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Y d-dimensional manifold,

Geometric data = { (M,wr = dap, ) d — 1 symplectic Q-manifold.

v

Fields: Fgy = {¢ € Maps(T[1]x, M)|¢(T[1]0X) C B}.

v

Action: S : Fgy — R given by S = fT[l]z ig_evron + ev'e.

v

Symplectic form: wgy = fT[1]z ev¥wpy of degree —1.

v

Possible boundary conditions: ®(T[1]0X) C B for some
B C M Lagrangian Q-submanifold.

0 et5®) Do,

v

Path integral: (O) = f¢e£BchBv

v

Gauge fixing: Ly Lagrangian submanifold of (Fgyv,wsy).
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Y Surface,

Geometric data = { (T*[1]M, wean = dacan, @ = m) Poisson manifold.

» The classical space of fields
F =Hom(TL, T"M) ={Y : ¥ — M,ne QYZ; Y*T*M)}.
» The classical action

A
5P(Y7?7)=/andY’+27T”(Y)n;/\m
>

where 7 = n;dy’ for some {y’}™, coordinates on M.

» Some boundary conditions: are given by Coisotropic
submanifolds of (M, 7).

When ¥ =Disk Cattaneo, Felder obtain the Kontsevich *-product.
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The correspondence asserts that:
» Degree 2 symplectic Q-manifodls <> Courant algebroids.
» Lagrangian Q-submanifolds <+ Dirac structures.

Y3 3-dimensional manifold,

Geometric data = { (E— M,{-,-),[,-],p) Courant algebroid.

» The space of classical fields
F={X:32O) 5 MEecQ(Z®; X“E), P e ?xO, X T*M)}.
» The classical action

, , 1
SY(X,E,P) = / P,-dX’+gabE3dEb—p;EaP,-+6 Tanc E?EPEC
>3

where (e?, e?) = g, and ([e?, €], €) = Tape.

» Some boundary conditions: are Dirac strucures.
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Question

Can we expect any dimensional reduction from the Courant
o-model to a Poisson o-model?

Yes, related to Lie theory!!
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Secret Poisson geometry of Dirac structures
» (E— M,(-,-),[],p) Courant algebroid.
» A— M C E — M a Dirac structure.

choose A -+ M C E — M a complement, ie. E=A®A.

Using the pairing we identify A" = A* and Liu, Weinstein, Xu
proved that

(A_> M7 ['7']7/)7 7TA777A) TA € %2(/4), na € %3(A)
becomes a Lie quasi-bialgebroid and E is the "Drinfeld double”.

If A" is also Dirac ~ (E, A, A’) forms a Manin triple and
(A— M,[-,-],p,ma) is a Lie bialgebroid.

Supergeometric perspective: A[l] C M lagrangian Q-submanifold.
Choosing A’ is equivalent to find a Weinstein tubular
neighbourhood M = T*[2]A[1], then 0 = Q + ma + na.

A’ Dirac & 0= Q + 7a.



Lie bialgebroids

Mackenzie, Xu

A Lie bialgebroid (A — M, [-,-]a, pa,7a) is a Lie algebroid with
ma € X2 (A) such that is Poisson and “infinitesimally
multiplicative” (cocycle condition).



Lie bialgebroids

Mackenzie, Xu

A Lie bialgebroid (A — M, [-,-]a, pa,7a) is a Lie algebroid with
Ta € X2 (A) such that is Poisson and “infinitesimally
multiplicative” (cocycle condition).

A Lie bialgebroid <= A* Lie bialgebroid



Lie bialgebroids

Mackenzie, Xu

A Lie bialgebroid (A — M, [-,-]a, pa, ma) is a Lie algebroid with
Ta € X2 (A) such that is Poisson and “infinitesimally
multiplicative” (cocycle condition).

A Lie bialgebroid <= A* Lie bialgebroid

Lie algebroids are infinitesimal versions of Lie groupoids.
We denote by G(A) = M the unique, if it exists, source simply
connected Lie groupoid with Lie algebroid A — M.



Lie bialgebroids

Mackenzie, Xu

A Lie bialgebroid (A — M, [-,-]a, pa, ma) is a Lie algebroid with
Ta € X2 (A) such that is Poisson and “infinitesimally
multiplicative” (cocycle condition).

A Lie bialgebroid <= A* Lie bialgebroid

Lie algebroids are infinitesimal versions of Lie groupoids.
We denote by G(A) = M the unique, if it exists, source simply
connected Lie groupoid with Lie algebroid A — M.

Theorem (Mackenzie, Xu)

Let (A — M,[-,-]a, pa, ma) be a Lie bialgebroid and suppose that
(A — M,[-,-]a, pa) is integrable. Then the ssc integration
(G(A) = M, 7g) is a Poisson groupoid.

Examples: Poisson-Lie groups, Symplectic groupoids.



The result

Result [Cabrera, -]

Let (E, A, A') be a Manin triple, X closed surface and / = [0, 1].
The Courant o-model defined by

Source: ¥ x /

Target: (E — M, {-,),p,[-,-])

Boundary conditions: fields take values in a supermanifold
defined by the splitting A’ C E at t =0, 1.

admits a gauge fixing depending on A such that it leads to a
“dimensional reduction” onto the Poisson sigma model defined by
Source: ¥
Target: (G(A) = M, ng)

Our result is of Field-theoretic nature.
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Related works

» In 2D and 3D topological field theories for generalized
complex geometry Cattaneo, Qiu, Zabzine prove the lienar
case, i.e. when (A" — M, [-,-], p,ma = 0). Here G(A) = A.

» In Poisson-Lie T-duality as a boundary phenomenon of
Chern-Simons theory Severa uses topological and
non-topological boundary conditions to obtain bulk-boundary
relations.

» In Towards holography in the BV-BFV setting Mnev,
Schiavina, Wernli similar result for Chern-Simons, i.e. M = x.
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Examples of Manin triples

Geometric objects that are codified by a Manin triple:

>

>

r-matrix: (g @ g*, g, graph(r)).

Poisson manifold: (TM & T*M, TM, graph(r)).
Presymplectic manifold: (TM @ T*M, graph(w), T*M).
Mixing both: (TM @& T*M, graph(w), graph(~)).
Poisson-Nijenhuis manifold: (( ™ & T*M)y, Tl\/l,graph(w)).
Twisted Poisson:  ((TM & T*M)y, TM, graph(r)).

Complex ss Lie group G: (TG & T*G, Eg, ﬁc) Cartan-Dirac
and Gauss-Dirac structures Alekseev, Bursztyn, Meinrenken.
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Consequences

1. Collar neighbourhood: for a 3-dim manifold with 1 boundary

Transversal direction good = Dimensional reduction.

2. Gauge fixing (in)dependence: 74 € X2(A) is independent of A

but the topology of G(A) strongly depends on A.

3. Non-linear Vs linear: Given a Poisson-Lie group (G, )

Poisson o-model

Chern-Simons

Source
Target
Boundary

T
(G, 7)
0

Y x|
gD g

*

g

4. Switching A +» A’: provides a “duality” between Poisson

o-models on dual Poisson-Lie groupoids.
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Recall that G M, the category of Z-graded manifolds, has
» Objects: graded manifolds M = (M, Ox), N = (N, Op)...
» Morphisms: degree preserving morphisms Mor(M, N')

The cartesian product M x A makes (GM, X) into a monoidal
category.

Associated to any pair of graded manifolds (M, N), formally, one
can construct a new graded manifold (inner Hom) Maps(M, N)
satisfying

Mor(Z x M,N') = Mor(Z, Maps(M,N)) VZ.
For graded vector spaces, deg k elements of Maps(V, W) are

Mor(V, W[k]).
A remarkable finite dimensional example is

Maps(R[1], M) & T[-1]JM.
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Main ingredients Il: Integration of Lie algebroids
Weinstein groupoid
Let (A2 M,[-,-], p) be a Lie algebroid. Then we can construct
the ssc groupoid G(A) = M by the following procedure:

» v € Maps(l,A) is an "A-path” if

o) = S p((1)).

> 70,71 € Maps(/,A) are "A-homotopic” if it exists a variation
he satisfying

poh(0) =po0(0), pohe(l)=por(l)
hdt 4+ hde : Tl x Tl — A algebroid morphism

for h solution of O¢h = Och + Tv(h,//;); 71\6(0) =0.

If Ais integrable then G(A) A—path

= A- homotopies
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Steps of the proof
It has two parts:

1. We identify a symplectic fibration and integrate over the
fibres. Fibre version of the Losev 's trick:
Suppose Fgy = F1 x Fo with & = (i, A).
Choose a gauge fixing

EB\/ Zﬁl X £2

and performing partial integration over />

/ O enSev(®) Do = / S(P(v)) O e"ﬁg(d’) “Dy"
Ly CFpy L1CF1

produce an effective theory.

Our case: Localization over A-path.

2. The effective theory of 1. it has a remaining gauge symmetry
that we can quotient out to obtain the Poisson groupoid.
Our case: Quotient out A-homotopies.
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Step 1l.a: Structure space of fields
If (E,A, A") is a Manin triple
> (M7WM39) = (T*[2]A*[1]7wcan = daean, @ + 7TA)a

> Foy = {¢ € Maps(T[1](Zx1), M)[o(T[1]a(xx1)) < A*[1]},

» S = fT[I](le) i5ev*aican + ev* @ + evima

Fpv C Maps(T[1)(X x 1), M) = Maps(T[1]X x I x R[1], M)
= Maps(T[1]Z x I, T[-1]M)

T[-1JM —2= T[-1]A*[1]

fa |
T*1A —— A[1]

is a double vector bundle.

Proposition

q: T[-1]JM — T*[1]A is a symplectic fibration. Moreover
L¢ = ker(p) induces a lagrangian submanifold on each fibre.
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Step 1.b: The appearance of the ¢
T*[1]A — A*[1] is a graded VB-algebroid over A — M,

by Lie theory we have C = {Algebroid path} C Maps(/, T*[1]A).
Denote by Fa = Maps(T[1]X x I, T*[1]A) and by

C={¢ € Falo(T[1]X) C C}.

Main field-theoretic claim

Let K C Fa be a Lagrangian submanifold and O € C*°(F,) then

/ (r*O)e® = / O ¢ e
Lk K

where
Sp= / igev*)\ca,, +evimy
T)Zx!
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Step 1.b’: Coordinate approach

Space Coordinates
A*[1] x'(0), ba(1)
M = T*[2]A*[1] xi,ba,aa(l),p,-(Z)
T[_l]M xi,ba,a“,p,-,)'("(fl),[)a(O),a'a(O),p,-(l)
T*[1]A X' by vy Pi

Coordinates on Fgy = Maps(T[1](X x ), M) capital letters.
S= /PDX +A* DBy —p}, A" Pi—p'* Bo Pit-c) A A B+ By Bg A7

Locally Fgy = F1 x F> with
fl - {Xia Ba7AOz7 Pi}7 -FZ - {Aa, Pi7Xi7 Ba}
choose the gauge fixing £, = {X' =0, B, = 0} then

Sic, = Sa+ /T - / Pi(0:XT =}, A) + A% (~0cBact pl, P~ €3, A, )



Step 2.a: Lie-theoretic identities

Recall that we have the diagram

C—Y~ Maps(/, A)

Thm [lIglesias-Ponte, Laurent-Gengoux, Xu]

Let (A — M, [, ], p) be a Lie algebroid with ssc groupoid G(A).
If we Q(A) is an IM form then

P* /ev*w = T Wmul
I

for some wmy € Q(G(A)) multiplicative form



Step 2.b: Reducing by symmetries

It is well known that G(T*A) = T*G(A). In our graded context
we obtain that G(T*[1]A) = T*[1]G(A).



Step 2.b: Reducing by symmetries

It is well known that G(T*A) = T*G(A). In our graded context
we obtain that G(T*[1]A) = T*[1]G(A).

By construction Aeap € QY(T*[1]A) and 74 € QO(T*[1]A) are IM
forms on T*[1]A.
Using the Theorem and the diagram

<)

C Maps(T[1]%, Maps(/, T*[1]A))

7

Fe = Maps(T[1]Z, T*[1]G(A))



Step 2.b: Reducing by symmetries

It is well known that G(T*A) = T*G(A). In our graded context
we obtain that G(T*[1]A) = T*[1]G(A).

By construction Aeap € QY(T*[1]A) and 74 € QO(T*[1]A) are IM
forms on T*[1]A.
Using the Theorem and the diagram

<)

C Maps(T[1]%, Maps(/, T*[1]A))

!

Fe = Maps(T[1]xZ, T*[1]G(A))
Main Lie-Theoretic result

lZ*SA = 7*S¢ where S¢ = / igev*/\can + evimg
TS




Final step: Putting everything together

It is easy to recognize that

Fe = Maps(T[1JE, T*[1]G(4))
S¢c = fT[l]): igev*/\ + evimg

Give the Poisson o-model with source ¥ and target (G(A), 7¢).



Final step: Putting everything together

It is easy to recognize that

Fe = Maps(T[1JE, T*[1]G(4))
S¢c = fT[l]): igev*/\ + evimg

Give the Poisson o-model with source ¥ and target (G(A), 7¢).

If the observable is also homotopy invariant we have the following
relation between the path integrals:

/ (rrO0)e® = / O b¢ e :/ O, e%
ﬁ)c K ’Cred



Final remark: Formulation with sprays

One can gauge A-homotopies by using a Lie algebroid spray:
V € X(A) that is linear and dp(Va,) = p(a), a € A.

The Lie algebroid spray identify some A-paths with a
neighbourhood of the units in G(A).



Final remark: Formulation with sprays

One can gauge A-homotopies by using a Lie algebroid spray:
V € X(A) that is linear and dp(Va,) = p(a), a € A.

The Lie algebroid spray identify some A-paths with a
neighbourhood of the units in G(A).

In particular, if E= TM @ T*M and A = graph(r) for 7 € X2(M)
Poisson, the multiplicative symplectic form around the units of
G(T*M) yields

1
Wﬂ:/ (P:wcandt
0

where p : | X T*M — T*M is the flow of the chosen Poisson spray.
So we recover the Crainic, Marcut formula.
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> Perturbative computation of the path integral
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Future projects

> Perturbative computation of the path integral.
» Can we include ¥ with boundary in our computation?

> Is some version of this result related to Morita equivalence?



Thanks !!



