Subspaces with or without a common complement

E. A. and Eduardo Chiumiento

January 17, 2025

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

- 1. Introduction.
- The space Δ (pairs of subspaces with a common complement).
- 3. The space **Γ** (pairs of subspaces without a common complement).
- 4. Examples.

1. Introduction

The results that will be presented here are taken from two recent unpublished papers:

- E.A. and E. Chiumiento, Subspaces with or without a common complement, arXiv 2412.18113, and
- E.A. and E. Chiumiento, A note on common complements, arXiv 2412.19316.

These manuscripts are reflections on the paper by M. Lauzon and S. Treil (*Common complements of two subspaces of a Hilbert space*, J. Funct. Anal. **212** (2004), no. 2, 500–512). These authors characterize pairs of (closed) subspaces S and T of a Hilbert space H, which have a common complement Z. That is, for which there exists a closed subspace $Z \subset H$ such that

$$\mathcal{S}\dot{+}\mathcal{Z} = \mathcal{T}\dot{+}\mathcal{Z} = \mathcal{H},$$

where the symbol + stands for direct sum.

Denote by $\mathcal{B}(\mathcal{H})$ the algebra of bounded linear operators in a complex separable Hilbert space \mathcal{H} , $\mathcal{P}(\mathcal{H})$ the subset of orthogonal projections, and $Gr(\mathcal{H})$ the Grassmann manifold of \mathcal{H} , $Gl(\mathcal{H})$ the group of invertible operators in \mathcal{H} , and $\mathcal{U}(\mathcal{H})$ the unitary group. Throughout, we identify subspaces in $\mathcal{S} \in Gr(\mathcal{H})$ with their corresponding orthogonal projections in $P_{\mathcal{S}} \in \mathcal{P}(\mathcal{H})$.

Our objects of study will be the complementary sets

 $\mathbf{\Delta} = \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) : \mathcal{S} \text{ and } \mathcal{T} \text{ have a common complement} \},\$

and

$$\mathbf{\Gamma} = \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \setminus \mathbf{\Delta}.$$

The space $\mathcal{P}(\mathcal{H})$ is a complemented C^{∞} submanifold of $\mathcal{B}(\mathcal{H})$ (see [4], [8]). Therefore it is natural to ask about the geometric structure of the sets Δ and Γ . By an elementary argument, or using results by J. Giol [6] or D. Buckholtz [3], it can be shown that Δ is an open subset of $\mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H})$. We shall see that its complement Γ is a (non complemented) closed C^{∞} submanifold of $\mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H})$. Thus, both spaces have differentiable structure.

2. The space Δ

Let us state the following result from $\left[7\right]$ by M. Lauzon and S. Treil.

Denote by $G = P_{\mathcal{T}}|_{\mathcal{S}}$, regarded as an operator $G : \mathcal{S} \to \mathcal{T}$ (so that $G^* : \mathcal{T} \to \mathcal{S}$ is $P_{\mathcal{S}}|_{\mathcal{T}}$). Denote by **E** the projection valued spectral measure of G^*G . Note that

$$N(G) = S \cap T^{\perp}$$
 and $N(G^*) = S^{\perp} \cap T$.

Theorem (Lauzon-Treil 2004) S and T have a common complement if and only if

 $\dim N(G) + \dim \mathbf{E}(0, 1-\epsilon)S = \dim N(G^*) + \dim \mathbf{E}(0, 1-\epsilon)S$

for some $\epsilon > 0$ (equivalently, for all sufficiently small $\epsilon > 0$). This characterization also holds for non separable Hilbert spaces (Thm. 0.1 [7]).

As a straightforward consequence of the previous statement, Lauzon and Treil oberved that

Remark (Lauzon-Treil 2005)

the subspaces S and T do not have a common complement in a separable Hilbert space \mathcal{H} if and only if dim $S \cap T^{\perp} \neq \dim S^{\perp} \cap T$ and the operator $(1 - G^*G)|_{N(G)^{\perp}}$ is compact in $N(G)^{\perp}$ (Rem. 0.5 [7]).

Later on J. Giol proved the following equivalence (see Prop. 6.2. [6]):

Theorem (Giol 2005)

- i) ${\mathcal S}$ and ${\mathcal T}$ are subspaces with a common complement.
- ii) There exists $P \in \mathcal{P}(\mathcal{H})$ such that $\|P_S P\| < 1$ and $\|P P_T\| < 1$.

In particular, note that if $\|P_{\mathcal{S}} - P_{\mathcal{T}}\| < 1$, then $(P_{\mathcal{S}}, P_{\mathcal{T}}) \in \mathbf{\Delta}$.

The Grassmann manifold $Gr(\mathcal{H})$ of \mathcal{H} is defined as the set of all the closed subspaces of \mathcal{H} . We identify the Grassmann manifold with the manifold of all orthogonal projections in \mathcal{H} given by

$$\mathcal{P}(\mathcal{H}) = \{ P \in \mathcal{B}(\mathcal{H}) : P = P^2 = P^* \}.$$

the connected components of $\mathcal{P}(\mathcal{H})$ are parametrized by the rank and the co-rank. We denote by $\mathcal{P}_{i,j}$ the connected component of $\mathcal{P}(\mathcal{H})$ consisting of projections with rank *i* and corank *j*, where the indices satisfy $0 \le i, j \le \infty$ and $i + j = \infty$ (usual convention if both are infinite).

Our main interest is the component $\mathcal{P}_{\infty,\infty}$.

The unitary group $\mathcal{U}(\mathcal{H})$ of \mathcal{H} acts on $\mathcal{P}(\mathcal{H})$: $U \cdot P = UPU^*$. The orbits of this action are the connected components $\mathcal{P}_{i,j}$. For a given $P \in \mathcal{P}_{i,j}$, the map π_P induced by the action,

$$\pi_{\mathsf{P}}:\mathcal{U}(\mathcal{H}) o \mathcal{P}_{i,j},\,\,\pi_{\mathsf{P}}(U)=U\mathsf{P}U^*$$

is a fibre bundle. The fibre $\pi_P^{-1}(P)$ over P identifies with the product $\mathcal{U}(R(P)) \times \mathcal{U}(N(P))$. Thus the homotopy type of $\mathcal{P}_{i,j}$ is determined by the homotopy of $\mathcal{U}(\mathcal{H})$, $\mathcal{U}(i)$ and $\mathcal{U}(j)$. In particular, by Kuiper's theorem, $\mathcal{P}_{\infty,\infty}$ is contractible.

Left Box

If $i = k < \infty$ or $j = l < \infty$, then $\mathcal{P}_{i,i} \times \mathcal{P}_{k,l} \subseteq \Delta$. Indeed, take $(P, Q) \in \mathcal{P}_{i,i} \times \mathcal{P}_{k,i}$ with i = k. Since $T := Q|_{R(P)} : R(P) \to R(Q)$ is an operator defined in finite-dimensional spaces, we have $k = \dim N(T) + \dim R(T) = \dim N(T^*) + \dim R(T^*)$. From dim $R(T) = \dim N(T)^{\perp} = \dim R(T^*)$, it follows that $\dim R(P) \cap N(Q) = \dim N(T) = \dim N(T^*) = \dim R(Q) \cap N(P).$ The case where $i = l < \infty$ follows similarly. On the other hand, assume now that $i \neq k$ or $j \neq l$, and take $(P,Q) \in \mathcal{P}_{i,i} \times \mathcal{P}_{k,l}$ with $i \neq k$. Then R(P) and R(Q) cannot be isomorphic, and therefore $(P, Q) \in \mathbf{\Gamma}$. Similarly for the case where $(P, Q) \in \mathcal{P}_{i,i} \times \mathcal{P}_{k,l}$ with $j \neq l$. From these facts, we obtain that

$$\mathbf{\Delta}_{ij} := \mathbf{\Delta} \cap (\mathcal{P}_{i,j} imes \mathcal{P}_{i,j}) = \mathcal{P}_{i,j} imes \mathcal{P}_{i,j},$$

whenever $i < \infty$ or $j < \infty$, are the only connected components of Δ with finite dimensional rank or corank.

To analize Δ_{∞} , we need to look briefly into the geometry of $\mathcal{P}(\mathcal{H})$, as studied by G. Corach, H. Porta and L. Recht ([8], [4]). Specifically, that if $P, Q \in \mathcal{P}(\mathcal{H})$ satisfy that ||P - Q|| < 1, then there exists a unique geodesic $P(t) = e^{itX}Pe^{-itX}$ with $X^* = X$, $PXP = P^{\perp}XP^{\perp} = 0$ and $||X|| < \pi/2$, such that (P(0) = P and) P(1) = Q.

Lemma

Let P, Q be orthogonal projections such that ||P - Q|| < 1, and let P(t) be the unique minimal geodesic of $\mathcal{P}(\mathcal{H})$ such that P(0) = P and P(1) = Q. Then for all $t \in [0, 1]$ we have that ||P - P(t)|| < 1.

Using this Lemma we get that

Theorem

The subset Δ_{∞} of Δ , consisting of pairs of pojections in $\mathcal{P}_{\infty,\infty}$ with a common complement, is arcwise connected. Therefore Δ_{∞} is the connected component of such pairs.

Proof:

Let $(P_S, P_T) \in \Delta_{\infty}$. We proceed in steps. First we show that there is a continuous path inside Δ connecting (P_S, P_T) with a pair (P_S, E) such that $||P_S - E|| < 1$. Indeed, the theorem by Giol says that there exists $E \in \mathcal{P}(\mathcal{H})$ such that $||P_S - E|| < 1$ and $||P_T - E|| < 1$. Let E(t) be the minimal geodesic of $\mathcal{P}(\mathcal{H})$ with E(0) = E and $E(1) = P_T$. Then the curve $(P_S, E(t))$ remains inside Δ for $t \in [0, 1]$. This follows again using the result by Giol, for we have the intermediate projection E satisfying $||P_S - E|| < 1$ and ||E(t) - E|| < 1 (by the above Lemma).

Next, we find a continuous path inside Δ connecting (P_S, E) with (P_S, P_S) . Let P(t) be the minimal geodesic joining $P(0) = P_S$ and P(1) = E. Then the curve $(P_S, P(t))$ remains inside Δ for $t \in [0, 1]$, since, again by the Lemma we know that $||P_S - P(t)|| < 1$.

The proof finishes by showing that any two pairs $(P_{\mathcal{S}}, P_{\mathcal{S}})$ and $(P_{\mathcal{S}'}, P_{\mathcal{S}'})$ with $\mathcal{S}, \mathcal{S}'$ infinite and co-infinite, can be joined by a continuous path inside Δ . If \mathcal{S} and \mathcal{T} have a common complement \mathcal{Z} and U is a unitary operator, then $U\mathcal{S}$ and $U\mathcal{T}$ also have a common complement (namely $U\mathcal{Z}$). Since $P_{\mathcal{S}}, P_{\mathcal{S}'} \in \mathcal{P}_{\infty,\infty}$, there exists a continuous path of unitaries U(t) such that U(0) = 1 and $U(1)\mathcal{S} = \mathcal{S}'$. Then $(U(t)P_{\mathcal{S}}U^*(t), U(t)P_{\mathcal{S}}U^*(t))$ is a continuous curve in Δ wich joins $(P_{\mathcal{S}}, P_{\mathcal{S}})$ and $(P_{\mathcal{S}'}, P_{\mathcal{S}'})$. \Box

We also have

Theorem $\mathbf{\Delta}_{\infty}$ is dense in $\mathcal{P}_{\infty,\infty} \times \mathcal{P}_{\infty,\infty}$.

Pairs (P_S, P_T) which do not belong to Γ satisfy that certain operator must be compac. Namely: $(1 - G^*G)|_{N(G)^{\perp}}$ is compact in $N(G)^{\perp}$, where $G = P_T|_S : S \to T$.

The proof consists then, essentially, in approximating compact operators with non compact ones.

In order to further study the topology of Δ we have to introduce more notation and ideas. Given a fixed subspace $\mathcal{Z} \subset \mathcal{H}$, denote by

$$\mathsf{Gr}^{\mathcal{Z}} := \{\mathcal{S} \in \mathsf{Gr}(\mathcal{H}) : \mathcal{S} \dot{+} \mathcal{Z} = \mathcal{H}\}.$$

D. Buckholtz proved [3] that $S \in Gr^{\mathbb{Z}}$ iff $||P_S + P_{\mathbb{Z}} - 1|| < 1$. Therefore it is clear that $Gr^{\mathbb{Z}}$ is open in $Gr(\mathcal{H})$. Moreover, elements in $Gr^{\mathbb{Z}}$ correspond naturally with graphs of bounded linear operators $\mathbb{Z}^{\perp} \to \mathbb{Z}$ (inducing the usual atlas for the classical Grassmann manifold):

- to a bounded linear operator B : Z[⊥] → Z corresponds the closed subspace S = Graph_B = {z' + Bz' : z' ∈ Z[⊥]};
- ► to a closed subspace $S \in Gr^{\mathbb{Z}}$ corresponds the operator $B = -P_{\mathbb{Z}||S|}|_{\mathbb{Z}^{\perp}} : \mathbb{Z}^{\perp} \to \mathbb{Z}.$

These correspondences are continuous, and reciprocal (here $P_{\mathcal{Z}||\mathcal{S}}$ denotes the idempotent with range \mathcal{Z} and nullspace \mathcal{S} induced by the decomposition $\mathcal{S} + \mathcal{Z} = \mathcal{H}$). In particular, it follows that $Gr^{\mathcal{Z}} \simeq \mathcal{B}(\mathcal{Z}^{\perp}, \mathcal{Z})$ is contractible.

 $Gr^{\mathcal{Z}}$ is a homogeneous space of the Banach-Lie group

$${\it Gl}^{{\it Z}}({\cal H}):=\{{\it G}\in{\it Gl}({\cal H}):{\it G}({\it Z})={\it Z}\}.$$

This group acts on $Gr^{\mathcal{Z}}$: if $S + \mathcal{Z} = \mathcal{H}$, and $G \in Gl^{\mathcal{Z}}(\mathcal{H})$, then also $G(S) + \mathcal{Z} = \mathcal{H}$, i.e., $G(S) \in Gr^{\mathcal{Z}}$. We define the space

$$\mathcal{E} := \bigsqcup_{\mathcal{Z} \in Gr(\mathcal{H})} \mathsf{Gl}^{\mathcal{Z}} imes \mathsf{Gl}^{\mathcal{Z}}$$

 $=\{(\mathcal{Z}, G, K)\in Gr(\mathcal{H})\times Gl(\mathcal{H})\times Gl(\mathcal{H}): G(\mathcal{Z})=K(\mathcal{Z})=\mathcal{Z}\}.$

The set \mathcal{E} can be endowed with a manifold structure by using the same ideas of the frame bundle construction in classical differential geometry.

Note the fact that $(G(\mathcal{Z}^{\perp}), K(\mathcal{Z}^{\perp})) \in \Delta$, for every $\mathcal{Z} \in Gr(\mathcal{H})$.

This leads us to define the following map

$$\mathfrak{p}:\mathcal{E} o\Delta,\ \mathfrak{p}(Z,G,K)=(G(\mathcal{Z}^{\perp}),K(\mathcal{Z}^{\perp})).$$

Theorem The map \mathfrak{p} is a real analytic fibre bundle.

The next step is to identify the fibers

$$\mathfrak{p}^{-1}(\mathcal{S},\mathcal{T})$$

of p:

Proposition

Take $(S, T) \in \Delta_{ij}$ and two subspaces \mathcal{H}_+ , \mathcal{H}_- such that dim $\mathcal{H}_- = i$, dim $\mathcal{H}_+ = j$ and $\mathcal{H}_+ \oplus \mathcal{H}_- = \mathcal{H}$. Then $\mathfrak{p}^{-1}(S, T)$ is a closed submanifold of \mathcal{E} , and there is a diffeomorphism

$$\mathfrak{p}^{-1}(\mathcal{S},\mathcal{T})\simeq \mathit{Gr}^{\mathcal{S}} imes (\mathit{Gl}^{\mathcal{H}_+}\cap \mathit{Gl}^{\mathcal{H}_-})^2.$$

The group $GI^{\mathcal{H}_+} \cap GI^{\mathcal{H}_-}$ consists of invertible operators which are *diagonal* in the decomposition $\mathcal{H}^+ \oplus \mathcal{H}^- = \mathcal{H}$. It follows that the homotopy type of the fiber $\mathfrak{p}^{-1}(\mathcal{S}, \mathcal{T})$ can be described in terms of the dimensions and co-dimensions of \mathcal{S} and \mathcal{T} (i.e., of GI(i), GI(j)).

In particular, if $P_{\mathcal{S}}, P_{\mathcal{T}} \in \mathcal{P}_{\infty,\infty}$, then $\mathfrak{p}^{-1}(\mathcal{S}, \mathcal{T})$ is contractible.

The space \mathcal{E} is the total space of a more natural bundle, namely

$$\pi: \mathcal{E}
ightarrow {\sf Gr}(\mathcal{H}), \ \ \pi(\mathcal{Z},{\sf G},{\sf K})=\mathcal{Z},$$

whose fibers are

$$\pi^{-1}(\mathcal{Z})\simeq \mathsf{Gl}^{\mathcal{Z}} imes \mathsf{Gl}^{\mathcal{Z}}.$$

Again, if $P_{\mathcal{Z}} \in \mathcal{P}_{\infty,\infty}$, this fiber is contractible. Let \mathcal{E}_{∞} denote the connected component of \mathcal{E} , corresponding to the infinite and co infinite component of $Gr(\mathcal{H})$. The image of π restricted to \mathcal{E}_{∞} is clearly $\mathcal{P}_{\infty,\infty}$, also a contractible space.

Corollary

 \mathcal{E}_{∞} is contractible.

Then we have

Theorem

 Δ_{∞} is contractible.

Proof.

The bundle $\mathfrak{p}: \mathcal{E}_{\infty} \to \mathbf{\Delta}_{\infty}$ has contractible fibers, and contractible total space. Thus $\mathbf{\Delta}_{\infty}$ has trivial homotopy groups, and is a C^{∞} manifold modelled in a Banach space.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q (~

Right Box

3. The space Γ: We consider now

 $\Gamma := \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \setminus \Delta.$

Recall that

$$\mathbf{\Gamma}_{ijkl} := \mathbf{\Gamma} \cap (\mathcal{P}_{i,j} \times \mathcal{P}_{k,l}) = \mathcal{P}_{i,j} \times \mathcal{P}_{k,l},$$

whenever $i \neq k$ or $j \neq l$, are the only connected components of Γ with finite dimensional rank or corank. Hence we are left to understand the structure of pairs in $\mathcal{P}_{\infty,\infty} \times \mathcal{P}_{\infty,\infty}$ without a common complement.

Recall also the Remark by Lauzon and Treil, which can be rephrased

$$(P_{\mathcal{S}}, P_{\mathcal{T}}) \in \mathbf{\Gamma} \iff \begin{cases} \mathbf{a} \ P_{\mathcal{S}} P_{\mathcal{T}}^{\perp} \text{ is compact in } (\mathcal{S} \cap \mathcal{T}^{\perp})^{\perp} \\ \mathbf{b} \ \dim \mathcal{S} \cap \mathcal{T}^{\perp} \neq \dim \mathcal{S}^{\perp} \cap \mathcal{T}. \end{cases}$$

At this point it is useful to recall the five space decomposition of the Hilbert space in the presence of two (fixed) subspaces S, T. Namely, the subspaces

$$\mathcal{S}\cap\mathcal{T},\;\mathcal{S}^{\perp}\cap\mathcal{T}^{\perp},\;\mathcal{S}\cap\mathcal{T}^{\perp}$$
 and $\;\mathcal{S}^{\perp}\cap\mathcal{T}^{\perp}$

reduce the projections P_S , P_T , and therefore also the orthogonal of the sum of these (usually called the *generic part* of \mathcal{H}), reduces these projections. We shall denote \mathcal{H}_0 this generic part, and by P_{S_0} and P_{T_0} the reductions to \mathcal{H}_0 .

A D > 4 回 > 4 □ > 4

It can be proved that the condition a) above

$$\mathcal{P}_{\mathcal{S}}\mathcal{P}_{\mathcal{T}}^{\perp}$$
 is compact in $(\mathcal{S} \cap \mathcal{T}^{\perp})^{\perp}$, (1)

can be replaced by the condition

$$P_{\mathcal{S}_0} - P_{\mathcal{T}_0}$$
 is compact; (2)

or by the condition

$$P_{\mathcal{S}_0} P_{\mathcal{T}_0}^{\perp}$$
 is compact; (3)

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

or also by

either
$$P_{\mathcal{S}}P_{\mathcal{T}}^{\perp}$$
 or $P_{\mathcal{T}}P_{\mathcal{S}}^{\perp}$ is compact. (4)

In a previous paper [1], the first named author and G. Corach studied pairs of projections (P, Q) satisfying that PQ is compact (we called them *essentially orthogonal* projections):

 $\mathcal{C}(\mathcal{H}) = \{(P, Q) \in \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) : PQ \in \mathcal{K}(\mathcal{H})\}.$

Let us briefly describe some observations made there. Given a \mathcal{L} is a Hilbert space, we denote by $\mathcal{K}(\mathcal{L}) \subset \mathcal{B}(\mathcal{L})$ the ideal of compact operators in \mathcal{L} , and by

$$\pi_{\mathcal{L}}: \mathcal{B}(\mathcal{L}) \to \mathcal{B}(\mathcal{L})/\mathcal{K}(\mathcal{L}) := \mathbf{C}(\mathcal{L})$$

the *-epimorphism onto de Calkin algebra $C(\mathcal{L})$.

The fact that PQ is compact means that $\pi(P)\pi(Q) = 0$, i.e., $\pi(P)$ and $\pi(Q)$ are mutually orthogonal (and non trivial, different from 0 or 1, because $P, Q \in \mathcal{P}_{\infty,\infty}$) in $\mathbf{C}(\mathcal{H})$. The projections $\pi(P)$ and $\pi(Q)$ can be written as 2×2 matrices in terms of $\pi(P)$ as

$$\pi(P)=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight) ext{ and } \pi(Q)=\left(egin{array}{cc} 0 & 0 \ 0 & q \end{array}
ight).$$

We can distinguish two classes:

$$C_1 := \{ (P, Q) : q = 1 \text{ in } \mathbf{C}(R(P)^{\perp}) \},\$$

and

$$\mathcal{C}_\infty := \{(P,Q): q ext{ is a proper projection } (
eq 0,1) ext{ in } \mathbf{C}(R(P)^\perp) \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the first class, the fact that q = 1 means that the operator

$$Q\big|_{R(P)^{\perp}}: R(P)^{\perp} \to R(Q)$$

is a Fredholm operator, and has therefore an index, denoted $index(P^{\perp}, Q)$. This index for pair of projections was studied by several authors, let us recall the paper [2] by J. Avron, R. Seiler and B. Simon.

We recall some results from [1]:

1. The connected components of $\ensuremath{\mathcal{C}}$ are

$$\mathcal{C}_{\infty}$$
 and $\mathcal{C}_{1}^{n} = \{(P,Q) \in \mathcal{C}_{1} : \operatorname{index}(P^{\perp},Q) = n\}.$

- 2. the set C is a C^{∞} (non complemented) submanifold of $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$.
- 3. $(P,Q) \in \mathcal{C}_1$ if and only if dim $N(P) \cap N(Q) < \infty$.

Putting these facts together in our context, we have that the set Γ can be parted in two broad (disjoint) classes

 $\pmb{\Gamma}=\pmb{\Gamma}_1\cup\pmb{\Gamma}_\infty.$

of pairs in Γ such that, respectively $(P_S, P_T^{\perp}) \in C_1$, or $(P_S, P_T^{\perp}) \in C_{\infty}$.

The mentioned index is computed in this setting by dim $S \cap T^{\perp} - \dim S^{\perp} \cap T$. The second of the two conditions (condition **b**) above) for a pair to belong to Γ means that this index must be different from zero.

Concerning the class Γ_1 we have: Theorem

$$\Gamma_1 = \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) \in \Gamma : \dim \mathcal{S} \cap \mathcal{T}^{\perp} < \infty \text{ and } \dim \mathcal{S}^{\perp} \cap \mathcal{T} < \infty \}.$$

The connected components of Γ_1 are

$$\Gamma_1^n := \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) : index(P_{\mathcal{S}}, P_{\mathcal{T}}^{\perp}) = n \}, \text{ for } n \in \mathbb{Z} \setminus \{0\}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

The set Γ_1 is a non complemented C^{∞} submanifold of $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$.

For the class $\pmb{\Gamma}_\infty$ we have

$$\Gamma_{\infty} := \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) \in \Gamma : \dim \mathcal{S} \cap \mathcal{T}^{\perp} = +\infty \text{ or } \dim \mathcal{S}^{\perp} \cap \mathcal{T} = +\infty \}.$$

Clearly only one of the two dimensions can be infinite. Then this set parts into two disjoint subsets

$$\Gamma_{\infty} = \Gamma'_{\infty} \cup \Gamma'_{\infty},$$

where

$$\Gamma'_{\infty} := \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) : \dim \mathcal{S} \cap \mathcal{T}^{\perp} < \infty \text{ (and } \dim \mathcal{S}^{\perp} \cap \mathcal{T} = +\infty) \},$$

and

$$\Gamma_{\infty}' := \{ (P_{\mathcal{S}}, P_{\mathcal{T}}) : \dim \mathcal{S}^{\perp} \cap \mathcal{T} < \infty \text{ (and } \dim \mathcal{S} \cap \mathcal{T}^{\perp} = +\infty) \}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

And we have

Theorem Both sets Γ_{∞}^{I} , Γ_{∞}^{r} are C^{∞} (non complemented) submanifolds of $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$, which are diffeomorphic to \mathcal{C}_{∞} . They are the connected components of Γ_{∞} .

4. Examples

1. The Hilbert space is $L^2 := L^2(\mathbb{T}, \frac{dt}{2\pi})$, and denote by $H^2 \subset L^2$ the Hardy space, H^∞ the algebra of bounded analytic functions in the disk \mathbb{D} , and C the continuous functions in \mathbb{T} . The Sarason algebra is defined as

$$H^{\infty}+C=\{f+g:f\in H^{\infty},g\in C\}.$$

We write $(H^{\infty} + C)^{\times}$ for the invertible functions of the algebra $H^{\infty} + C$. Denote by hf the harmonic extension of f to \mathbb{D} . One has that $f \in (H^{\infty} + C)^{\times}$ if and only if there exist $\delta, \epsilon > 0$ such that $|(hf)(re^{it})| \ge \epsilon$ for $1 - \delta < r < 1$. For $f \in (H^{\infty} + C)^{\times}$, one can define an index ind(f) as minus the winding number with respect to the origin of the curve $(hf)(re^{it})$ for $1 - \delta < r < 1$. This index is stable under small perturbations and it is an homomorphism of $(H^{\infty} + C)^{\times}$ onto the group of integers.

We consider subspaces of the form

$$\mathcal{S}=\mathbf{f}\mathcal{H}^2, \ \ \mathcal{T}=\mathbf{g}\mathcal{H}^2, \ \ \mathbf{f},\mathbf{g}\in(\mathcal{H}^\infty+\mathcal{C})^{ imes}.$$

A D N A

We obtain that the subspaces fH^2 , gH^2 admit a common complement if and only if ind(f) = ind(g). If $ind(f) \neq ind(g)$, we have that $(fH^2, gH^2) \in \Gamma_1^n$, where n = ind(f) - ind(g). **2.** Let $I, J \subset \mathbb{R}^n$ be measurable sets with finite and positive Lebesgue measure. Consider $\mathcal{H} = L^2(\mathbb{R}^n)$ with Lebesgue measure and the projections P_I onto the elements of $L^2(\mathbb{R}^n)$ supported in I and Q_J onto the elements whose Fourier-Plancherel transform is supported in J.

The following facts are known:

- ▶ $R(P_I) \cap R(Q_J) = R(P_I) \cap N(Q_J) = N(P_I) \cap R(Q_J) = \{0\}$ and $N(P_I) \cap N(Q_J)$ is infinite dimensional.
- $P_I Q_J P_I$ is compact, in fact, nuclear.

A reference for these facts is the survey paper by G.B. Folland and A. Sitaram [5].

Therefore we have the following:

1.
$$S_I = \{f \in L^2(\mathbb{R}^n) : \sup(f) \subset I\}$$
 and
 $\mathcal{T}_J = \{g \in L^2(\mathbb{R}^n) : \sup(\hat{g}) \subset J\}$ have a common complement
(and belong to $\mathbf{\Delta}_{\infty}$).

2. S_I and $\mathcal{T}_J^{\perp} = \mathcal{T}_{J^c}$ do not have a common complement. The role of \mathcal{T} is reversed: now $S_I \cap (\mathcal{T}_J^{\perp})^{\perp} = R(P_I) \cap R(Q_J) = \{0\}$, but $S_I^{\perp} \cap \mathcal{T}_J^{\perp}$ is infinite dimensional. Moreover

$$1 - P_{\mathcal{S}_I} \big|_{\mathcal{T}_J^{\perp}} = P_I - P_I Q_J^{\perp} P_I = P_I Q_J P_I$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is compact. Hence $(P_{\mathcal{S}_l}, P_{\mathcal{T}_l^\perp}) \in \mathbf{\Gamma}'_\infty$.

References

[1] E. Andruchow; G. Corach. Essentially orthogonal subspaces. J. Operator Theory 79 (2018), no. 1, 79–100.

[2] J. Avron; R. Seiler; B. Simon. The index of a pair of projections. J. Funct. Anal. 120 (1994), no. 1, 220–237.

[3] E. Buckholtz. Hilbert space idempotents and involutions. Proc. Amer. Math. Soc. 128 (2000), no. 5, 1415–1418.

[4] Corach, G.; Porta, H.; Recht, L. The geometry of spaces of projections in C^* -algebras. Adv. Math. 101 (1993), no. 1, 59–77.

[5] G.B. Folland; A. Sitaram. The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238.

[6] J. Giol. Segments of bounded linear idempotents on a Hilbert space, J. Funct. Anal. 229 (2005), 405–423.

[7] M. Lauzon; S. Treil, Common complements of two subspaces of a Hilbert space. J. Funct. Anal. 212 (2004), no. 2, 500–512.

[8] H. Porta; L. Recht. Minimality of geodesics in Grassmann manifolds. Proc. Amer. Math. Soc. 100 (1987), no. 3, 464–466.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りの(~