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Number theory 1930’s

For B ⊆ N: MB := ⋃
b∈B bZ (set of multiples), FB := Z \ MB (B-free set).

Remark:

• If M ⊆ Z is closed under taking multiples then M = MM .
• We say that B is primitive if b|b′ for b, b′ ∈ B =⇒ b = b′.
• Bprim := B \

⋃
k≥2 kB. Then MB = MBprim and Bprim is primitive.

If 1 ∈ B then Bprim = {1} and FB = ∅.

For B = P2 = squares of primes, FB = square-free numbers and 1FB
= µ2.

(µ : Z → {−1, 0, 1} is the symmetric extension of the Möbius function: µ(0) = 0,
µ(p1 · . . . · pk) = (−1)k , µ(p2n) = 0.)

Abundant numbers: n ∈ A if sum its proper divisors exceeds n. We have A = MA
and FA = P ∪ D (perfect + deficient). 2



Number theory 1930’s: density questions

Davenport / Erdös / Chowla (independently) 1930’s: d(A) = limn→∞
1
n |A ∩ [1, n]|

exists (question by Bessel-Hagen 1929).

Does d(MB) always exist?

• Besicovitch 1934: For G := (⋃k≥1[Tk , 2Tk))prim, where Tk is a rapidly increasing
sequence, we have d(MG ) ≥ 1

2 and d(MG ) < ε.
• Davenport-Erdős 1936:

δ(MB) = limn→∞
1

log n
∑

k≤n,k∈MB

1
k = d(MB) = limK→∞ d(MB∩[1,K ]).

• Erdős 1948: d(MB) exists iff

lim
ε→0

lim sup
x→∞

x−1 ∑
x1−ε<a≤x ,a∈B

|[1, x ] ∩ aZ ∩ FB∩[1,a)| = 0.
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Set B is. . .

• Besicovitch: if d(MB) exists,
• thin: if ∑

b∈B 1/b < ∞,
• Erdős: if |B| = ∞, pairwise coprime and thin, e.g. B = P2,
• Behrend: if d(MB) = 1 (e.g. B ⊆ P satisfying ∑

p∈B
1
p = ∞),

• taut: if δ(MB\{b}) < δ(MB) for b ∈ B ⇐⇒ cA ̸⊆ B for A Behrend.,
• minimal: if for any n ∈ Z, there exists s ∈ N with n + sZ ⊆ MB or n + sZ ⊆ FB.

For primitive sets B,
we have the following
relations:
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B-free subshifts and its friends

Given B ⊆ N, let η := 1FB
∈ {0, 1}Z and Xη := {σnη : n ∈ Z} (the B-free subshift).

If B is Erdős, then Xη is hereditary, i.e. if y ∈ {0, 1}Z, x ∈ Xη and y ≤ x then y ∈ Xη.

• X̃η = the hereditary closure of Xη (the smallest hereditary subshift containing Xη).

• XB = B-admissible subshift = {x ∈ {0, 1}Z : |supp x mod b| < b for b ∈ B}

Notice that Xη ⊆ XB as η ∈ XB. Since XB is hereditary, we get Xη ⊆ X̃η ⊆ XB.

If B is Erdős then Xη = X̃η = XB (el Abdalaoui, Lemańczyk, de la Rue 2015).

Dynamical properties of Xη ⊆ X̃η ⊆ XB ↔ number theoretic properties of MB and FB.

E.g. (Kasjan, Lemańczyk, Alterman 2023):

• B is Erdős ⇐⇒ Xη = XB and htop(Xη) > 0,
• B is Behrend (d(MB) = 1) ⇐⇒ Xη is proximal and htop(Xη) = 0. 5



Mirsky measure

If B is Erdős then η = 1FB
is a generic point: 1

N
∑

n≤N δσnη → νη ⇝ Mirsky measure
(η ∈ {0, 1}Z, so we look at frequencies of blocks). It is ergodic and has full support (el
Abdalaoui, Lemańczyk, de la Rue 2015).

In general, η might only be quasi-generic: if (Ni) is such that
1
Ni

|MB ∩ [1, Ni ]| → d(MB) then 1
Ni

∑
n≤Ni δσnη → νη.

Algebraic definition of νη:

• G := ∏
b∈B Z/bZ ⊇ H := {(n, n, . . . ) : n ∈ Z} = {Rn(0, 0, . . . ) : n ∈ Z}, where

Rg = g + (1, 1, . . . ) for g ∈ G
• W := {h ∈ H : hb ̸≡ 0 mod b for each b ∈ B}
• φ : H → {0, 1}Z given by φ(h)(n) = 1 ⇐⇒ Rnh ∈ W
• we have φ ◦ R = σ ◦ φ

• νη = φ∗(mH) 6



Tautification B′ of B

B is taut if δ(MB\{b}) < δ(MB).

Theorem (Dymek, Kasjan, KP, Lemańczyk 2018 and 2023): For any B, there exists a
(unique!) taut set B′ such that MB′ ⊃ MB and δ(MB′) = δ(MB).

Rmk: The conditions on MB′ can be replaced by νη = νη′ .

To be more precise:

B′ = (B ∪ C)prim, where C = {c ∈ N : cA ⊆ B for some Behrend set A}.

Moreover, B is taut ⇐⇒ B is primitive and C = ∅.
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Minimisation B∗ of B

Tautification: B′ = (B ∪ C)prim, C = {c ∈ N : cA ⊆ B for some Behrend set A}.

B is taut ⇐⇒ B is primitive and C = ∅.

Minimisation: B is minimal if η is a Toeplitz sequence.

B∗ := (B ∪ D)prim, D = {d ∈ N : dA ⊆ B for some infinite pairwise coprime set A}.

We have C ⊆ D, as any Behrend set contains an infinite pairwise coprime subset.

Moreover (Dymek, Kasjan, Keller, KP, Lemańczyk 2018-2023), if B is primitive then

B is minimal ⇐⇒ D = ∅ ⇐⇒ Xη is minimal.

Theorem (Dymek, Kasjan, Keller, KP, Lemańczyk 2018-2023): Each Xη is essentially
minimal. Moreover, Xη∗ ⊆ Xη is the unique minimal subset of Xη.
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Tautification B′ and minimisation B∗ of B

We have the following (joint) strenghtening of Xη∗ ⊆ Xη and MB∗ ⊃ MB′ ⊃ MB:

Theorem (Dymek, Kasjan, KP, M.D. Lemańczyk 2021-2023): Xη∗ ⊆ Xη′ ⊆ Xη.

Why “minimal”?

Theorem (Dymek, Kasjan, KP, Sell 2024) Suppose that C is taut. Then XηC ⊂ Xη

⇐⇒ MB∗ ⊃ MC ⊃ MB. (In fact, this implies Xη∗ ⊂ XηC ⊂ Xη.)

Partial order on taut sets: C1 ≺ C2 ⇐⇒ XηC1
⊂ XηC2

.

• {B – minimal} = minimal elements of ≺
• B∗ = the smallest element of

Taut(B) = {C ⊆ N : C is taut such that XηC ⊂ Xη}.

• B′ = the largest element of Taut(B).
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Motivation

1. Prop (Dymek, Kasjan, KP, Lemańczyk 2015): d(MB′) exists =⇒ d(MB) exists.

This result was wrongly quoted (⇐= instead of =⇒ ) in [Bergelson, KP, Lemańczyk,
Richter 2019]. . .

Question 1: Can all triples ijk ∈ {0, 1}3 with ij ̸= 01 encoding the information whether
d(MB), d(MB′), d(MB∗) exist occur? Yes.

2. Conjecture (Keller 2021) on M(Xη, σ).

• Proved (Dymek, KP, Sell 2024).
• Original plan: prove Keller’s conjecture first for taut sets B and then pass from B

to B′ by proving that d∗(MB′ \ MB) = 0.

Question 2: Is d∗(MB′ \ MB) = 0 always true? No.
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Main results (Dymek, Kasjan, KP 2024)

Thm A: For any taut set C there exists a Besicovitch set B such that B′ = C .

Thm B: For any minimal set D there exists a Besicovitch taut set B such that B∗ = D .

Prop C: For any taut non-Besicovitch set C there exists a set B such that B′ = C and
d(MB′ \ MB) > 0.

Rmk: Prop C is a consequence of Thm A, but also has a separate simpler proof.

Prop D: There exists a set B such that both B, B′ are Besicovitch and
d∗(MB′ \ MB) > 0.
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How to get there: unions of rescaled patterns

Recall that for B, we have B′ = (B ∪ C)prim and B∗ = (B ∪ D)prim, where both C and
D are of the form E = {e : eA ⊆ B for some set A satisfying an extra condition}.

We consider sets of the form B = ⋃
i≥1 EiAi (Ei = scales, Ai = patterns), where

• Ai ⊆ Pi ∩ [Ki , ∞), where Pi = primes in 2i+1Z + 2i + 1 ,
• Ki is large,
• E = ⋃

i≥1 Ei is taut or minimal.

Additional properties of scales and patterns =⇒ properties of B, B′, B∗.

Prop [controlling tautification and minimisation]:

• If E is taut and Ai are Behrend sets (e.g., Ai is the set of all primes in [Ki , ∞))
then E = B′.

• If E is minimal and Ai are infinite pairwise coprime sets then E = B∗. 12



2. Upper (Banach) density of MB′ \ MB.

Prop (refinement of Prop C, uses Davenport-Erdős theorem):

• If E is non-Besicovitch then, for Ki sufficiently large, if B = ⋃
i≥1 EiAi , where

Ei = E ∩ [1, Ki) and ∅ ≠ Ai ⊂ [Ki , ∞) then d(ME \ MB) > 0.

If we additionally assume that E is taut and Ai are Behrend sets then B′ = E .

Rk: If both B and B′ are Besicovtich then d(MB′ \ MB) = d(MB′) − d(MB) = 0.

Thm (refinement of Prop D, uses ideas of Besicovitch):

• There exists a thin (hence Besicovitch) primitive set E = ⋃
i≥1 Ei such that for Ki

large enough and B = ⋃
i≥1 EiAi with ∅ ≠ Ai ⊆ [Ki , ∞) we have

d∗(ME \ MB) > 0.

If we additionally assume that Ai are Behrend sets then B′ = E .
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1. Realizable triples ijk ∈ {0, 1}3, ij ̸= 01

• ijk = 111: If B is Erdős then B = B′ and B∗ = {1} are Besicovitch.
• ijk = 001: If G is in the class of examples by Besicovitch, i.e.

G = (⋃k≥1[Tk , 2Tk))prim, then (by Bertrand’s postulate) G contains infinitely
many primes, so 1 ∈ D and thus B∗= (B ∪ D)prim = {1}. It suffices to take
B = G or B = G ′.

• ijk = 000: Keller 2022 gave examples of non-Besicovitch minimal sets B. (here
B = B′ = B∗).
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1. Realizable triples ijk ∈ {0, 1}3, ij ̸= 01

• ijk = 100: Let E be a non-Besicovitch minimal set. By Thm A, there exists a
Besicovitch set B such that B′ = E . Thus, B is Besicovitch with B′ = B∗

non-Besicovitch. (Indeed, B∗ = (B′)∗ = E ∗ = E ).
• ijk = 110: Let E be a non-Besicovitch minimal set. By Thm B, there exists a

Besicovitch taut set B such that B∗ = E . Thus, B = B′ is Besicovitch with B∗

non-Besicovitch.
• ijk = 101: Start with Besicovitch’s example E . By Thm A, there exists a

Besicovitch set B such that B′ = E ′. Then B∗ = (B′)∗ = (E ′)∗ = E ∗ = {1}.
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1. Realizable triples ijk ∈ {0, 1}3, ij ̸= 01 (more details)

Thm: For any E = {ei}, there exist Ki such that if ∅ ≠ Ai ⊆ Pi ∩ [Ki , ∞), where Pi

stands for the set of primes in 2i+1Z + 2i + 1, then B = ⋃
i≥1 eiAi is Besicovitch.

If additionally E is primitive then Ki can be chosen so that B is primitive.

Rk: The proof uses the following version of Mertens’ theorem:∑
P∋p≤x ,p≡l mod k

1
p = 1

φ(k) ln ln x + Bk,l + O( 1
ln x ),

where φ is the Euler totient function.

Cor (refinement of Thm A): If additionally Ai are Behrend sets then B′ = E .

Cor (refinement of Thm B): If additionally each Ai is Erdős then B∗ = E . Moreover, if
additionally ⋃

i≥1 Ai is thin then B is taut (such assumptions on A ′
i s are satisfied, e.g.,

by sufficiently scarce subsets of Pi ∩ [Ki , ∞)). 16



Proof of Theorem. . .

Goal: For any E = {ei}, there exist Ki such that if ∅ ≠ Ai ⊆ Pi ∩ [Ki , ∞), where Pi

stands for the set of primes in 2i+1Z + 2i + 1, then B = ⋃
i≥1 eiAi is Besicovitch.

Recall: d(MB) exists iff
limε→0 lim supx→∞ x−1 ∑

x1−ε<a≤x ,a∈B |[1, x ] ∩ aZ ∩ FB∩[1,a)| = 0.

Fix E = {ei}, let ∅ ≠ Ai ⊆ Pi ∩ [Ki , ∞). Let M(x , a, B) = [1, x ] ∩ aZ ∩ FB∩[1,a).
Then ∑

x1−ε<a≤x ,a∈B

|[1, x ] ∩ aZ ∩ FB∩[1,a)| ≤
∞∑

i=1

∑
x1−ε<ei a≤x ,a∈Ai

|[1, x ] ∩ eiaZ|

=
i0∑

i=1

∑
x1−ε<ei a≤x ,a∈Ai

|[1, x ] ∩ eiaZ| +
∞∑

i=i0+1

∑
x1−ε<ei a≤x ,a∈Ai

|[1, x ] ∩ eiaZ|.

Let 1
2i0+1 < ε ≤ 1

2i0 . 17



Proof of Theorem. . .

Estimating the first sum
∑i0

i=1

We have

x−1 ∑
x1−ε<ei a≤x ,a∈Ai

|[1, x ] ∩ eiaZ| ≤
∑

ei a∈eiAi ∩[x1−ε,x ]

1
eia

≤
∑

ei a∈eiAi ∩[x1−ε,x ]

1
a ≤ gi ,ε(x),

where gi ,ε(x) := ∑
p∈P∩(2i+1Z+2i +1)∩[ x1−ε

ei
, x

ei
]

1
p for every ε > 0 and x ≥ 1 (we use

Ai ⊆ P ∩ (2i+1Z + 2i + 1)).

By Merten’s theorem for APs (. . . ), gi ,ε(x) ≤ 1
2i

(
ln ln x

ei
− ln ln x1−ε

ei

)
+ O

(
1

ln x

)
(the

constant in O( 1
ln x ) depends on i and ε, but not on the choice of Ki).

This implies (. . . ) gi ,ε(x) ≤ 1
2i−1 ε(1 + o(1)).

Thus, lim supx→∞
∑i0

i=1 gi ,ε(x) ≤
∑i0

i=1
1

2i−1 ε ≤ 2ε.
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Proof of Theorem. . .

Estimating the second sum
∑∞

i=i0+1

Notice that
[

x1−ε

ei
, x

ei

]
⊆

⋃ℓ
j=0

[
x (1−ε′)j+1

ei
, x (1−ε′)j

ei

]
whenever ℓ + 1 ≥ log1−ε′(1 − ε).

One can show that if Ki is large then gi ,1/2i (x) ≤ 1/4i−1 for every x .

Thus,∑∞
i=i0+1 gi ,ε ≤

∑∞
i=i0+1

∑[
log1−1/2i (1−ε)

]
j=0 gi , 1

2i
(x (1−1/2i )j ) (by the inclusion in the union)

≤
∑∞

i=i0+1(log1−1/2i (1 − ε) + 1) 1
4i−1 (by the choice of Ki)

≤
∑∞

i=i0+1 2i+2ε 1
4i−1 (by the choice of i0)

≤ 8ε.

It follows that the quantity that we want to estimate is bounded by 10ε.
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.

Thank you!
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