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1. Introduction

The results that will be presented here are taken from two recent
unpublished papers:

I E.A. and E. Chiumiento, Subspaces with or without a
common complement, arXiv 2412.18113, and

I E.A. and E. Chiumiento, A note on common complements,
arXiv 2412.19316.

These manuscripts are reflections on the paper by M. Lauzon and
S. Treil (Common complements of two subspaces of a Hilbert
space, J. Funct. Anal. 212 (2004), no. 2, 500–512). These
authors characterize pairs of (closed) subspaces S and T of a
Hilbert space H, which have a common complement Z. That is,
for which there exists a closed subspace Z ⊂ H such that

S+̇Z = T +̇Z = H,

where the symbol +̇ stands for direct sum.
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Denote by B(H) the algebra of bounded linear operators in a
complex separable Hilbert space H, P(H) the subset of orthogonal
projections, and Gr(H) the Grassmann manifold of H, Gl(H) the
group of invertible operators in H, and U(H) the unitary group.
Throughout, we identify subspaces in S ∈ Gr(H) with their
corresponding orthogonal projections in PS ∈ P(H).
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Our objects of study will be the complementary sets

∆ = {(PS ,PT ) : S and T have a common complement},

and
Γ = P(H)× P(H) \∆.

The space P(H) is a complemented C∞ submanifold of B(H) (see
[4], [8]). Therefore it is natural to ask about the geometric
structure of the sets ∆ and Γ. By an elementary argument, or
using results by J. Giol [6] or D. Buckholtz [3], it can be shown
that ∆ is an open subset of P(H)× P(H). We shall see that its
complement Γ is a (non complemented) closed C∞ submanifold of
P(H)× P(H). Thus, both spaces have differentiable structure.
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2. The space ∆
Let us state the following result from [7] by M. Lauzon and S.
Treil.

Denote by G = PT
∣∣
S , regarded as an operator G : S → T (so that

G ∗ : T → S is PS
∣∣
T ). Denote by E the projection valued spectral

measure of G ∗G . Note that

N(G ) = S ∩ T ⊥ and N(G ∗) = S⊥ ∩ T .

Theorem (Lauzon-Treil 2004)
S and T have a common complement if and only if

dimN(G ) + dim E(0, 1− ε)S = dimN(G ∗) + dim E(0, 1− ε)S

for some ε > 0 (equivalently, for all sufficiently small ε > 0). This
characterization also holds for non separable Hilbert spaces (Thm.
0.1 [7]).
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As a straightforward consequence of the previous statement,
Lauzon and Treil oberved that
Remark (Lauzon-Treil 2005)
the subspaces S and T do not have a common complement in a
separable Hilbert space H if and only if dimS ∩ T ⊥ 6= dimS⊥ ∩ T
and the operator (1− G ∗G )

∣∣
N(G)⊥

is compact in N(G )⊥ (Rem.

0.5 [7]).
Later on J. Giol proved the following equivalence (see Prop. 6.2.
[6]):
Theorem (Giol 2005)

i) S and T are subspaces with a common complement.

ii) There exists P ∈ P(H) such that ‖PS − P‖ < 1 and
‖P − PT ‖ < 1.

In particular, note that if ‖PS − PT ‖ < 1, then (PS ,PT ) ∈ ∆.
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The Grassmann manifold Gr(H) of H is defined as the set of all
the closed subspaces of H. We identify the Grassmann manifold
with the manifold of all orthogonal projections in H given by

P(H) = {P ∈ B(H) : P = P2 = P∗}.

the connected components of P(H) are parametrized by the rank
and the co-rank. We denote by Pi ,j the connected component of
P(H) consisting of projections with rank i and corank j , where the
indices satisfy 0 ≤ i , j ≤ ∞ and i + j =∞ (usual convention if
both are infinite).
Our main interest is the component P∞,∞.
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The unitary group U(H) of H acts on P(H): U · P = UPU∗. The
orbits of this action are the connected components Pi ,j . For a
given P ∈ Pi ,j , the map πP induced by the action,

πP : U(H)→ Pi ,j , πp(U) = UPU∗

is a fibre bundle. The fibre π−1
P (P) over P identifies with the

product U(R(P))× U(N(P)). Thus the homotopy type of Pi ,j is
determined by the homotopy of U(H), U(i) and U(j). In
particular, by Kuiper’s theorem, P∞,∞ is contractible.
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If i = k <∞ or j = l <∞, then Pi ,j × Pk,l ⊆ ∆. Indeed, take
(P,Q) ∈ Pi ,j × Pk,l with i = k . Since
T := Q|R(P) : R(P)→ R(Q) is an operator defined in
finite-dimensional spaces, we have
k = dimN(T ) + dimR(T ) = dimN(T ∗) + dimR(T ∗). From
dimR(T ) = dimN(T )⊥ = dimR(T ∗), it follows that
dimR(P) ∩ N(Q) = dimN(T ) = dimN(T ∗) = dimR(Q) ∩ N(P).
The case where j = l <∞ follows similarly.
On the other hand, assume now that i 6= k or j 6= l , and take
(P,Q) ∈ Pi ,j × Pk,l with i 6= k . Then R(P) and R(Q) cannot be
isomorphic, and therefore (P,Q) ∈ Γ. Similarly for the case where
(P,Q) ∈ Pi ,j × Pk,l with j 6= l .
From these facts, we obtain that

∆ij := ∆ ∩ (Pi ,j × Pi ,j) = Pi ,j × Pi ,j ,

whenever i <∞ or j <∞, are the only connected components of
∆ with finite dimensional rank or corank.



Left Box Right Box

To analize ∆∞, we need lo look briefly into the geometry of P(H),
as studied by G. Corach, H. Porta and L. Recht ([8], [4]).
Specifically, that if P,Q ∈ P(H) satisfy that ‖P − Q‖ < 1, then
there exists a unique geodesic P(t) = e itXPe−itX with X ∗ = X ,
PXP = P⊥XP⊥ = 0 and ‖X‖ < π/2, such that (P(0) = P and)
P(1) = Q.

Lemma
Let P,Q be orthogonal projections such that ‖P −Q‖ < 1, and let
P(t) be the unique minimal geodesic of P(H) such that P(0) = P
and P(1) = Q. Then for all t ∈ [0, 1] we have that
‖P − P(t)‖ < 1.

Using this Lemma we get that

Theorem
The subset ∆∞ of ∆, consisting of pairs of pojections in P∞,∞
with a common complement, is arcwise connected. Therefore ∆∞
is the connected component of such pairs.
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Proof:

Let (PS ,PT ) ∈ ∆∞. We proceed in steps. First we show that
there is a continuous path inside ∆ connecting (PS ,PT ) with a
pair (PS ,E ) such that ‖PS − E‖ < 1. Indeed, the theorem by Giol
says that there exists E ∈ P(H) such that ‖PS − E‖ < 1 and
‖PT − E‖ < 1. Let E (t) be the minimal geodesic of P(H) with
E (0) = E and E (1) = PT . Then the curve (PS ,E (t)) remains
inside ∆ for t ∈ [0, 1]. This follows again using the result by Giol,
for we have the intermediate projection E satisfying ‖PS − E‖ < 1
and ‖E (t)− E‖ < 1 (by the above Lemma).

Next, we find a continuous path inside ∆ connecting (PS ,E ) with
(PS ,PS). Let P(t) be the minimal geodesic joining P(0) = PS
and P(1) = E . Then the curve (PS ,P(t)) remains inside ∆ for
t ∈ [0, 1], since, again by the Lemma we know that
‖PS − P(t)‖ < 1.
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The proof finishes by showing that any two pairs (PS ,PS) and
(PS′ ,PS′) with S,S ′ infinite and co-infinite, can be joined by a
continuous path inside ∆. If S and T have a common complement
Z and U is a unitary operator, then US and UT also have a
common complement (namely UZ). Since PS ,PS′ ∈ P∞,∞, there
exists a continuous path of unitaries U(t) such that U(0) = 1 and
U(1)S = S ′. Then (U(t)PSU

∗(t),U(t)PSU
∗(t)) is a continuous

curve in ∆ wich joins (PS ,PS) and (PS′ ,PS′). �
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We also have

Theorem
∆∞ is dense in P∞,∞ × P∞,∞.

Pairs (PS ,PT ) which do not belong to Γ satisfy that certain
operator must be compac. Namely:
(1−G ∗G )

∣∣
N(G)⊥

is compact in N(G )⊥, where G = PT
∣∣
S : S → T .

The proof consists then, essentially, in approximating compact
operators with non compact ones.
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In order to further study the topology of ∆ we have to introduce
more notation and ideas. Given a fixed subspace Z ⊂ H, denote by

GrZ := {S ∈ Gr(H) : S+̇Z = H}.

D. Buckholtz proved [3] that S ∈ GrZ iff ‖PS + PZ − 1‖ < 1.
Therefore it is clear that GrZ is open in Gr(H).
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Moreover, elements in GrZ correspond naturally with graphs of
bounded linear operators Z⊥ → Z (inducing the usual atlas for the
classical Grassmann manifold):

I to a bounded linear operator B : Z⊥ → Z corresponds the
closed subspace S = GraphB = {z ′ + Bz ′ : z ′ ∈ Z⊥};

I to a closed subspace S ∈ GrZ corresponds the operator
B = −PZ‖S

∣∣
Z⊥ : Z⊥ → Z.

These correspondences are continuous, and reciprocal (here PZ‖S
denotes the idempotent wih range Z and nullspace S induced by
the decomposition S+̇Z = H).
In particular, it follows that GrZ ' B(Z⊥,Z) is contractible.
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GrZ is a homogeneous space of the Banach-Lie group

GlZ(H) := {G ∈ Gl(H) : G (Z) = Z}.

This group acts on GrZ : if S+̇Z = H, and G ∈ GlZ(H), then also
G (S)+̇Z = H, i.e., G (S) ∈ GrZ . We define the space

E :=
⊔

Z∈Gr(H)

GlZ × GlZ

= {(Z,G ,K ) ∈ Gr(H)× Gl(H)× Gl(H) : G (Z) = K (Z) = Z}.

The set E can be endowed with a manifold structure by using the
same ideas of the frame bundle construction in classical differential
geometry.
Note the fact that (G (Z⊥),K (Z⊥)) ∈ ∆, for every Z ∈ Gr(H).
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This leads us to define the following map

p : E → ∆, p(Z ,G ,K ) = (G (Z⊥),K (Z⊥)).

Theorem
The map p is a real analytic fibre bundle.
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The next step is to identify the fibers

p−1(S, T )

of p:

Proposition

Take (S, T ) ∈ ∆ij and two subspaces H+, H− such that
dimH− = i , dimH+ = j and H+ ⊕H− = H. Then p−1(S, T ) is a
closed submanifold of E , and there is a diffeomorphism

p−1(S, T ) ' GrS × (GlH+ ∩ GlH−)2.
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The group GlH+ ∩ GlH− consists of invertible operators which are
diagonal in the decomposition H+ ⊕H− = H. It follows that the
homotopy type of the fiber p−1(S, T ) can be described in terms of
the dimensions and co-dimensions of S and T (i.e., of Gl(i),Gl(j)).

In particular, if PS ,PT ∈ P∞,∞, then p−1(S, T ) is contractible.
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The space E is the total space of a more natural bundle, namely

π : E → Gr(H), π(Z,G ,K ) = Z,

whose fibers are
π−1(Z) ' GlZ × GlZ .

Again, if PZ ∈ P∞,∞, this fiber is contractible. Let E∞ denote the
connected component of E , corresponding to the infinite and co
infinite component of Gr(H). The image of π restricted to E∞ is
clearly P∞,∞, also a contractible space.

Corollary

E∞ is contractible.
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Then we have

Theorem
∆∞ is contractible.

Proof.
The bundle p : E∞ → ∆∞ has contractible fibers, and contractible
total space. Thus ∆∞ has trivial homotopy groups, and is a C∞

manifold modelled in a Banach space.
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3. The space Γ:
We consider now

Γ := P(H)× P(H) \∆.

Recall that

Γijkl := Γ ∩ (Pi ,j × Pk,l) = Pi ,j × Pk,l ,

whenever i 6= k or j 6= l , are the only connected components of Γ
with finite dimensional rank or corank. Hence we are left to
understand the structure of pairs in P∞,∞ × P∞,∞ without a
common complement.
Recall also the Remark by Lauzon and Treil, which can be
rephrased

(PS ,PT ) ∈ Γ ⇐⇒
{

a) PSP
⊥
T is compact in (S ∩ T ⊥)⊥

b) dimS ∩ T ⊥ 6= dimS⊥ ∩ T .
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At this point it is useful to recall the five space decomposition of
the Hilbert space in the presence of two (fixed) subspaces S, T .
Namely, the subspaces

S ∩ T , S⊥ ∩ T ⊥, S ∩ T ⊥ and S⊥ ∩ T ⊥

reduce the projections PS ,PT , and therefore also the orthogonal of
the sum of these (usually called the generic part of H), reduces
these projections. We shall denote H0 this generic part, and by
PS0 and PT0 the reductions to H0.
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It can be proved that the condition a) above

PSP
⊥
T is compact in (S ∩ T ⊥)⊥, (1)

can be replaced by the condition

PS0 − PT0 is compact; (2)

or by the condition
PS0P

⊥
T0

is compact; (3)

or also by
either PSP

⊥
T or PT P

⊥
S is compact. (4)
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In a previous paper [1], the first named author and G. Corach
studied pairs of projections (P,Q) satisfying that PQ is compact
(we called them essentially orthogonal projections):

C(H) = {(P,Q) ∈ P(H)× P(H) : PQ ∈ K(H)}.

Let us briefly describe some observations made there.
Given a L is a Hilbert space, we denote by K(L) ⊂ B(L) the ideal
of compact operators in L, and by

πL : B(L)→ B(L)/K(L) := C(L)

the ∗-epimorphism onto de Calkin algebra C(L).
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The fact that PQ is compact means that π(P)π(Q) = 0, i.e.,
π(P) and π(Q) are mutually orthogonal (and non trivial, different
from 0 or 1, because P,Q ∈ P∞,∞) in C(H).
The projections π(P) and π(Q) can be written as 2× 2 matrices in
terms of π(P) as

π(P) =

(
1 0
0 0

)
and π(Q) =

(
0 0
0 q

)
.

We can distinguish two classes:

C1 := {(P,Q) : q = 1 in C(R(P)⊥)},

and

C∞ := {(P,Q) : q is a proper projection ( 6= 0, 1) in C(R(P)⊥)}.
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In the first class, the fact that q = 1 means that the operator

Q
∣∣
R(P)⊥

: R(P)⊥ → R(Q)

is a Fredholm operator, and has therefore an index, denoted
index(P⊥,Q). This index for pair of projections was studied by
several authors, let us recall the paper [2] by J. Avron, R. Seiler
and B. Simon.
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We recall some results from [1]:

1. The connected components of C are

C∞ and Cn1 = {(P,Q) ∈ C1 : index(P⊥,Q) = n}.

2. the set C is a C∞ (non complemented) submanifold of
B(H)× B(H).

3. (P,Q) ∈ C1 if and only if dimN(P) ∩ N(Q) <∞.
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Putting these facts together in our context, we have that the set Γ
can be parted in two broad (disjoint) classes

Γ = Γ1 ∪ Γ∞.

of pairs in Γ such that, respectively (PS ,P
⊥
T ) ∈ C1, or

(PS ,P
⊥
T ) ∈ C∞.

The mentioned index is computed in this setting by
dimS ∩ T ⊥ − dimS⊥ ∩ T . The second of the two conditions
(condition b) above) for a pair to belong to Γ means that this
index must be different from zero.



Left Box Right Box

Concerning the class Γ1 we have:

Theorem

Γ1 = {(PS ,PT ) ∈ Γ : dimS ∩ T ⊥ <∞ and dimS⊥ ∩ T <∞}.

The connected components of Γ1 are

Γn
1 := {(PS ,PT ) : index(PS ,P

⊥
T ) = n}, for n ∈ Z \ {0}.

The set Γ1 is a non complemented C∞ submanifold of
B(H)× B(H).
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For the class Γ∞ we have

Γ∞ := {(PS ,PT ) ∈ Γ : dimS∩T ⊥ = +∞ or dimS⊥∩T = +∞}.

Clearly only one of the two dimensions can be infinite. Then this
set parts into two disjoint subsets

Γ∞ = Γl
∞ ∪ Γr

∞,

where

Γl
∞ := {(PS ,PT ) : dimS ∩ T ⊥ <∞ (and dimS⊥ ∩ T = +∞)},

and

Γr
∞ := {(PS ,PT ) : dimS⊥ ∩ T <∞ (and dimS ∩ T ⊥ = +∞)}
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And we have

Theorem
Both sets Γl

∞, Γr
∞ are C∞ (non complemented) submanifolds of

B(H)× B(H), which are diffeomorphic to C∞. They are the
connected components of Γ∞.
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4. Examples

1. The Hilbert space is L2 := L2(T, dt2π ), and denote by H2 ⊂ L2

the Hardy space, H∞ the algebra of bounded analytic functions in
the disk D, and C the continuous functions in T. The Sarason
algebra is defined as

H∞ + C = {f + g : f ∈ H∞, g ∈ C}.

We write (H∞ + C )× for the invertible functions of the algebra
H∞+ C . Denote by hf the harmonic extension of f to D. One has
that f ∈ (H∞ + C )× if and only if there exist δ, ε > 0 such that
|(hf )(re it)| ≥ ε for 1− δ < r < 1. For f ∈ (H∞ + C )×, one can
define an index ind(f ) as minus the winding number with respect
to the origin of the curve (hf )(re it) for 1− δ < r < 1. This index
is stable under small perturbations and it is an homomorphism of
(H∞ + C )× onto the group of integers.
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We consider subspaces of the form

S = fH2, T = gH2, f , g ∈ (H∞ + C )×.

We obtain that the subspaces fH2, gH2 admit a common
complement if and only if ind(f ) = ind(g).
If ind(f ) 6= ind(g), we have that (fH2, gH2) ∈ Γn

1, where
n = ind(f )− ind(g).
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2. Let I , J ⊂ Rn be measurable sets with finite and positive
Lebesgue measure. Consider H = L2(Rn) with Lebesgue measure
and the projections PI onto the elements of L2(Rn) supported in I
and QJ onto the elements whose Fourier-Plancherel transform is
supported in J.
The following facts are known:

I R(PI ) ∩ R(QJ) = R(PI ) ∩ N(QJ) = N(PI ) ∩ R(QJ) = {0}
and N(PI ) ∩ N(QJ) is infinite dimensional.

I PIQJPI is compact, in fact, nuclear.

A reference for these facts is the survey paper by G.B. Folland and
A. Sitaram [5].
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Therefore we have the following:

1. SI = {f ∈ L2(Rn) : sup(f ) ⊂ I} and
TJ = {g ∈ L2(Rn) : sup(ĝ) ⊂ J} have a common complement
(and belong to ∆∞).

2. SI and T ⊥J = Tc do not have a common complement. The
role of T is reversed: now
SI ∩ (T ⊥J )⊥ = R(PI ) ∩ R(QJ) = {0}, but S⊥I ∩ T ⊥J is infinite
dimensional. Moreover

1− PSI
∣∣
T ⊥J

= PI − PIQ
⊥
J PI = PIQJPI

is compact. Hence (PSI ,PT ⊥J
) ∈ Γl

∞.
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