roytenberg, Severa

The correspondence asserts that:
- Degree 2 symplectic Q-manifolds \leftrightarrow Courant algebroids.
- Lagrangian Q-submanifolds \leftrightarrow Dirac structures.

Geometric data $= \left\{ \begin{array}{l} \Sigma^{(3)} \quad \text{3-dimensional manifold}, \\
(E \to M, \langle \cdot, \cdot \rangle, [, [,]], \rho) \quad \text{Courant algebroid}. \end{array} \right.$

- The space of classical fields

\[\mathcal{F} = \{ X : \Sigma^{(3)} \to M, E \in \Omega^1(\Sigma^{(3)}; X^* E), P \in \Omega^2(\Sigma^{(3)}, X^* T^* M) \}. \]
$d = 3$, Courant σ-model

Roytenberg, Severa

The correspondence asserts that:

- Degree 2 symplectic Q-manifolds \leftrightarrow Courant algebroids.
- Lagrangian Q-submanifolds \leftrightarrow Dirac structures.

Geometric data $= \begin{cases} \Sigma^{(3)} & 3$-dimensional manifold,
(E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho) & \text{Courant algebroid.} \end{cases}$

- The space of classical fields

$$\mathcal{F} = \{ X : \Sigma^{(3)} \to M, E \in \Omega^1(\Sigma^{(3)}; X^* E), P \in \Omega^2(\Sigma^{(3)}, X^* T^* M) \}.$$

- The classical action

$$S^C(X, E, P) = \int_{\Sigma^{(3)}} P_i dX^i + g_{ab} E^a dE^b - \rho^i_a E^a P_i + \frac{1}{6} T_{abc} E^a E^b E^c$$

where $\langle e^a, e^b \rangle = g_{ab}$ and $\langle [e^a, e^b], e^c \rangle = T_{abc}$.
\section*{$d = 3$, Courant σ-model}

Roytenberg, Severa

The correspondence asserts that:

\begin{itemize}
 \item Degree 2 symplectic Q-manifolds \leftrightarrow Courant algebroids.
 \item Lagrangian Q-submanifolds \leftrightarrow Dirac structures.
\end{itemize}

Geometric data $= \left\{ \begin{array}{l}
\Sigma^{(3)} \quad \text{3-dimensional manifold},
\end{array} \right.$

$(E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho)$ Courant algebroid.

\begin{itemize}
 \item The space of classical fields
 \[F = \{ X : \Sigma^{(3)} \to M, E \in \Omega^1(\Sigma^{(3)}; X^* E), P \in \Omega^2(\Sigma^{(3)}, X^* T^* M) \}. \]
 \item The classical action
 \[S^C(X, E, P) = \int_{\Sigma^{(3)}} P_i dX^i + g_{ab} E^a dE^b - \rho^i_a E^a P_i + \frac{1}{6} T_{abc} E^a E^b E^c \]
 where $\langle e^a, e^b \rangle = g_{ab}$ and $\langle [e^a, e^b], e^c \rangle = T_{abc}$.
 \end{itemize}

\item Some boundary conditions: are Dirac structures.
Can we expect any dimensional reduction from the Courant σ-model to a Poisson σ-model?
Can we expect any dimensional reduction from the Courant σ-model to a Poisson σ-model?

Yes, related to Lie theory!!
(E → M, ⟨·, ·⟩, [·, ·], ρ) Courant algebroid.

A → M ⊂ E → M a Dirac structure.
Secret Poisson geometry of Dirac structures

- \((E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho)\) Courant algebroid.
- \(A \to M \subset E \to M\) a Dirac structure.

choose \(A' \to M \subset E \to M\) a complement, i.e. \(E = A \oplus A'\).
Secret Poisson geometry of Dirac structures

- \((E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho)\) Courant algebroid.
- \(A \to M \subset E \to M\) a Dirac structure.

choose \(A' \to M \subset E \to M\) a complement, i.e. \(E = A \oplus A'\).

Using the pairing we identify \(A' \cong A^*\), and Liu, Weinstein, Xu proved that

\[
(A \to M, [\cdot, \cdot], \rho, \pi_A, \eta_A) \quad \pi_A \in \mathfrak{x}^2(A), \quad \eta_A \in \mathfrak{x}^3(A)
\]

becomes a Lie quasi-bialgebroid and \(E\) is the “Drinfeld double”.
Secret Poisson geometry of Dirac structures

- $(E \to M, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \rho)$ Courant algebroid.
- $A \to M \subset E \to M$ a Dirac structure.

choose $A' \to M \subset E \to M$ a complement, i.e. $E = A \oplus A'$.

Using the pairing we identify $A' \cong A^*$, and Liu, Weinstein, Xu proved that

$$(A \to M, [\cdot, \cdot], \rho, \pi_A, \eta_A) \quad \pi_A \in \mathcal{X}^2(A), \; \eta_A \in \mathcal{X}^3(A)$$

becomes a Lie quasi-bialgebroid and E is the “Drinfeld double”.

If A' is also Dirac $\rightsquigarrow (E, A, A')$ forms a Manin triple and
$(A \to M, [\cdot, \cdot], \rho, \pi_A)$ is a Lie bialgebroid.
Secret Poisson geometry of Dirac structures

- $(E \to M, \langle \cdot, \cdot \rangle, [[\cdot, \cdot]], \rho)$ Courant algebroid.
- $A \to M \subset E \to M$ a Dirac structure.

Choose $A' \to M \subset E \to M$ a complement, i.e. $E = A \oplus A'$.

Using the pairing we identify $A' \cong A^*$, and Liu, Weinstein, Xu proved that

$$(A \to M, [,], \rho, \pi_A, \eta_A) \quad \pi_A \in \mathfrak{x}^2(A), \quad \eta_A \in \mathfrak{x}^3(A)$$

becomes a Lie quasi-bialgebroid and E is the “Drinfeld double”.

If A' is also Dirac $\rightsquigarrow (E, A, A')$ forms a Manin triple and

$(A \to M, [,], \rho, \pi_A)$ is a Lie bialgebroid.

Supergeometric perspective: $A[1] \subset \mathcal{M}$ lagrangian Q-submanifold. Choosing A' is equivalent to find a Weinstein tubular neighbourhood $\mathcal{M} \cong T^*[2]A[1]$, then $\theta \cong Q + \pi_A + \eta_A$.

A' Dirac $\leftrightarrow \theta \cong Q + \pi_A$.
A Lie bialgebroid \((A \to M, [\cdot, \cdot]_A, \rho_A, \pi_A)\) is a Lie algebroid with \(\pi_A \in \mathfrak{X}_\text{lin}^2(A)\) such that is Poisson and “infinitesimally multiplicative” (cocycle condition).
A Lie bialgebroid \((A \to M, [\cdot, \cdot]_A, \rho_A, \pi_A)\) is a Lie algebroid with \(\pi_A \in \mathfrak{X}^2_{lin}(A)\) such that is Poisson and “infinitesimally multiplicative” (cocycle condition).

\[A \text{ Lie bialgebroid} \iff A^* \text{ Lie bialgebroid} \]
A Lie bialgebroid \((A \rightarrow M, [\cdot, \cdot]_A, \rho_A, \pi_A)\) is a Lie algebroid with \(\pi_A \in \mathcal{X}^2_{\text{lin}}(A)\) such that is Poisson and “infinitesimally multiplicative” (cocycle condition).

\[
\text{A Lie bialgebroid } \iff A^* \text{ Lie bialgebroid}
\]

Lie algebroids are infinitesimal versions of Lie groupoids. We denote by \(G(A) \rightrightarrows M\) the unique, if it exists, source simply connected Lie groupoid with Lie algebroid \(A \rightarrow M\).
Lie bialgebroids

Mackenzie, Xu

A Lie bialgebroid \((A \to M, [\cdot, \cdot]_A, \rho_A, \pi_A)\) is a Lie algebroid with \(\pi_A \in \mathfrak{X}^2_{lin}(A)\) such that is Poisson and “infinitesimally multiplicative” (cocycle condition).

\[
A \text{ Lie bialgebroid } \iff A^* \text{ Lie bialgebroid}
\]

Lie algebroids are infinitesimal versions of Lie groupoids. We denote by \(G(A) \rightrightarrows M\) the unique, if it exists, source simply connected Lie groupoid with Lie algebroid \(A \to M\).

Theorem (Mackenzie, Xu)

Let \((A \to M, [\cdot, \cdot]_A, \rho_A, \pi_A)\) be a Lie bialgebroid and suppose that \((A \to M, [\cdot, \cdot]_A, \rho_A)\) is integrable. Then the ssc integration \((G(A) \rightrightarrows M, \pi_G)\) is a Poisson groupoid.

Examples: Poisson-Lie groups, Symplectic groupoids.
The result

Result [Cabrera, -]

Let \((E, A, A')\) be a Manin triple, \(\Sigma\) closed surface and \(I = [0, 1]\). The Courant \(\sigma\)-model defined by

\[
\begin{cases}
\text{Source: } \Sigma \times I \\
\text{Target: } (E \to M, \langle \cdot, \cdot \rangle, \rho, [\cdot, \cdot]) \\
\text{Boundary conditions: fields take values in a supermanifold defined by the splitting } A' \subset E \text{ at } t = 0, 1.
\end{cases}
\]

admits a gauge fixing depending on \(A\) such that it leads to a “dimensional reduction” onto the Poisson sigma model defined by

\[
\begin{cases}
\text{Source: } \Sigma \\
\text{Target: } (G(A) \rightrightarrows M, \pi_G)
\end{cases}
\]

Our result is of Field-theoretic nature.
In 2D and 3D topological field theories for generalized complex geometry Cattaneo, Qiu, Zabzine prove the linear case, i.e. when \((A' \to M, [\cdot, \cdot], \rho, \pi_A = 0)\). Here \(G(A) = A\).
Related works

▶ In 2D and 3D topological field theories for generalized complex geometry Cattaneo, Qiu, Zabzine prove the linear case, i.e. when \((A' \to M, [\cdot, \cdot], \rho, \pi_A = 0)\). Here \(G(A) = A\).

▶ In Poisson-Lie T-duality as a boundary phenomenon of Chern-Simons theory Severa uses topological and non-topological boundary conditions to obtain bulk-boundary relations.
Related works

- In 2D and 3D topological field theories for generalized complex geometry Cattaneo, Qiu, Zabzine prove the linear case, i.e. when \((A' \rightarrow M, [\cdot, \cdot], \rho, \pi_A = 0)\). Here \(G(A) = A\).

- In Poisson-Lie T-duality as a boundary phenomenon of Chern-Simons theory Severa uses topological and non-topological boundary conditions to obtain bulk-boundary relations.

- In Towards holography in the BV-BFV setting Mnev, Schiavina, Wernli similar result for Chern-Simons, i.e. \(M = \ast\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

» **r-matrix**: \((\mathfrak{g} \oplus \mathfrak{g}^*, \mathfrak{g}, \text{graph}(r))\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- **r-matrix:** \((\mathfrak{g} \oplus \mathfrak{g}^*, \mathfrak{g}, graph(r))\).

- **Poisson manifold:** \((TM \oplus T^*M, TM, graph(\pi))\).

- **Presymplectic manifold:** \((TM \oplus T^*M, graph(\omega), T^*M)\).

- **Mixing both:** \((TM \oplus T^*M, graph(\omega), graph(\pi))\).

- **Poisson-Nijenhuis manifold:** \(((TM \oplus T^*M) \overset{N}{\rightarrow} TM, TM, graph(\pi))\).

- **Twisted Poisson:** \(((TM \oplus T^*M) \overset{H}{\rightarrow} TM, TM, graph(\pi))\).

- **Complex ss Lie group \(G\):** \((TG \oplus T^*G, E_G, \hat{F}_G)\) Cartan-Dirac and Gauss-Dirac structures Alekseev, Bursztyn, Meinrenken.
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- **r-matrix:** \((\mathfrak{g} \oplus \mathfrak{g}^*, \mathfrak{g}, graph(r))\).
- **Poisson manifold:** \((TM \oplus T^*M, TM, graph(\pi))\).
- **Presymplectic manifold:** \((TM \oplus T^*M, graph(\omega), T^*M)\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- r-matrix: \((g \oplus g^*, g, graph(r))\).
- Poisson manifold: \((TM \oplus T^*M, TM, graph(\pi))\).
- Presymplectic manifold: \((TM \oplus T^*M, graph(\omega), T^*M)\).
- Mixing both: \((TM \oplus T^*M, graph(\omega), graph(\pi))\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- **r-matrix**:
 \((\mathfrak{g} \oplus \mathfrak{g}^*, \mathfrak{g}, \text{graph}(r))\).

- **Poisson manifold**:
 \((TM \oplus T^*M, TM, \text{graph}(\pi))\).

- **Presymplectic manifold**:
 \((TM \oplus T^*M, \text{graph}(\omega), T^*M)\).

- **Mixing both**:
 \((TM \oplus T^*M, \text{graph}(\omega), \text{graph}(\pi))\).

- **Poisson-Nijenhuis manifold**:
 \((TM \oplus T^*M)_N, TM, \text{graph}(\pi))\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- **r-matrix**: \((g \oplus g^*, g, \text{graph}(r))\).

- **Poisson manifold**: \((TM \oplus T^* M, TM, \text{graph}(\pi))\).

- **Presymplectic manifold**: \((TM \oplus T^* M, \text{graph}(\omega), T^* M)\).

- **Mixing both**: \((TM \oplus T^* M, \text{graph}(\omega), \text{graph}(\pi))\).

- **Poisson-Nijenhuis manifold**: \(((TM \oplus T^* M)_N, TM, \text{graph}(\pi))\).

- **Twisted Poisson**: \(((TM \oplus T^* M)_H, TM, \text{graph}(\pi))\).
Examples of Manin triples

Geometric objects that are codified by a Manin triple:

- **r-matrix**: \((\mathfrak{g} \oplus \mathfrak{g}^*, \mathfrak{g}, \text{graph}(r))\).

- **Poisson manifold**: \((TM \oplus T^*M, TM, \text{graph}(\pi))\).

- **Presymplectic manifold**: \((TM \oplus T^*M, \text{graph}(\omega), T^*M)\).

- **Mixing both**: \((TM \oplus T^*M, \text{graph}(\omega), \text{graph}(\pi))\).

- **Poisson-Nijenhuis manifold**: \(((TM \oplus T^*M)_N, TM, \text{graph}(\pi))\).

- **Twisted Poisson**: \(((TM \oplus T^*M)_H, TM, \text{graph}(\pi))\).

- **Complex ss Lie group G**: \((TG \oplus T^*G, E_G, \hat{F}_G)\) Cartan-Dirac and Gauss-Dirac structures Alekseev, Bursztyn, Meinrenken.
Consequences

1. **Collar neighbourhood:** for a 3-dim manifold with 1 boundary

 Transversal direction good ⇒ Dimensional reduction.
Consequences

1. **Collar neighbourhood**: for a 3-dim manifold with 1 boundary

 ![Diagram](image)

 Transversal direction good \Rightarrow Dimensional reduction.

2. **Gauge fixing (in)dependence**: $\pi_A \in \mathcal{X}^2(A)$ is independent of A but the topology of $G(A)$ strongly depends on A.
Consequences

1. Collar neighbourhood: for a 3-dim manifold with 1 boundary

Transversal direction good \Rightarrow Dimensional reduction.

2. Gauge fixing (in)dependence: $\pi_A \in \mathcal{X}^2(A)$ is independent of A but the topology of $G(A)$ strongly depends on A.

3. Non-linear Vs linear: Given a Poisson-Lie group (G, π)

<table>
<thead>
<tr>
<th>Source</th>
<th>Poisson σ-model</th>
<th>Chern-Simons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Σ</td>
<td>$\Sigma \times I$</td>
</tr>
<tr>
<td>(G, π)</td>
<td></td>
<td>$g \oplus g^*$</td>
</tr>
<tr>
<td>Boundary</td>
<td>\emptyset</td>
<td>g^*</td>
</tr>
</tbody>
</table>
Consequences

1. **Collar neighbourhood:** for a 3-dim manifold with 1 boundary

 Transversal direction good \Rightarrow Dimensional reduction.

2. **Gauge fixing (in)dependence:** $\pi_A \in \mathcal{X}^2(A)$ is independent of A but the topology of $G(A)$ strongly depends on A.

3. **Non-linear Vs linear:** Given a Poisson-Lie group (G, π)

 \[
 \begin{array}{|c|c|c|}
 \hline
 & \text{Poisson } \sigma\text{-model} & \text{Chern-Simons} \\
 \hline
 \text{Source} & \Sigma & \Sigma \times I \\
 \text{Target} & (G, \pi) & g \oplus g^* \\
 \text{Boundary} & \emptyset & g^* \\
 \hline
 \end{array}
 \]

4. **Switching $A \leftrightarrow A'$:** provides a "duality" between Poisson σ-models on dual Poisson-Lie groupoids.
Main ingredients I: Mapping space

Recall that $\mathcal{G}M$, the category of \mathbb{Z}-graded manifolds, has

- **Objects**: graded manifolds $\mathcal{M} = (M, O_M), \mathcal{N} = (N, O_N), ...$
- **Morphisms**: degree preserving morphisms $\text{Mor}(\mathcal{M}, \mathcal{N})$

The cartesian product $M \times N$ makes $(\mathcal{G}M, \times)$ into a monoidal category. Associated to any pair of graded manifolds (M, N), formally, one can construct a new graded manifold (inner Hom) $\text{Maps}(M, N)$ satisfying

$$\text{Mor}(\mathbb{Z} \times M, N) \cong \text{Mor}(\mathbb{Z}, \text{Maps}(M, N)) \quad \forall \mathbb{Z}.$$
Main ingredients I: Mapping space

Recall that \mathcal{GM}, the category of \mathbb{Z}-graded manifolds, has

- **Objects:** graded manifolds $\mathcal{M} = (M, O_M), \mathcal{N} = (N, O_N)$...
- **Morphisms:** degree preserving morphisms $\text{Mor}(\mathcal{M}, \mathcal{N})$

The cartesian product $\mathcal{M} \times \mathcal{N}$ makes (\mathcal{GM}, \times) into a monoidal category.
Main ingredients I: Mapping space

Recall that \mathcal{GM}, the category of \mathbb{Z}-graded manifolds, has

- **Objects:** graded manifolds $\mathcal{M} = (M, \mathcal{O}_M), \mathcal{N} = (N, \mathcal{O}_N)$...
- **Morphisms:** degree preserving morphisms $\text{Mor}(\mathcal{M}, \mathcal{N})$

The cartesian product $\mathcal{M} \times \mathcal{N}$ makes (\mathcal{GM}, \times) into a monoidal category.

Associated to any pair of graded manifolds $(\mathcal{M}, \mathcal{N})$, formally, one can construct a new graded manifold (inner Hom) $\text{Maps}(\mathcal{M}, \mathcal{N})$ satisfying

$$\text{Mor}(\mathbb{Z} \times \mathcal{M}, \mathcal{N}) \cong \text{Mor}(\mathbb{Z}, \text{Maps}(\mathcal{M}, \mathcal{N})) \quad \forall \mathbb{Z}.$$

For graded vector spaces, deg k elements of $\text{Maps}(V, W)$ are $\text{Mor}(V, W[k])$.
Main ingredients I: Mapping space

Recall that \mathcal{GM}, the category of \mathbb{Z}-graded manifolds, has

- **Objects**: graded manifolds $\mathcal{M} = (M, O_M), \mathcal{N} = (N, O_N)$...
- **Morphisms**: degree preserving morphisms $\text{Mor}(\mathcal{M}, \mathcal{N})$

The cartesian product $\mathcal{M} \times \mathcal{N}$ makes (\mathcal{GM}, \times) into a monoidal category.

Associated to any pair of graded manifolds $(\mathcal{M}, \mathcal{N})$, formally, one can construct a new graded manifold (inner Hom) $\text{Maps}(\mathcal{M}, \mathcal{N})$ satisfying

$$\text{Mor}(\mathbb{Z} \times \mathcal{M}, \mathcal{N}) \cong \text{Mor}(\mathbb{Z}, \text{Maps}(\mathcal{M}, \mathcal{N})) \quad \forall \mathbb{Z}.$$

For graded vector spaces, deg k elements of $\text{Maps}(V, W)$ are $\text{Mor}(V, W[k])$.

A remarkable finite dimensional example is

$$\text{Maps}(\mathbb{R}[1], \mathcal{M}) \cong T[-1]\mathcal{M}.$$
Main ingredients II: Integration of Lie algebroids

Weinstein groupoid

Let \((A \xrightarrow{p} M, [\cdot, \cdot], \rho)\) be a Lie algebroid. Then we can construct the ssc groupoid \(G(A) \rightrightarrows M\) by the following procedure:

- \(\gamma \in Maps(I, A)\) is an “\(A\)-path” if
 \[
 \rho(\gamma(t)) = \frac{d}{dt}p(\gamma(t)).
 \]
Main ingredients II: Integration of Lie algebroids

Weinstein groupoid

Let \((A \xrightarrow{p} M, [\cdot, \cdot], \rho)\) be a Lie algebroid. Then we can construct the ssc groupoid \(G(A) \Rightarrow M\) by the following procedure:

- \(\gamma \in Maps(I, A)\) is an “\(A\)-path” if
 \[\rho(\gamma(t)) = \frac{d}{dt} p(\gamma(t)).\]

- \(\gamma_0, \gamma_1 \in Maps(I, A)\) are “\(A\)-homotopic” if it exists a variation \(h_\epsilon\) satisfying
 \[
 \begin{cases}
 p \circ h_\epsilon(0) = p \circ \gamma_0(0), & p \circ h_\epsilon(1) = p \circ \gamma_0(1) \\
 hdt + \hat{h}d\epsilon : TI \times TI \to A \text{ algebroid morphism}
 \end{cases}
 \]
 for \(\hat{h}\) solution of \(\partial_t \hat{h} = \partial_\epsilon h + T_\nabla (h, \hat{h}); \hat{h}_\epsilon(0) = 0.\)
Main ingredients II: Integration of Lie algebroids

Weinstein groupoid

Let \((A \xrightarrow{p} M, \cdot, \cdot, \rho)\) be a Lie algebroid. Then we can construct the ssc groupoid \(G(A) \rightrightarrows M\) by the following procedure:

- \(\gamma \in Maps(I, A)\) is an "\(A\)-path" if
 \[
 \rho(\gamma(t)) = \frac{d}{dt} p(\gamma(t)).
 \]

- \(\gamma_0, \gamma_1 \in Maps(I, A)\) are "\(A\)-homotopic" if it exists a variation \(h_\epsilon\) satisfying
 \[
 \begin{cases}
 p \circ h_\epsilon(0) = p \circ \gamma_0(0), & p \circ h_\epsilon(1) = p \circ \gamma_0(1) \\
 h dt + \hat{h} d \epsilon : TI \times TI \to A\text{ algebroid morphism}
 \end{cases}
 \]
 for \(\hat{h}\) solution of \(\partial_t \hat{h} = \partial_\epsilon \hat{h} + T\nabla(h, \hat{h}); \hat{h}_\epsilon(0) = 0.\)

Theorem

If \(A\) is integrable then \(G(A) = \frac{\text{\(A\)-path}}{\text{\(A\)-homotopies}}\)
Steps of the proof

It has two parts:

1. We identify a symplectic fibration and integrate over the fibres.

2. The effective theory of 1. it has a remaining gauge symmetry that we can quotient out to obtain the Poisson groupoid.

Our case: Localization over A-path.

Our case: Quotient out A-homotopies.
Steps of the proof

It has two parts:

1. We identify a symplectic fibration and integrate over the fibres. Fibre version of the Losev’s trick:

Suppose $\mathcal{F}_{BV} = \mathcal{F}_1 \times \mathcal{F}_2$ with $\Phi = (\psi, \lambda)$. Choose a gauge fixing

$$\mathcal{L}_{BV} = \mathcal{L}_1 \times \mathcal{L}_2$$

and performing partial integration over \mathcal{F}_2

$$\int_{\mathcal{L}_{BV} \subset \mathcal{F}_{BV}} \mathcal{O} \ e^{i \hbar S_{BV}(\Phi)} \ "D\Phi" = \int_{\mathcal{L}_1 \subset \mathcal{F}_1} \delta(P(\psi)) \ \hat{\mathcal{O}} \ e^{i \hbar \hat{S}(\psi)} \ "D\psi"$$

produce an effective theory.

Our case: Localization over A-path.
Steps of the proof

It has two parts:

1. We identify a symplectic fibration and integrate over the fibres. Fibre version of the Losev’s trick:
Suppose $\mathcal{F}_{BV} = \mathcal{F}_1 \times \mathcal{F}_2$ with $\Phi = (\psi, \lambda)$.
Choose a gauge fixing

$$\mathcal{L}_{BV} = \mathcal{L}_1 \times \mathcal{L}_2$$

and performing partial integration over \mathcal{F}_2

$$\int_{\mathcal{L}_{BV} \subset \mathcal{F}_{BV}} \mathcal{O} \ e^{i\overline{\hbar}S_{BV}(\Phi)} “\mathcal{D}\Phi” = \int_{\mathcal{L}_1 \subset \mathcal{F}_1} \delta(P(\psi)) \ \widehat{\mathcal{O}} \ e^{i\overline{\hbar}\widehat{S}(\psi)} “\mathcal{D}\psi”$$

produce an effective theory.
Our case: Localization over A-path.

2. The effective theory of 1. it has a remaining gauge symmetry that we can quotient out to obtain the Poisson groupoid.
Our case: Quotient out A-homotopies.
Step 1.a: Structure space of fields

If \((E, A, A')\) is a Manin triple

\[
\begin{align*}
\mathcal{M}, \omega_{\mathcal{M}}, \theta & \cong (T^*[2]A^*[1], \omega_{\text{can}} = d\alpha_{\text{can}}, Q + \pi_A),
\end{align*}
\]
Step 1.a: Structure space of fields

If \((E, A, A')\) is a Manin triple

\[
\begin{align*}
\mathcal{M}, \omega_\mathcal{M}, \theta &\cong (T^*[2]A^*[1], \omega_{\text{can}} = d\alpha_{\text{can}}, Q + \pi_A), \\
\mathcal{F}_{BV} &= \{\phi \in \text{Maps}(T[1](\Sigma \times I), \mathcal{M}) | \phi(T[1]\partial(\Sigma \times I)) \subset A^*[1]\}, \\
S &= \int_{T[1](\Sigma \times I)} i_D^*ev^*\alpha_{\text{can}} + ev^*Q + ev^*\pi_A
\end{align*}
\]
Step 1.a: Structure space of fields

If \((E, A, A')\) is a Manin triple

- \((\mathcal{M}, \omega_\mathcal{M}, \theta) \cong (T^*[2]A^*[1], \omega_{can} = d\alpha_{can}, Q + \pi_A)\),

- \(\mathcal{F}_{BV} = \{\phi \in \text{Maps}(T[1](\Sigma \times I), \mathcal{M})|\phi(T[1]\partial(\Sigma \times I)) \subset A^*[1]\},\)

- \(S = \int_{T[1](\Sigma \times I)} i^*_D ev^*\alpha_{can} + ev^*Q + ev^*\pi_A\)

\[\mathcal{F}_{BV} \subset \text{Maps}(T[1](\Sigma \times I), \mathcal{M}) = \text{Maps}(T[1]\Sigma \times I \times \mathbb{R}[1], \mathcal{M}) = \text{Maps}(T[1]\Sigma \times I, T[-1]\mathcal{M})\]

\[\begin{array}{ccc}
T[-1]\mathcal{M} & \xrightarrow{p} & T[-1]A^*[1] \\
q \downarrow & & \downarrow \\
\end{array}\]

is a double vector bundle.
Step 1.a: Structure space of fields

If (E, A, A') is a Manin triple

- $(\mathcal{M}, \omega_{\mathcal{M}}, \theta) \cong (T^*[2]A^*[1], \omega_{\text{can}} = d\alpha_{\text{can}}, Q + \pi_A)$,

- $\mathcal{F}_{BV} = \{ \phi \in Maps(T[1](\Sigma \times I), \mathcal{M}) | \phi(T[1]\partial(\Sigma \times I)) \subset A^*[1] \}$,

- $S = \int_{T[1](\Sigma \times I)} i^*_D ev^*\alpha_{\text{can}} + ev^*Q + ev^*\pi_A$

$\mathcal{F}_{BV} \subset Maps(T[1](\Sigma \times I), \mathcal{M}) = Maps(T[1]\Sigma \times I \times \mathbb{R}[1], \mathcal{M})$

$= Maps(T[1]\Sigma \times I, T[-1]\mathcal{M})$

$T[-1]\mathcal{M} \xrightarrow{p} T[-1]A^*[1]$

$\downarrow q \hspace{3cm} \downarrow$

$T^*[1]A \xrightarrow{q} A[1]$

is a double vector bundle.

Proposition

$q : T[-1]\mathcal{M} \to T^*[1]A$ is a symplectic fibration. Moreover $\mathcal{L}_f = \ker(p)$ induces a lagrangian submanifold on each fibre.
Step 1.b: The appearance of the δ

$T^*[1]A \to A^*[1]$ is a graded VB-algebroid over $A \to M$,
Step 1.b: The appearance of the δ

$T^*[1]A \to A^*[1]$ is a graded VB-algebroid over $A \to M$,

by Lie theory we have $C = \{\text{Algebroid path}\} \subset Maps(I, T^*[1]A)$.
Step 1.b: The appearance of the δ

$T^*[1]A \to A^*[1]$ is a graded VB-algebroid over $A \to M$,

by Lie theory we have $C = \{\text{Algebroid path}\} \subset Maps(I, T^*[1]A)$.

Denote by $\mathcal{F}_A = Maps(T[1]\Sigma \times I, T^*[1]A)$ and by

$$C = \{\phi \in \mathcal{F}_A | \phi(T[1]\Sigma) \subset C\}.$$
Step 1.b: The appearance of the δ

$T^*[1]A \to A^*[1]$ is a graded VB-algebroid over $A \to M$,

by Lie theory we have $C = \{\text{Algebroid path}\} \subset Maps(I, T^*[1]A)$.

Denote by $\mathcal{F}_A = Maps(T[1]\Sigma \times I, T^*[1]A)$ and by

$$C = \{\phi \in \mathcal{F}_A | \phi(T[1]\Sigma) \subset C\}.$$

Main field-theoretic claim

Let $\mathcal{K} \subset \mathcal{F}_A$ be a Lagrangian submanifold and $\mathcal{O} \in C^\infty(\mathcal{F}_A)$ then

$$\int \mathcal{L}_\mathcal{K} (r^*\mathcal{O}) e^S = \int_{\mathcal{K}} \mathcal{O} \delta_C e^{S_A}$$

where

$$S_A = \int_{T[1]\Sigma \times I} i_d e^* \lambda_{can} + e^* \pi_A$$
Step 1.b': Coordinate approach

<table>
<thead>
<tr>
<th>Space</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M} = T^[2]A^[1]$</td>
<td>$x^i(0), b_\alpha(1)$</td>
</tr>
<tr>
<td>$T[-1]\mathcal{M}$</td>
<td>$x^i, b_\alpha, a^\alpha(1), p_i(2)$</td>
</tr>
<tr>
<td>$T^*[1]A$</td>
<td>$x^i, b_\alpha, a_\alpha, p_i, \dot{x}^i(-1), \dot{b}\alpha(0), \dot{a}\alpha(0), \dot{p}_i(1)$</td>
</tr>
<tr>
<td>$T^*[1]A$</td>
<td>$x^i, b_\alpha, \dot{a}_\alpha, \dot{p}_i$</td>
</tr>
</tbody>
</table>
Step 1.b’: Coordinate approach

<table>
<thead>
<tr>
<th>Space</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| $\mathcal{M} = T^*[2]A^*[1] \quad T[-1]\mathcal{M} \quad T^*[1]A$ | $x^i(0), b_\alpha(1)$
| | $x^i, b_\alpha, a^\alpha(1), p_i(2)$ |
| | $x^i, b_\alpha, a^\alpha, p_i, \dot{x}^i(-1), \dot{b}_\alpha(0), \dot{a}_\alpha(0), \dot{p}_i(1)$ |

Coordinates on $\mathcal{F}_{BV} = Maps(T[1](\Sigma \times I), \mathcal{M})$ capital letters.

$$S = \int P_i DX^i + A^\alpha DB_\alpha - \rho^i_\alpha A^\alpha P_i - \tilde{\rho}^i_\alpha B_\alpha P_i + c^\gamma_{\alpha\beta} A^\alpha A^\beta B_\gamma + \tilde{c}^\gamma_{\alpha\beta} B_\alpha B_\beta A^\gamma$$
Step 1.b’: Coordinate approach

<table>
<thead>
<tr>
<th>Space</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M} = T^[2]A^[1]$</td>
<td>$x^i(0), b_\alpha(1)$</td>
</tr>
<tr>
<td>$T[-1]\mathcal{M}$</td>
<td>$x^i, b_\alpha, a^\alpha(1), p_i(2)$</td>
</tr>
<tr>
<td>$T^*[1]A$</td>
<td>$x^i, b_\alpha, a^\alpha, p_i, \dot{x}^i(-1), \dot{b}\alpha(0), \dot{a}\alpha(0), \dot{p}_i(1)$</td>
</tr>
</tbody>
</table>

Coordinates on $\mathcal{F}_{BV} = Maps(T[1](\Sigma \times I), \mathcal{M})$ capital letters.

$$S = \int P_i DX^i + A^\alpha DB_\alpha - \rho^i_\alpha A^\alpha P_i - \tilde{\rho}^{i\alpha} B_\alpha P_i + c^{\gamma}_{\alpha\beta} A^\alpha A^\beta B_\gamma + \tilde{c}^{\alpha\beta}_{\gamma} B_\alpha B_\beta A^\gamma$$

Locally $\mathcal{F}_{BV} = \mathcal{F}_1 \times \mathcal{F}_2$ with

$$\mathcal{F}_1 = \{X^i, B_\alpha, \dot{A}_\alpha, \dot{P}_i\}, \mathcal{F}_2 = \{A^\alpha, P_i, \dot{X}^i, \dot{B}_\alpha\}$$

choose the gauge fixing $\mathcal{L}_2 = \{\dot{X}^i = 0, \dot{B}_\alpha = 0\}$ then

$$S_{|\mathcal{L}_2} = S_A + \int_{T[1]\Sigma} \int_I P_i \left(\partial_t X^i - \rho^i_\alpha \dot{A}_\alpha \right) + A^\alpha \left(-\partial_t B_\alpha + \rho^i_\alpha \dot{P}_i - c^{\gamma}_{\beta\alpha} \dot{A}^\beta B_\gamma \right)$$
Step 2.a: Lie-theoretic identities

Recall that we have the diagram

\[C \xrightarrow{\psi} \text{Maps}(I, A) \]
\[\downarrow \tau \]
\[G(A) \]

Thm [Iglesias-Ponte, Laurent-Gengoux, Xu]

Let \((A \to M, [\cdot, \cdot], \rho)\) be a Lie algebroid with ssc groupoid \(G(A)\). If \(\omega \in \Omega(A)\) is an IM form then

\[\psi^* \int_I \text{ev}^* \omega = \tau^* \omega_{mul} \]

for some \(\omega_{mul} \in \Omega(G(A))\) multiplicative form.
Step 2.b: Reducing by symmetries

It is well known that $G(T^*A) = T^*G(A)$. In our graded context we obtain that $G(T^*[1]A) = T^*[1]G(A)$.
Step 2.b: Reducing by symmetries

It is well known that $G(T^*A) = T^*G(A)$. In our graded context we obtain that $G(T^*[1]A) = T^*[1]G(A)$.

By construction $\lambda_{can} \in \Omega^1(T^*[1]A)$ and $\pi_A \in \Omega^0(T^*[1]A)$ are IM forms on $T^*[1]A$.

Using the Theorem and the diagram

\[
\begin{array}{ccc}
C & \xrightarrow{\hat{\psi}} & \text{Maps}(T[1]\Sigma, \text{Maps}(I, T^*[1]A)) \\
\downarrow{\hat{\tau}} & & \downarrow \\
\mathcal{F}_G = \text{Maps}(T[1]\Sigma, T^*[1]G(A)) & &
\end{array}
\]
Step 2.b: Reducing by symmetries

It is well known that $G(T^*A) = T^*G(A)$. In our graded context we obtain that $G(T^*[1]A) = T^*[1]G(A)$.

By construction $\lambda_{can} \in \Omega^1(T^*[1]A)$ and $\pi_A \in \Omega^0(T^*[1]A)$ are IM forms on $T^*[1]A$.

Using the Theorem and the diagram

$$\mathcal{C} \xrightarrow{\hat{\psi}} \text{Maps}(T[1]\Sigma, \text{Maps}(I, T^*[1]A))$$

$$\hat{\tau}$$

$$\mathcal{F}_G = \text{Maps}(T[1]\Sigma, T^*[1]G(A))$$

Main Lie-Theoretic result

$$\hat{\psi}^* S_A = \hat{\tau}^* S_G \text{ where } S_G = \int_{T[1]\Sigma} i_d^* \text{ev}^* \Lambda_{can} + \text{ev}^* \pi_G$$
Final step: Putting everything together

It is easy to recognize that

\[
\begin{align*}
\mathcal{F}_G &= \text{Maps}(T[1]\Sigma, T^*[1]G(A)) \\
S_G &= \int_{T[1]\Sigma} i_dev^*\Lambda + ev^*\pi_G
\end{align*}
\]

Give the Poisson σ-model with source Σ and target $(G(A), \pi_G)$.

Final step: Putting everything together

It is easy to recognize that

\[
\begin{align*}
\mathcal{F}_G &= \text{Maps}(T[1]\Sigma, T^*[1]G(A)) \\
S_G &= \int_{T[1]\Sigma} i^*_d \text{ev}^* \Lambda + \text{ev}^* \pi_G
\end{align*}
\]

Give the Poisson σ-model with source Σ and target $(G(A), \pi_G)$.

If the observable is also homotopy invariant we have the following relation between the path integrals:

\[
\int_{\mathcal{L}_K} (r^* \mathcal{O}) e^S = \int_{\mathcal{K}} \mathcal{O} \delta_{\mathcal{C}} e^{S_A} = \int_{\mathcal{K}_{\text{red}}} \mathcal{O}_1 e^{S_G}
\]
Final remark: Formulation with sprays

One can gauge A-homotopies by using a Lie algebroid spray: $V \in \mathfrak{X}(A)$ that is linear and $dp(V_a) = \rho(a)$, $a \in A$.

The Lie algebroid spray identify some A-paths with a neighbourhood of the units in $G(A)$.
Final remark: Formulation with sprays

One can gauge A-homotopies by using a Lie algebroid spray: $V \in \mathfrak{X}(A)$ that is linear and $dp(V_a) = \rho(a)$, $a \in A$.

The Lie algebroid spray identify some A-paths with a neighbourhood of the units in $G(A)$.

In particular, if $E = TM \oplus T^*M$ and $A = \text{graph}(\pi)$ for $\pi \in \mathfrak{X}^2(M)$ Poisson, the multiplicative symplectic form around the units of $G(T^*M)$ yields

$$\omega_\pi = \int_0^1 \varphi_t^* \omega_{\text{can}} dt$$

where $\varphi : I \times T^*M \to T^*M$ is the flow of the chosen Poisson spray. So we recover the Crainic, Marcut formula.
Future projects

- Perturbative computation of the path integral
Future projects

- Perturbative computation of the path integral.
- Can we include Σ with boundary in our computation?
Future projects

- Perturbative computation of the path integral.
- Can we include Σ with boundary in our computation?
- Is some version of this result related to Morita equivalence?
Thanks !!