$\ensuremath{\mathcal{B}}\xspace$ -free systems and the existence of natural density

Aurelia Dymek / Stanisław Kasjan / Joanna Kułaga-Przymus (Nicolaus Copernicus University in Toruń)

Vienna 25.04.2024

For $\mathscr{B} \subseteq \mathbb{N}$: $\mathcal{M}_{\mathscr{B}} := \bigcup_{b \in \mathscr{B}} b\mathbb{Z}$ (set of multiples), $\mathcal{F}_{\mathscr{B}} := \mathbb{Z} \setminus \mathcal{M}_{\mathscr{B}}$ (\mathscr{B} -free set). <u>Remark</u>:

- If $M \subseteq \mathbb{Z}$ is closed under taking multiples then $M = \mathcal{M}_M$.
- We say that \mathscr{B} is **primitive** if b|b' for $b, b' \in \mathscr{B} \implies b = b'$.
- $\mathscr{B}^{prim} := \mathscr{B} \setminus \bigcup_{k \geq 2} k \mathscr{B}$. Then $\mathcal{M}_{\mathscr{B}} = \mathcal{M}_{\mathscr{B}^{prim}}$ and \mathscr{B}^{prim} is primitive.

If $1 \in \mathscr{B}$ then $\mathscr{B}^{prim} = \{1\}$ and $\mathcal{F}_{\mathscr{B}} = \emptyset$.

For $\mathscr{B} = \mathbb{P}^2$ = squares of primes, $\mathcal{F}_{\mathscr{B}} =$ square-free numbers and $\mathbf{1}_{\mathcal{F}_{\mathscr{B}}} = \mu^2$. $(\mu : \mathbb{Z} \to \{-1, 0, 1\}$ is the symmetric extension of the Möbius function: $\mu(0) = 0$, $\mu(p_1 \cdot \ldots \cdot p_k) = (-1)^k$, $\mu(p^2 n) = 0$.)

Abundant numbers: $n \in A$ if sum its proper divisors exceeds n. We have $A = \mathcal{M}_A$ and $\mathcal{F}_A = P \cup D$ (perfect + deficient).

Davenport / Erdös / Chowla (independently) 1930's: $d(\mathbf{A}) = \lim_{n \to \infty} \frac{1}{n} |\mathbf{A} \cap [1, n]|$ exists (question by Bessel-Hagen 1929).

Does $d(\mathcal{M}_{\mathscr{B}})$ always exist?

- Besicovitch 1934: For 𝒢 := (U_{k≥1}[T_k, 2T_k))^{prim}, where T_k is a rapidly increasing sequence, we have d
 (M_𝒢) ≥ ½ and d(M_𝒢) < ε.
- Davenport-Erdős 1936:

 $\delta(\mathcal{M}_{\mathscr{B}}) = \lim_{n \to \infty} \frac{1}{\log n} \sum_{k \le n, k \in \mathcal{M}_{\mathscr{B}}} \frac{1}{k} = \underline{d}(\mathcal{M}_{\mathscr{B}}) = \lim_{K \to \infty} d(\mathcal{M}_{\mathscr{B} \cap [1,K]}).$

• Erdős 1948: $d(\mathcal{M}_{\mathscr{B}})$ exists iff

$$\lim_{\varepsilon \to 0} \limsup_{x \to \infty} x^{-1} \sum_{x^{1-\varepsilon} < a \le x, a \in \mathscr{B}} |[1, x] \cap a\mathbb{Z} \cap \mathcal{F}_{\mathscr{B} \cap [1, a)}| = 0.$$

Set \mathscr{B} is...

- **Besicovitch**: if $d(\mathcal{M}_{\mathscr{B}})$ exists,
- thin: if $\sum_{b\in\mathscr{B}} 1/b < \infty$,
- Erdős: if $|\mathscr{B}| = \infty$, pairwise coprime and thin, e.g. $\mathscr{B} = \mathbb{P}^2$,
- **Behrend**: if $d(\mathcal{M}_{\mathscr{B}}) = 1$ (e.g. $\mathscr{B} \subseteq \mathbb{P}$ satisfying $\sum_{p \in \mathscr{B}} \frac{1}{p} = \infty$),
- taut: if $\delta(\mathcal{M}_{\mathscr{B}\setminus\{b\}}) < \delta(\mathcal{M}_{\mathscr{B}})$ for $b \in \mathscr{B} \iff c\mathcal{A} \not\subseteq \mathscr{B}$ for \mathcal{A} Behrend.,
- minimal: if for any $n \in \mathbb{Z}$, there exists $s \in \mathbb{N}$ with $n + s\mathbb{Z} \subseteq \mathcal{M}_{\mathscr{B}}$ or $n + s\mathbb{Z} \subseteq \mathcal{F}_{\mathscr{B}}$.

For primitive sets \mathscr{B} , we have the following relations:

B-free subshifts and its friends

Given $\mathscr{B} \subseteq \mathbb{N}$, let $\eta := \mathbf{1}_{\mathcal{F}_{\mathscr{B}}} \in \{0,1\}^{\mathbb{Z}}$ and $X_{\eta} := \overline{\{\sigma^n \eta : n \in \mathbb{Z}\}}$ (the \mathscr{B} -free subshift). If \mathscr{B} is Erdős, then X_{η} is hereditary, i.e. if $y \in \{0,1\}^{\mathbb{Z}}$, $x \in X_{\eta}$ and $y \leq x$ then $y \in X_{\eta}$.

- $\widetilde{X_{\eta}}$ = the hereditary closure of X_{η} (the smallest hereditary subshift containing X_{η}).
- $X_{\mathscr{B}} = \mathscr{B}$ -admissible subshift $= \{x \in \{0,1\}^{\mathbb{Z}} : |\text{supp } x \mod b| < b \text{ for } b \in \mathscr{B}\}$

Notice that $X_\eta \subseteq X_{\mathscr{B}}$ as $\eta \in X_{\mathscr{B}}$. Since $X_{\mathscr{B}}$ is hereditary, we get $X_\eta \subseteq \widetilde{X_\eta} \subseteq X_{\mathscr{B}}$.

If \mathscr{B} is Erdős then $X_{\eta} = \widetilde{X}_{\eta} = X_{\mathscr{B}}$ (el Abdalaoui, Lemańczyk, de la Rue 2015).

Dynamical properties of $X_\eta \subseteq \widetilde{X}_\eta \subseteq X_\mathscr{B} \leftrightarrow$ number theoretic properties of $\mathcal{M}_\mathscr{B}$ and $\mathcal{F}_\mathscr{B}$.

E.g. (Kasjan, Lemańczyk, Alterman 2023):

- \mathscr{B} is Erdős $\iff X_{\eta} = X_{\mathscr{B}}$ and $h_{top}(X_{\eta}) > 0$,
- \mathscr{B} is Behrend $(d(\mathcal{M}_{\mathscr{B}}) = 1) \iff X_{\eta}$ is proximal and $h_{top}(X_{\eta}) = 0$.

Mirsky measure

If \mathscr{B} is Erdős then $\eta = \mathbf{1}_{\mathcal{F}_{\mathscr{B}}}$ is a generic point: $\frac{1}{N} \sum_{n \leq N} \delta_{\sigma^n \eta} \rightarrow \nu_{\eta} \rightsquigarrow \mathbf{Mirsky}$ measure $(\eta \in \{0, 1\}^{\mathbb{Z}})$, so we look at frequencies of blocks). It is ergodic and has full support (el Abdalaoui, Lemańczyk, de la Rue 2015).

In general, η might only be quasi-generic: if (N_i) is such that $\frac{1}{N_i}|\mathcal{M}_{\mathscr{B}} \cap [1, N_i]| \to \underline{d}(\mathcal{M}_{\mathscr{B}})$ then $\frac{1}{N_i} \sum_{n \le N_i} \delta_{\sigma^n \eta} \to \nu_{\eta}$.

Algebraic definition of ν_{η} :

- $G := \prod_{b \in \mathscr{B}} \mathbb{Z}/b\mathbb{Z} \supseteq H := \overline{\{(n, n, \dots) : n \in \mathbb{Z}\}} = \overline{\{R^n(0, 0, \dots) : n \in \mathbb{Z}\}}$, where $Rg = g + (1, 1, \dots)$ for $g \in G$
- $W := \{h \in H : h_b \not\equiv 0 \mod b \text{ for each } b \in \mathscr{B}\}$
- $\varphi \colon H \to \{0,1\}^{\mathbb{Z}}$ given by $\varphi(h)(n) = 1 \iff R^n h \in W$
- we have $\varphi \circ R = \sigma \circ \varphi$
- $\nu_\eta = \varphi_*(m_H)$

 \mathscr{B} is taut if $\delta(\mathcal{M}_{\mathscr{B}\setminus\{b\}}) < \delta(\mathcal{M}_{\mathscr{B}}).$

<u>Theorem</u> (Dymek, Kasjan, KP, Lemańczyk 2018 and 2023): For any \mathscr{B} , there exists a (unique!) taut set \mathscr{B}' such that $\mathcal{M}_{\mathscr{B}'} \supset \mathcal{M}_{\mathscr{B}}$ and $\delta(\mathcal{M}_{\mathscr{B}'}) = \delta(\mathcal{M}_{\mathscr{B}})$.

<u>Rmk</u>: The conditions on $\mathcal{M}_{\mathscr{B}'}$ can be replaced by $\nu_{\eta} = \nu_{\eta'}$.

To be more precise:

 $\mathscr{B}' = (\mathscr{B} \cup C)^{prim}$, where $C = \{c \in \mathbb{N} : c\mathcal{A} \subseteq \mathscr{B} \text{ for some Behrend set } \mathcal{A}\}.$

Moreover, \mathscr{B} is taut $\iff \mathscr{B}$ is primitive and $C = \emptyset$.

Tautification: $\mathscr{B}' = (\mathscr{B} \cup C)^{prim}$, $C = \{c \in \mathbb{N} : c\mathcal{A} \subseteq \mathscr{B} \text{ for some Behrend set } \mathcal{A}\}.$

 \mathscr{B} is taut $\iff \mathscr{B}$ is primitive and $C = \emptyset$.

Minimisation: \mathscr{B} is minimal if η is a Toeplitz sequence.

 $\mathscr{B}^* := (\mathscr{B} \cup D)^{prim}$, $D = \{ d \in \mathbb{N} : d\mathcal{A} \subseteq \mathscr{B} \text{ for some infinite pairwise coprime set } \mathcal{A} \}.$

We have $C \subseteq D$, as any Behrend set contains an infinite pairwise coprime subset.

Moreover (Dymek, Kasjan, Keller, KP, Lemańczyk 2018-2023), if B is primitive then

 \mathscr{B} is minimal $\iff D = \emptyset \iff X_{\eta}$ is minimal.

<u>Theorem</u> (Dymek, Kasjan, Keller, KP, Lemańczyk 2018-2023): Each X_{η} is essentially minimal. Moreover, $X_{\eta^*} \subseteq X_{\eta}$ is the unique minimal subset of X_{η} .

We have the following (joint) strenghtening of $X_{\eta^*} \subseteq X_{\eta}$ and $\mathcal{M}_{\mathscr{B}^*} \supset \mathcal{M}_{\mathscr{B}'} \supset \mathcal{M}_{\mathscr{B}}$: <u>Theorem</u> (Dymek, Kasjan, KP, M.D. Lemańczyk 2021-2023): $X_{\eta^*} \subseteq X_{\eta'} \subseteq X_{\eta}$. Why "minimal"?

<u>Theorem</u> (Dymek, Kasjan, KP, Sell 2024) Suppose that \mathscr{C} is taut. Then $X_{\eta_{\mathscr{C}}} \subset X_{\eta}$ $\iff \mathcal{M}_{\mathscr{B}^*} \supset \mathcal{M}_{\mathscr{C}} \supset \mathcal{M}_{\mathscr{B}}$. (In fact, this implies $X_{\eta^*} \subset X_{\eta_{\mathscr{C}}} \subset X_{\eta}$.)

 $\text{Partial order on taut sets: } \mathscr{C}_1 \prec \mathscr{C}_2 \iff X_{\eta_{\mathscr{C}_1}} \subset X_{\eta_{\mathscr{C}_2}}.$

- $\{\mathscr{B} \text{minimal}\} = \text{minimal elements of} \prec$
- $\mathscr{B}^* =$ the smallest element of

 $Taut(\mathscr{B}) = \{ \mathscr{C} \subseteq \mathbb{N} : \mathscr{C} \text{ is taut such that } X_{\eta_{\mathscr{C}}} \subset X_{\eta} \}.$

• $\mathscr{B}' =$ the largest element of $Taut(\mathscr{B})$.

1. <u>Prop</u> (Dymek, Kasjan, KP, Lemańczyk 2015): $d(\mathcal{M}_{\mathscr{B}'})$ exists $\implies d(\mathcal{M}_{\mathscr{B}})$ exists. This result was wrongly quoted (\Leftarrow instead of \implies) in [Bergelson, KP, Lemańczyk, Richter 2019]...

Question 1: Can all triples $ijk \in \{0,1\}^3$ with $ij \neq 01$ encoding the information whether $d(\mathcal{M}_{\mathscr{B}}), d(\mathcal{M}_{\mathscr{B}'}), d(\mathcal{M}_{\mathscr{B}^*})$ exist occur? **Yes.**

2. Conjecture (Keller 2021) on $\mathcal{M}(X_{\eta}, \sigma)$.

- Proved (Dymek, KP, Sell 2024).
- Original plan: prove Keller's conjecture first for taut sets ℬ and then pass from ℬ to ℬ' by proving that d*(M_{ℬ'} \ M_ℬ) = 0.

Question 2: Is $d^*(\mathcal{M}_{\mathscr{B}'} \setminus \mathcal{M}_{\mathscr{B}}) = 0$ always true? No.

<u>Thm A</u>: For any taut set \mathscr{C} there exists a Besicovitch set \mathscr{B} such that $\mathscr{B}' = \mathscr{C}$.

<u>Thm B</u>: For any minimal set \mathscr{D} there exists a Besicovitch taut set \mathscr{B} such that $\mathscr{B}^* = \mathscr{D}$.

 $\frac{\text{Prop } C}{\overline{d}(\mathcal{M}_{\mathscr{B}'} \setminus \mathcal{M}_{\mathscr{B}}) > 0.}$

<u>Rmk</u>: Prop C is a consequence of Thm A, but also has a separate simpler proof.

 $\frac{\text{Prop D}{:} \text{ There exists a set } \mathscr{B} \text{ such that both } \mathscr{B}, \mathscr{B}' \text{ are Besicovitch and } \\ \overline{d^*(\mathcal{M}_{\mathscr{B}'} \setminus \mathcal{M}_{\mathscr{B}})} > 0.$

How to get there: unions of rescaled patterns

Recall that for \mathscr{B} , we have $\mathscr{B}' = (\mathscr{B} \cup C)^{prim}$ and $\mathscr{B}^* = (\mathscr{B} \cup D)^{prim}$, where both C and D are of the form $E = \{e : e\mathscr{A} \subseteq \mathscr{B} \text{ for some set } \mathscr{A} \text{ satisfying an extra condition}\}.$

We consider sets of the form $\mathscr{B} = \bigcup_{i \ge 1} \mathscr{E}_i \mathscr{A}_i$ ($\mathscr{E}_i = \text{scales}, \mathscr{A}_i = \text{patterns}$), where

- $\mathscr{A}_i \subseteq \mathcal{P}_i \cap [\mathcal{K}_i, \infty)$, where $\mathcal{P}_i = \mathsf{primes} \text{ in } 2^{i+1}\mathbb{Z} + 2^i + 1$,
- K_i is large,
- $\mathscr{E} = \bigcup_{i \ge 1} \mathscr{E}_i$ is taut or minimal.

Additional properties of scales and patterns \implies properties of $\mathscr{B}, \mathscr{B}', \mathscr{B}^*$.

Prop [controlling tautification and minimisation]:

- If *E* is taut and *A_i* are Behrend sets (e.g., *A_i* is the set of all primes in [*K_i*,∞)) then *E* = *B'*.
- If \mathscr{E} is minimal and \mathscr{A}_i are infinite pairwise coprime sets then $\mathscr{E} = \mathscr{B}^*$.

Prop (refinement of Prop C, uses Davenport-Erdős theorem):

• If \mathscr{E} is non-Besicovitch then, for K_i sufficiently large, if $\mathscr{B} = \bigcup_{i \ge 1} \mathscr{E}_i \mathscr{A}_i$, where $\mathscr{E}_i = \mathscr{E} \cap [1, K_i)$ and $\emptyset \neq \mathscr{A}_i \subset [K_i, \infty)$ then $\overline{d}(\mathcal{M}_{\mathscr{E}} \setminus \mathcal{M}_{\mathscr{B}}) > 0$.

If we additionally assume that \mathscr{E} is taut and \mathscr{A}_i are Behrend sets then $\mathscr{B}' = \mathscr{E}$.

<u>Rk</u>: If both \mathscr{B} and \mathscr{B}' are Besicovtich then $\overline{d}(\mathcal{M}_{\mathscr{B}'} \setminus \mathcal{M}_{\mathscr{B}}) = d(\mathcal{M}_{\mathscr{B}'}) - d(\mathcal{M}_{\mathscr{B}}) = 0.$

<u>Thm</u> (refinement of Prop D, uses ideas of Besicovitch):

There exists a thin (hence Besicovitch) primitive set *E* = ∪_{i≥1} *E*_i such that for *K*_i large enough and *B* = ∪_{i≥1} *E*_i*A*_i with Ø ≠ *A*_i ⊆ [*K*_i, ∞) we have d*(*M*_E \ *M*_B) > 0.

If we additionally assume that \mathscr{A}_i are Behrend sets then $\mathscr{B}' = \mathscr{E}$.

1. Realizable triples $ijk \in \{0, 1\}^3$, $ij \neq 01$

- ijk = 111: If \mathscr{B} is Erdős then $\mathscr{B} = \mathscr{B}'$ and $\mathscr{B}^* = \{1\}$ are Besicovitch.
- *ijk* = 001: If 𝔅 is in the class of examples by Besicovitch, i.e.
 𝔅 = (∪_{k≥1}[𝒯_k, 2𝒯_k))^{prim}, then (by Bertrand's postulate) 𝔅 contains infinitely many primes, so 1 ∈ D and thus 𝔅^{*} = (𝔅 ∪ D)^{prim} = {1}. It suffices to take
 𝔅 = 𝔅 or 𝔅 = 𝔅'.
- ijk = 000: Keller 2022 gave examples of non-Besicovitch minimal sets B. (here
 B = B' = B*).

1. Realizable triples $ijk \in \{0, 1\}^3$, $ij \neq 01$

- ijk = 100: Let ℰ be a non-Besicovitch minimal set. By Thm A, there exists a Besicovitch set ℬ such that ℬ' = ℰ. Thus, ℬ is Besicovitch with ℬ' = ℬ* non-Besicovitch. (Indeed, ℬ* = (ℬ')* = ℰ* = ℰ).
- ijk = 110: Let & be a non-Besicovitch minimal set. By Thm B, there exists a Besicovitch taut set B such that B* = &. Thus, B = B' is Besicovitch with B* non-Besicovitch.
- *ijk* = 101: Start with Besicovitch's example *E*. By Thm A, there exists a Besicovitch set *B* such that *B*' = *E*'. Then *B** = (*B*')* = (*E*')* = *E** = {1}.

1. Realizable triples $ijk \in \{0,1\}^3$, $ij \neq 01$ (more details)

<u>Thm</u>: For any $\mathscr{E} = \{e_i\}$, there exist K_i such that if $\emptyset \neq \mathscr{A}_i \subseteq \mathcal{P}_i \cap [K_i, \infty)$, where \mathcal{P}_i stands for the set of primes in $2^{i+1}\mathbb{Z} + 2^i + 1$, then $\mathscr{B} = \bigcup_{i \ge 1} e_i \mathscr{A}_i$ is <u>Besicovitch</u>.

If additionally \mathscr{E} is primitive then K_i can be chosen so that \mathscr{B} is primitive.

<u>Rk</u>: The proof uses the following version of Mertens' theorem:

$$\sum_{\mathbb{P}\ni p\leq x,p\equiv l \bmod k} \frac{1}{p} = \frac{1}{\varphi(k)} \ln \ln x + B_{k,l} + \mathcal{O}(\frac{1}{\ln x}),$$

where φ is the Euler totient function.

<u>Cor</u> (refinement of Thm A): If additionally \mathscr{A}_i are Behrend sets then $\underline{\mathscr{B}' = \mathscr{E}}$.

<u>Cor</u> (refinement of Thm B): If additionally each \mathscr{A}_i is Erdős then $\underline{\mathscr{B}^*} = \underline{\mathscr{E}}$. Moreover, if additionally $\bigcup_{i\geq 1} \mathscr{A}_i$ is thin then $\underline{\mathscr{B}}$ is taut (such assumptions on \mathscr{A}'_i 's are satisfied, e.g., by sufficiently scarce subsets of $\mathcal{P}_i \cap [K_i, \infty)$).

Proof of Theorem...

Goal: For any $\mathscr{E} = \{e_i\}$, there exist K_i such that if $\emptyset \neq \mathscr{A}_i \subseteq \mathcal{P}_i \cap [K_i, \infty)$, where \mathcal{P}_i stands for the set of primes in $2^{i+1}\mathbb{Z} + 2^i + 1$, then $\mathscr{B} = \bigcup_{i>1} e_i \mathscr{A}_i$ is <u>Besicovitch</u>.

Recall: $d(\mathcal{M}_{\mathscr{B}})$ exists iff $\lim_{\varepsilon \to 0} \limsup_{x \to \infty} x^{-1} \sum_{x^{1-\varepsilon} < a \le x, a \in \mathscr{B}} |[1, x] \cap a\mathbb{Z} \cap \mathcal{F}_{\mathscr{B} \cap [1,a)}| = 0.$ Fix $\mathscr{E} = \{e_i\}$, let $\emptyset \neq \mathscr{A}_i \subseteq \mathcal{P}_i \cap [\mathcal{K}_i, \infty)$. Let $\mathcal{M}(x, a, \mathscr{B}) = [1, x] \cap a\mathbb{Z} \cap \mathcal{F}_{\mathscr{B} \cap [1,a)}.$ Then

$$\begin{split} \sum_{x^{1-\varepsilon} < a \leq x, a \in \mathscr{B}} |[1,x] \cap a\mathbb{Z} \cap \mathcal{F}_{\mathscr{B} \cap [1,a)}| &\leq \sum_{i=1}^{\infty} \sum_{x^{1-\varepsilon} < e_i a \leq x, a \in \mathscr{A}_i} |[1,x] \cap e_i a\mathbb{Z}| \\ &= \sum_{i=1}^{i_0} \sum_{x^{1-\varepsilon} < e_i a \leq x, a \in \mathscr{A}_i} |[1,x] \cap e_i a\mathbb{Z}| + \sum_{i=i_0+1}^{\infty} \sum_{x^{1-\varepsilon} < e_i a \leq x, a \in \mathscr{A}_i} |[1,x] \cap e_i a\mathbb{Z}|. \\ \text{Let } \frac{1}{2^{i_0+1}} < \varepsilon \leq \frac{1}{2^{i_0}}. \end{split}$$

Estimating the first sum $\sum_{i=1}^{i_0}$

We have

$$\begin{aligned} x^{-1} \sum_{x^{1-\varepsilon} < e_i a \le x, a \in \mathscr{A}_i} |[1,x] \cap e_i a\mathbb{Z}| &\leq \sum_{e_i a \in e_i \mathscr{A}_i \cap [x^{1-\varepsilon},x]} \frac{1}{e_i a} \le \sum_{e_i a \in e_i \mathscr{A}_i \cap [x^{1-\varepsilon},x]} \frac{1}{a} \le g_{i,\varepsilon}(x), \\ \text{where } g_{i,\varepsilon}(x) &:= \sum_{p \in \mathcal{P} \cap (2^{i+1}\mathbb{Z} + 2^i + 1) \cap [\frac{x^{1-\varepsilon}}{e_i}, \frac{x}{e_i}]} \frac{1}{p} \text{ for every } \varepsilon > 0 \text{ and } x \ge 1 \text{ (we use } \\ \mathscr{A}_i \subseteq \mathcal{P} \cap (2^{i+1}\mathbb{Z} + 2^i + 1)). \end{aligned}$$

By Merten's theorem for APs (...), $g_{i,\varepsilon}(x) \leq \frac{1}{2^i} \left(\ln \ln \frac{x}{e_i} - \ln \ln \frac{x^{1-\varepsilon}}{e_i} \right) + O\left(\frac{1}{\ln x}\right)$ (the constant in $O(\frac{1}{\ln x})$ depends on *i* and ε , but not on the choice of K_i).

This implies (...) $g_{i,\varepsilon}(x) \leq \frac{1}{2^{i-1}}\varepsilon(1+\mathrm{o}(1)).$

Thus, $\limsup_{x\to\infty}\sum_{i=1}^{i_0}g_{i,\varepsilon}(x)\leq \sum_{i=1}^{i_0}\frac{1}{2^{i-1}}\varepsilon\leq 2\varepsilon$.

Estimating the second sum $\sum_{i=i_0+1}^{\infty}$

Notice that
$$\left[\frac{x^{1-\varepsilon}}{e_i},\frac{x}{e_i}
ight] \subseteq \bigcup_{j=0}^{\ell} \left[\frac{x^{(1-\varepsilon')^{j+1}}}{e_i},\frac{x^{(1-\varepsilon')^j}}{e_i}
ight]$$
 whenever $\ell+1 \ge \log_{1-\varepsilon'}(1-\varepsilon)$.

One can show that if K_i is large then $g_{i,1/2^i}(x) \leq 1/4^{i-1}$ for every x.

Thus,

$$\begin{split} \sum_{i=i_0+1}^{\infty} g_{i,\varepsilon} &\leq \sum_{i=i_0+1}^{\infty} \sum_{j=0}^{\left\lfloor \log_{1-1/2^i}(1-\varepsilon) \right\rfloor} g_{i,\frac{1}{2^i}}(x^{(1-1/2^i)^j}) \text{ (by the inclusion in the union)} \\ &\leq \sum_{i=i_0+1}^{\infty} (\log_{1-1/2^i}(1-\varepsilon)+1) \frac{1}{4^{i-1}} \text{ (by the choice of } K_i) \\ &\leq \sum_{i=i_0+1}^{\infty} 2^{i+2} \varepsilon \frac{1}{4^{i-1}} \text{ (by the choice of } i_0) \\ &\leq 8\varepsilon. \end{split}$$

It follows that the quantity that we want to estimate is bounded by 10ε .

Thank you!