H-free systems and the existence of natural density

Aurelia Dymek / Stanistaw Kasjan / Joanna Kutaga-Przymus (Nicolaus Copernicus University in
Torun)

Vienna 25.04.2024



Number theory 1930’s

For 2 C N: Mg = Upcy bZ (set of multiples), Fyz = Z\ My (%-free set).
Remark:

s If M C Zis closed under taking multiples then M = M.
= We say that # is primitive if b|b’ for b,b' € # — b=1b'.
. PBPim . — B\ U2 k%#. Then Mz = M gprim and PBPTM s primitive.

If 1 € % then #P™ = {1} and Fy = ().

For % = P2 = squares of primes, F = square-free numbers and 15, = 1°.

(u: Z — {—1,0,1} is the symmetric extension of the Mdbius function: (0) =0,

p(py - ... px) = (=K, u(p?n) =0.)

Abundant numbers: n € A if sum its proper divisors exceeds n. We have A = M

and Fa = P UD (perfect + deficient). 2



Number theory 1930’s: density questions

Davenport / Erdés / Chowla (independently) 1930's: d(A) = limy_o 2|A N [1, ]|
exists (question by Bessel-Hagen 1929).

Does d(My) always exist?

= Besicovitch 1934: For & := (Uy>1[T«, 2Tk))?"™, where T is a rapidly increasing
sequence, we have d(My) > % and d(Mg) < e.

= Davenport-Erdos 1936:

d(Mz) = limp_00 @ S k<nkemy F = A(Mz) = limg_oo d(Mgrp k))-
» Erdds 1948: d(M ) exists iff

lim i ~1 P = 0.
lim lim sup x > 1, x] N aZ N Fgnp,a =0
xl—e<a<x,ac®



Besicovitch: if d(M ) exists,

thin: if >,c21/b < o0,

Erdés: if || = oo, pairwise coprime and thin, e.g. # = P2,

Behrend: if d(Myz) =1 (e.g. # C P satisfying Zp@@% = 00),

taut: if (Mg (b)) < 6(Mg) for be B = cA L % for A Behrend.,
minimal: if for any n € Z, there exists s € N with n+ sZ C My or n+ sZ C F.

minimal

For primitive sets 4, faut
au :
we have the following thin

relations: Behrend

Besicovitch




P-free subshifts and its friends

Given B CN, let := 17, € {0,1}% and X, := {0™ : n € Z} (the B-free subshift).

If % is Erdés, then X, is hereditary, i.e. if y € {0,1}%, x € X;, and y < x then y € X,,.
" 7 = the hereditary closure of X, (the smallest hereditary subshift containing X;,).
» Xy = %-admissible subshift = {x € {0,1}Z : |supp x mod b| < b for b € £}

Notice that X, C Xy as n € Xz. Since Xy is hereditary, we get X, C 5(77 C Xg.

If % is Erdés then X, = ~n = Xz (el Abdalaoui, Lemanczyk, de la Rue 2015).

Dynamical properties of X, C )NQ? C Xy <> number theoretic properties of M 4 and F.

E.g. (Kasjan, Lemanczyk, Alterman 2023):

» A is Erdés <= X, = Xz and hyp(X;) > 0,
= % is Behrend (d(My) =1) <= X, is proximal and hop(X;) = 0. >



Mirsky measure

If % is Erdés then 7 = 1x, is a generic point: % > n<n Oony — vy ~> Mirsky measure
(n € {0,1}%, so we look at frequencies of blocks). It is ergodic and has full support (el
Abdalaoui, Lemanczyk, de la Rue 2015).

In general, n might only be quasi-generic: if (/V;) is such that
-l Maz N1, Nj]| = d(M) then 1 3, Sy — V.

Algebraic definition of v,:

» G:=lpepZ/bZ DO H:={(n,n,...):neZ}={R"(0,0,...): n€Z} where
Rg=g+(1,1,...)forge G

» W:={he H:hy,#0mod b for each b € A}

¢: H — {0,1}* given by p(h)(n) =1 <= R"he W

= we have po R=00¢p

= vy = ou(mp)



Tautification &%’ of %

A is taut if (5(.//\/{”\{[3}) < (S(J\/lﬁ).
Theorem (Dymek, Kasjan, KP, Lemanczyk 2018 and 2023): For any 4, there exists a
(unique!) taut set %’ such that Mg D My and §(My) = §(My).

Rmk: The conditions on M4 can be replaced by v, = v,,.

To be more precise:

B = (P U C)PM where C = {c € N: cA C & for some Behrend set A}.

Moreover, & is taut <= % is primitive and C = ().



Minimisation %* of %4

Tautification: %' = (U C)P"™, C = {c € N: cA C % for some Behrend set A}.
A is taut <= A is primitive and C = ().

Minimisation: % is minimal if 7 is a Toeplitz sequence.

B* = (BUD)Pm D=1{deN:dAC % for some infinite pairwise coprime set .A}.
We have C C D, as any Behrend set contains an infinite pairwise coprime subset.
Moreover (Dymek, Kasjan, Keller, KP, Lemanczyk 2018-2023), if 4 is primitive then
A is minimal <= D =0 <= X, is minimal.

Theorem (Dymek, Kasjan, Keller, KP, Lemanczyk 2018-2023): Each X;, is essentially
minimal. Moreover, X« C X; is the unique minimal subset of Xj,.



Tautification 4’ and minimisation %4* of %4

We have the following (joint) strenghtening of X,- C X,, and Mg D Mg D My:
Theorem (Dymek, Kasjan, KP, M.D. Lemanczyk 2021-2023): Xpe € Xy © X5
Why “minimal”?

Theorem (Dymek, Kasjan, KP, Sell 2024) Suppose that € is taut. Then X, C X,
— Mgz D Mg D Mg. (In fact, this implies X« C X, C X.)

Partial order on taut sets: 41 < 62 <= Xy, C X,

= {# — minimal} = minimal elements of <
= * — the smallest element of

Taut(#) = {¢ C N: ¢ is taut such that X, C X,}.

» %' = the largest element of Taut(%).



1. Prop (Dymek, Kasjan, KP, Lemanczyk 2015): d(Mg) exists = d(Mg) exists.

This result was wrongly quoted (<= instead of =) in [Bergelson, KP, Lemanczyk,
Richter 2019]. ..

Question 1: Can all triples ijk € {0,1}3 with ij # 01 encoding the information whether
d(Mg), d(Mg), d(Mg-) exist occur? Yes.

2. Conjecture (Keller 2021) on M(X,, ).

= Proved (Dymek, KP, Sell 2024).
= Original plan: prove Keller's conjecture first for taut sets % and then pass from %4
to A’ by proving that d*(Mg \ Mg) = 0.

Question 2: Is d*(M g \ Mg) = 0 always true? No.
10



Main results (Dymek, Kasjan, KP 2024)

Thm A: For any taut set ¢ there exists a Besicovitch set # such that ' = €.
Thm B: For any minimal set & there exists a Besicovitch taut set % such that #* = 2.

Prop C: For any taut non-Besicovitch set & there exists a set & such that ' = ¢ and
d(Mg \ Mgz) > 0.

Rmk: Prop C is a consequence of Thm A, but also has a separate simpler proof.

Prop D: There exists a set & such that both %, %’ are Besicovitch and
d*(Mg \ Mg) > 0.

11



How to get there: unions of rescaled patterns

Recall that for #, we have %' = (% U C)P"™ and %* = (% U D)P"™, where both C and
D are of the form E = {e : e/ C A for some set .o/ satisfying an extra condition}.

We consider sets of the form % = {J;»1 6,9 (&7 = scales, of; = patterns), where

» o C P;N[Ki,o0), where P; = primes in 21+17 + 2/ + 1,
= Kjis large,
» & = ;> & is taut or minimal.

Additional properties of scales and patterns — properties of 4, %', %*.
Prop [controlling tautification and minimisation]:

» If & is taut and 7; are Behrend sets (e.g., <7 is the set of all primes in [K}, c0))
then & = #A'.
= If & is minimal and < are infinite pairwise coprime sets then & = %#*. 12



2. Upper (Banach) density of M4 \ M.

Prop (refinement of Prop C, uses Davenport-Erdés theorem):

= If & is non-Besicovitch then, for K; sufficiently large, if 2 = Uizl &l where
& =&N[LK;) and ) # o; C [K;,00) then d(Mg \ Mgz) > 0.

If we additionally assume that & is taut and «; are Behrend sets then %' = &.
Rk: If both 8 and %’ are Besicovtich then d(My \ My) = d(My) — d(My) = 0.

Thm (refinement of Prop D, uses ideas of Besicovitch):

= There exists a thin (hence Besicovitch) primitive set & = Uizl & such that for K;
large enough and # = ;> &4 with ) # o/ C [K;, 00) we have
d* (Mg \ Mgy») > 0.

If we additionally assume that 7 are Behrend sets then B’ = &.
13



1. Realizable triples ijk € {0,1}3, ij # 01

» jjk = 111: If B is Erdds then = B’ and #* = {1} are Besicovitch.

= jjk =001: If ¢4 is in the class of examples by Besicovitch, i.e.
4 = (Ux>1[ Tk, 2T«))P™™, then (by Bertrand’s postulate) ¢ contains infinitely
many prir;es, so 1 € D and thus #*= (% U D)P"™ = {1}. It suffices to take
B=9Gor B=Y.

= jjk = 000: Keller 2022 gave examples of non-Besicovitch minimal sets Z. (here
B =R = B*).

14



1. Realizable triples ijk € {0,1}3, ij # 01

= jjk =100: Let & be a non-Besicovitch minimal set. By Thm A, there exists a
Besicovitch set % such that ' = &. Thus, 4 is Besicovitch with %' = %*
non-Besicovitch. (Indeed, #* = (#')* = &* = &).

= jjk = 110: Let & be a non-Besicovitch minimal set. By Thm B, there exists a
Besicovitch taut set % such that #* = &. Thus, Z = %' is Besicovitch with %#*
non-Besicovitch.

= jjk = 101: Start with Besicovitch's example &. By Thm A, there exists a
Besicovitch set & such that ' = &’. Then * = (#')* = (&')* = &* = {1}.

15



1. Realizable triples ijk € {0,1}3, ij # 01 (more details)

Thm: For any & = {e;}, there exist K; such that if ) # i C P; N [K;, 00), where P;
stands for the set of primes in 2117 + 2/ 4 1, then & = ;> €, is Besicovitch.

If additionally & is primitive then K; can be chosen so that 4 is primitive.

Rk: The proof uses the following version of Mertens' theorem:
1 1 1
Z P |n|nX+Bk,+O(| )
P3p<x,p=I mod k P 4,0( ) nx

where ¢ is the Euler totient function.
Cor (refinement of Thm A): If additionally 7% are Behrend sets then £’ = &.

Cor (refinement of Thm B): If additionally each 7 is Erdés then B8* = &. Moreover, if
additionally ;> 7 is thin then 2 is taut (such assumptions on s are satisfied, e.g.,

by sufficiently scarce subsets of P; N [K;, 0)). .



Proof of Theorem...

Goal: For any & = {e;}, there exist K; such that if ) # <7 C P; N [K;, o), where P;
stands for the set of primes in 217 + 2/ 4 1, then & = ;> €, is Besicovitch.

Recall: d(M ) exists iff

limz_o limsup,_, x1 Y oxlc<a<x,acB I[1,x] N aZ N -F@ﬂ[l,a)’ =0.

Fix & = {e;}, let § # o C PiN[K;j,0). Let M(x, a,B) = [1,x] N aZ N Fyr[r,2)-
Then

Y Lx]INaZN Fgapal <D > [1,x] N ejaZ|

xl—e<a<x,ac# i=1 x1—e<eja<x,ac.of;
io 00
= Z Z I[1,x] N e;aZ| + Z Z I[1, x] N e;aZl|.
i=1 x1-e<eja<x,ac.of; i=ip+1 x1—c <eja<x,ac.a}

1 1
Letm<€§2fo 17



Proof of Theorem...

Estimating the first sum >0

We have
_ 1 1
xt Z |[1,x] NejaZ| < Z o < 3 < gie (),
xl-e<eia<x,aca ejace; Qfﬂ[xl € .x] ejaceioiN[x1—¢ x|
where gj .(x) := Zper(2'+IZ+2'+1)m[Xl £ 51 L for every ¢ > 0 and x > 1 (we use

o CPNQFIZ 427 +1)).

By Merten's theorem for APs (...), gi<(x) < l— (In InZ — Xlis) +0 (ﬁ) (the

constant in O(;%.) depends on i and ¢, but not on the ch0|ce of Kj).
This implies (...) gic(x) < stre(1+ o(1)).

Thus, limsup,_, Z;P:l gie(x) < Z, e Ls< P
18



Proof of Theorem...

Estimating the second sum 3 °7°, .,

(1 a/)1+1 (175/)/.

Notice that {Xlei , e,} UZ {, } whenever £ +1 > log;_.(1 —¢).

€i
One can show that if K; is large then g; 1 i(x) < 1/4! for every x.

Thus,
Z[Iogl 1/2, (1— 5)]

Zioiioﬂ Gie <22 io+1 24j
<Y Rit1(logy_q/0i(1 —€) + )4,  (by the choice of Kj)
<> Riw1 2’*254,1,1 (by the choice of i)

< 8e.

gl. ( (1_1/2i)j) (by the inclusion in the union)

It follows that the quantity that we want to estimate is bounded by 10e.
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Thank you!
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