Trace Relations and Matrix Models

Denjoe O＇Connor

School of Theoretical Physics
Dublin Institute for Advanced Studies
Dublin，Ireland

Large－N Matrix Models and Emergent Geometry

Sept 5th 2023

Introduction

Consider counting the number of invariants of a system of $N \times N$ matrices, i.e. for $g \in U(N)$ invariant under conjugation:

$$
X_{i} \rightarrow g X_{i} g^{-1}
$$

$X \in \operatorname{Mat}(N)$ has N^{2} degrees of freedom

But there are only N invariants-the N eigenvalues of X.

Eigenvalues are roots or the characteristic polynomial

$$
P_{N}(\lambda)=\operatorname{Det}\left[X-\lambda \mathbf{1}_{N}\right]
$$

Hamilton-Cayley

The Hamilton-Cayley Theorem

Every finite rank square matrix, X, over a commutative ring satisfies its own characteristic equation

$$
P_{N}(X)=0
$$

where $P_{N}(\lambda)$ is the characteristic polynomial of X.

$P_{N}(X)$ recursively

$$
P_{N}(X)=P_{N-1}(X) X-\frac{1}{N} \operatorname{tr}\left(P_{N-1}(X) X\right)
$$

with $P_{1}(X)=X-\operatorname{tr}(X)$.

$$
\operatorname{tr}\left(P_{N}(X)\right)=0 \quad \text { gives } \operatorname{det}(X) \text { in terms of traces. }
$$

Similarly $\operatorname{tr}\left(X^{N+1}\right)$ becomes products of traces of lower powers.

2×2 matrices and 3×3 traceless matrices

For X, a generic 2×2 matrix,

$$
\begin{gathered}
P_{2}(x)= \\
P_{1}(X) X-\frac{1}{N} \operatorname{tr}\left(P_{1}(X) X\right) \mathbf{1}_{2} \quad P_{1}(X)=X-\operatorname{tr}(X) \\
\Longrightarrow \\
P_{2}(X)=X^{2}-X \operatorname{tr}(X)-\frac{1}{2}\left(\operatorname{tr}^{2}\left(X^{2}\right)-\operatorname{tr}^{2}(X)\right) \mathbf{1}_{2} \\
\operatorname{tr}\left(X^{3}\right)-\frac{3}{2} \operatorname{tr}(X) \operatorname{tr}\left(X^{2}\right)+\frac{1}{2} \operatorname{tr}^{3}(X)=0 .
\end{gathered}
$$

For Y a generic traceless 3×3 traceless matrix

$$
\begin{gathered}
P_{3}(Y)=Y^{3}-\frac{1}{2} \operatorname{tr}\left(Y^{2}\right) Y-\frac{1}{3} \operatorname{tr}\left(Y^{3}\right) \\
\Longrightarrow \operatorname{tr}\left(Y^{4}\right)-\frac{1}{2}\left(\operatorname{tr}\left(Y^{2}\right)\right)^{2}=0
\end{gathered}
$$

More generally for an $N \times N$ matrix $\operatorname{tr}\left(X^{N+1}\right)$ is expressible in terms of products of lower traces.

All matrix invariants are expressible in terms of the generating set $\left\{\operatorname{tr}\left(X^{k}\right)\right\}$ with $k \leq N$.

The algebra of $G L_{N}$ invariants

The algebra of invariants of a single generic matrix X is generated by the N traces $\operatorname{tr}\left(X^{k}\right), k=1, \ldots, N$.

The invariants of X are, of course, the eigenvalues.
The number of invariants for a given power of the matrix is
captured by a generating function (Hilbert-Poincaré series)

$$
Z_{N}(t)=\sum_{n}^{\infty} \operatorname{dim}_{n}(N) t^{n}=\sum_{n=0}^{\infty} p_{N}(n) t^{n}
$$

where dim_{n} is the number of invariants formed from $n X$'s. $\operatorname{dim}_{n}(N)=p_{N}(n)=\#$ partitions of n into N or less parts.
$Z_{N}(t)=\prod_{m=1}^{N} \frac{1}{1-t^{m}}=1+t+2 t^{2}+3 t^{3}+5 t^{4}+7 t^{5}+11 t^{6}+\cdots$.

Fock Space Realisation

For a single matrix the low lying states are:

$$
\begin{aligned}
& |0\rangle \text {, } \\
& \boldsymbol{\operatorname { t r }}\left(\mathbf{a}^{\dagger}\right)|0\rangle, \\
& \operatorname{tr}^{2}\left(a^{\dagger}\right)|0\rangle, \quad \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right)|0\rangle, \\
& \operatorname{tr}^{3}\left(a^{\dagger}\right)|0\rangle, \quad \operatorname{tr}\left(a^{\dagger}\right) \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right)|0\rangle, \quad \operatorname{tr}\left(\left(a^{\dagger}\right)^{3}\right)|0\rangle, \\
& \operatorname{tr}^{4}\left(a^{\dagger}\right)|0\rangle, \quad \operatorname{tr}^{2}\left(a^{\dagger}\right) \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right)|0\rangle, \quad \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right) \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right)|0\rangle, \quad \operatorname{tr}\left(a^{\dagger}\right) \operatorname{tr}\left(\left(a^{\dagger}\right)^{3}\right)|0\rangle, \quad \operatorname{tr}\left(\left(a^{\dagger}\right)^{4}\right)|0\rangle, \\
& \operatorname{tr}^{5}\left(a^{\dagger}\right)|0\rangle, \quad \operatorname{tr}^{3}\left(a^{\dagger}\right) \operatorname{tr}\left(\left(a^{\dagger}\right)^{2}\right)|0\rangle
\end{aligned}
$$

The partition function (Hilbert Poincaré series).

$$
Z_{N}(t)=\operatorname{Tr}_{\text {Phys }}\left(\mathrm{e}^{-\beta\left(\operatorname{tr}\left(a^{\dagger} a\right)\right.}\right)=\operatorname{Tr}_{\text {Phys }}\left(t^{\hat{N}}\right)=\prod_{m=1}^{N} \frac{1}{1-t^{m}} .
$$

Where $t=\mathrm{e}^{-\beta}$, and Phys refers to $U(N)$-gauge invariant states.

$$
Z_{\infty}(t)=\frac{1}{\phi(t)} \quad \phi(t)=\prod_{n=1}^{\infty}\left(1-t^{n}\right) \quad \text { is the Euler function. }
$$

Two or more Matrices

What happens if we consider a pair of matrices X and Y ?
For more than one matrix the invariants are no longer eigenvalues.
What can we say about the invariants of this system? A few theorems guide what to expect.

> Theorem: (Nagata-Higman Theorem), Nagata (1953), Higman (1956), Dubnov and Ivanov (1943)

If the (nonunitary) algebra R is nil of bounded index $\leq N$, i.e. $r^{N}=0$ for all $r \in R$, then R is nilpotent, i.e. there exists an $\mathcal{N}=\mathcal{N}(N)$ such that $r_{1} \cdots r_{\mathcal{N}}=0$ for all $r_{1}, \cdots, r_{\mathcal{N}} \in R$.

```
Theorem: (Formanek (1986), Procesi (1976& 1979), Razmyslov
(1974))
```

Let $\mathcal{N}(N)$ be the class of nilpotency in the Nagata-Higman theorem. Then the algebra of invariants $\Omega_{n d}^{G L_{N}}$ is generated by the traces $\operatorname{tr}\left(X^{i_{1}} \ldots X^{i_{m}}\right)$ of degree $\leq \mathcal{N}(N)$. For d sufficiently large this bound is sharp.

Razmyslov (1974) $\mathcal{N}(N) \leq N^{2}$; Kuzmin (1975) $\mathcal{N}(n) \geq \frac{1}{2} N(N+1)$.

Hence: $\quad \frac{1}{2} N(N+1) \leq \mathcal{N}(N) \leq N^{2}$.
See page 8 of V. Drensky, Computing with Matrix Invariants, arXiv:math/0506614.

Hilbert-Poincaré series: Molien-Weyl formula

Theorem (Teranishi 1986)

The Hilbert-Poincaré series for the system on N matrices is given by the Molien-Weyl formula:
$Z_{U(N)}\left(t_{1}, \cdots, t_{d}\right)=\frac{1}{N!} \int \prod_{l=1}^{N} \frac{d z_{l}}{2 \pi i z_{l}} \Delta(z) \Delta\left(\frac{1}{z}\right) \prod_{i=1}^{d} \prod_{l, m=1}^{N} \frac{1}{1-t_{i} z_{l} z_{m}^{-1}}$
with $\Delta(z)$ the Vandermonde determinant. For small N and small d the integrals can be performed exactly and some results are known.
$Z_{N}\left(t_{1}, t_{2}\right)$ have been evaluated up to $N=6$ and $Z_{7}(t, t)$ was evaluated in Kristensson et al arXiv:2005.06480.

The invariants of 2×2 matrices

Two matrices X and Y

$$
Z_{2}\left(t_{1}, t_{2}\right)=\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{1}^{2}\right)\left(1-t_{1} t_{2}\right)\left(1-t_{2}^{2}\right)}
$$

The invariants are built from $\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right), \operatorname{tr}(Y), \operatorname{tr}\left(Y^{2}\right)$ and $\operatorname{tr}(X . Y)$.

Three matrices X, Y and Z

$$
Z_{2}\left(t_{1}, t_{2}, t_{3}\right)=\frac{1+t_{1} t_{2} t_{3}}{\prod_{a=1}^{3}\left(1-t_{a}\right) \prod_{b \leq c=1}^{3}\left(1-t_{b} t_{c}\right)}
$$

The term $t_{1} t_{2} t_{3}$ indicates that we need $\operatorname{tr}(X . Y . Z)$ but not higher powers-it satisfies a quadratic relation. It captures a \mathbb{Z}_{2} invariant. The highest product appearing in the generating set is 2 consistent with the lower bound $\mathcal{N}(2)=3$.

Schur Polynomials

The low lying states and Schur Polynomials

$$
\begin{aligned}
& Z_{N}\left(\rho t_{1}, \rho t_{2}, \rho t_{3}\right)=1+s_{(1,0,0)} \rho+2 s_{(2,0,0)} \rho^{2} \\
& +\left(2 s_{(3,0,0)}+s_{(2,1,0)}+s_{(1,1,1)}\right) \rho^{3}+\cdots
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{(1,0,0)}=t_{1}+t_{2}+t_{3}, s_{(2,0,0)}=t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}+t_{2} t_{3}+t_{3}^{2}+t_{3} t_{1} \\
& s_{(3,0,0)}=t_{1}^{3}+t_{1}^{2} t_{2}+\cdots, s_{(2,1,0)}=t_{1}^{2} t 2+t_{2} t_{1}^{2}+\cdots \\
& s_{(1,1,1)}=t_{1} t_{2} t_{3}
\end{aligned}
$$

Traceless matrices

$\prod_{a=1}^{3}\left(1-t_{a}\right) Z_{N}\left(\rho t_{1}, \rho t_{2}, \rho t_{3}\right)=1+s_{(2,0,0)} \rho^{2}+s_{(1,1,1)} \rho^{3}+\cdots$

The Molien-Weyl formula from Path Integrals

A Gauge Gaussian Model

$$
\begin{gathered}
S[X, A]=\frac{1}{2} \int_{0}^{\beta} d \tau \operatorname{Tr}\left\{\left(D_{\tau} X\right)^{2}+X^{2}\right\} \quad D_{\tau}=\partial_{\tau}+i[A, \cdot] \\
Z=\int[d X][d A] \mathrm{e}^{-S[X, A]-E_{0}} \\
D_{\tau} X \xrightarrow{\text { lat }} \xrightarrow{U_{n, n+1} X_{n+1} U_{n+1, n}-X_{n}} \\
a
\end{gathered}, U_{n, n+1}=\mathcal{P e}^{i \int_{n a}^{(n+1) a} d \tau A(\tau)}, ~ \$
$$

with \mathcal{P} a path ordered product, $U_{n+1, n}=U_{n, n+1}^{\dagger}$.

$$
S_{l a t}=\sum_{n=0}^{\Lambda-1} \operatorname{tr}\left\{\frac{1}{a}\left(X_{n}^{2}-X_{n} U_{n, n+1} X_{n+1} U_{n, n+1}^{\dagger}\right)+\frac{a}{2} X_{n}^{2}\right\}
$$

$$
Z(t)=\frac{1}{N!} \int_{-\pi}^{\pi} \frac{d \theta_{1} \cdots d \theta_{N}}{(2 \pi)^{N}} \mathrm{e}^{-S(\theta)}
$$

$$
\begin{aligned}
S(\theta)=N \ln (1-t) & +\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-t \mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2} \\
& -\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-\mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2}
\end{aligned}
$$

The last sum is from the Vandermonde due to diagonalisation of U.
Performing the contour integrals yields

$$
Z_{N}(t)=\prod_{m=1}^{N} \frac{1}{1-t^{m}}=\sum_{n=0}^{\infty} p_{N}(n) t^{n}
$$

Summary:

The Euclidean action with d matrices

$$
\begin{gathered}
S[X, A]=\frac{1}{2} \int_{0}^{\beta} d \tau \sum_{k=1}^{d} \operatorname{Tr}\left\{\left(D_{\tau} X^{k}\right)^{2}+m_{k}^{2}\left(X^{k}\right)^{2}\right\} \\
Z\left(t_{1}, \cdots, t_{d}\right)=\int \frac{d \theta_{1} \cdots d \theta_{N}}{(2 \pi)^{N} N!} \mathrm{e}^{-S(\theta, d)} \quad t_{k}=\mathrm{e}^{-m_{k} \beta}
\end{gathered}
$$

Molien-Weyl (Hilbert-Poincaré series) formula=partition function

$$
\begin{gathered}
S(\theta, d)=\sum_{k=1}^{d}\left\{N \ln \left(1-t_{k}\right)+\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-t_{k} \mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2}\right\} \\
-\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-\mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2}
\end{gathered}
$$

The first term arises from $i=j$ in the double sum.

For $t_{1}=t_{2}=\cdots=t_{d}=t$

$$
\begin{aligned}
Z_{N}(t, \cdots, t)=Z_{N}(t, d) & =\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi i z_{i}} \frac{\Delta(\{z\}) \Delta\left(\left\{z^{-1}\right\}\right)}{(1-t)^{d} \Delta(t,\{z\})^{d}} \\
& =\sum_{n} \operatorname{dim}_{n}(N, d) t^{n}
\end{aligned}
$$

The dimensions $\operatorname{dim}_{n}(N, d)$ will be our principal interest.

For $\mathcal{N}=4$ SUSY Yang Mills $\operatorname{dim}_{n}(N, d)$ count BPS states, with $d=1$ counting $\frac{1}{2}$-BPS sector and $d=2$ counting the $\frac{1}{4}$-BPS sector.

Dimensions for small N and n

$Z_{N}\left(t_{1}, t_{2}\right) N=2, \cdots 6$ and $Z_{7}(t, t)$ have been evaluated. Also, for $t_{i} \ll 1$, one can show (F. Dolan arXiv:0704.1038) that

$$
Z_{\infty}\left(t_{1}, \cdots, t_{d}\right)=\prod_{n=1}^{\infty} \frac{1}{1-\sum_{i=1}^{d} t_{i}^{n}}
$$

$$
Z_{\infty}(t, d)=\prod_{n=1}^{\infty} \frac{1}{1-d t^{n}}
$$

Fermionic Matrix Models

We can ask the same questions for fermionic systems.
States for a single 2×2 matrix

$$
|0\rangle, \quad \operatorname{tr}\left(b^{\dagger}\right)|0\rangle>, \operatorname{tr}\left(\left(b^{\dagger}\right)^{3}\right)|0\rangle, \operatorname{tr}\left(\left(b^{\dagger}\right)^{3} \operatorname{tr}\left(b^{\dagger}\right)|0\rangle\right.
$$

So the partition function is:

$$
Z_{2}(t)=1+t+t^{3}+t^{4}=(1+t)\left(1+t^{3}\right)
$$

$N \times N$ single matrix

$$
Z_{N}(t)=\prod_{n=1}^{N}\left(1+t^{2 n-1}\right)
$$

Finite N fermionic two matrix model

$$
Z_{2}\left(t_{1}, t_{2}\right)=\left(1+t_{1}\right)\left(1+t_{2}\right)\left(1+t_{1}^{3}+t_{1} t_{2}+t_{1}^{2} t_{2}+t_{1} t_{2}^{2}+t_{1}^{2} t_{2}^{2}+t_{2}^{3}+t_{1}^{3} t_{2}^{3}\right)
$$

Palendromic-due to fermion hole symmetry

$$
\begin{gathered}
Z_{2}(t)=1+2 t+2 t^{2}+6 t^{3}+10 t^{4}+6 t^{5}+2 t^{6}+2 t^{7}+t^{8} \\
Z_{3}(t)=1+2 t+2 t^{2}+6 t^{3}+14 t^{4}+26 t^{5}+40 t^{6}+50 t^{7}+71 t^{8}+88 t^{9} \\
+71 t^{10}+\cdots+2 t^{17}+t^{18}
\end{gathered}
$$

Fermionic Matrix Models:Small N Observables.

$\mathrm{E}=<\mathrm{H}>/ \mathrm{N}^{\wedge} 2$ for $\mathrm{N}=2,3,4,5,6,7,8$ and 9 E

The Free Energy and Internal Energy for gauged Fermion matrix models.

Fermionic Matrix models

The Entropy as a function of the Energy

An advantage of small N studies is that one can extract the Boltzmann entropy, $S=\ln \Omega$, from the partition function. Taking $t=\mathrm{e}^{-\beta}$ then the coefficients in a power series in t give Ω the number of states.

Entropy, $\mathrm{S}=\operatorname{Ln}(\Omega) ; \mathrm{N}=4,5,6,7$ and ∞

Entropy, $\mathrm{S}=\operatorname{Ln}(\Omega) ; \mathrm{N}=4,5,6,7$ and 8 and ∞

The Entropy vs Energy for pure Bosonic and Fermionic models.
Note:
$Z_{B}^{S U(\infty)}(t, 2)=\prod_{n=1}^{\infty} \frac{1}{1-2 t^{n}}$

$$
Z_{F}^{S U(\infty)}(t, 2)=\prod_{n=1}^{\infty} \frac{1}{1+2(-t)^{n}}
$$

Comparing Bosonic and Fermionic Matrix models

The Free Energy and Internal Energy for $N=6$ of Bosonic and Fermionic models.

Comparing Bosonic and Fermionic Matrix models

The Standard Deviation of the Energy and the Heat Capacity for $N=6$ of Bosonic and Fermionic models.

Limiting Entropy

Boltzman Entropy S_{∞} and $\mathrm{N}=9$

Note: The diagram has been centered by restoring the zero-point energy so that $E=\frac{n-N^{2}}{N^{2}}$. The flat edges in blue have $\frac{d S(E)}{d E}=\beta_{H}=\ln 2$. The flat region at low energy $(E=-1$ to $\left.E=-\frac{3}{4}\right)$ is universal and agrees with $N=\infty$. Generalised Caley-Hamilton relations enter at $E=-1+\frac{1}{N}$ but only become important at $E=-1+\frac{1}{4}$ where they become dominant.

Large N low temperature fermionic mode, d matrices

Large N ignoring traces

$$
Z_{N}(t)=\prod_{n=1}^{\infty} \frac{1}{1+2(-t)^{n}}
$$

This reproduces the finite N fermionic coefficients up to $k=2 N-1$

A large N analysis

Low temperature, $\beta \rightarrow \infty \Longrightarrow t_{k} \ll 1$
Expanding the t_{i} logarithms one finds

$$
S(\theta, d)=-N^{2} \sum_{n=1}^{\infty} \frac{\sum_{k=1}^{d} t_{k}^{n}}{n}\left|u_{n}\right|^{2}-\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-\mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2}
$$

where $u_{n}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{e}^{i n \theta_{i}}$. The partition function becomes

$$
Z\left(t_{1}, \cdots, t_{d}\right)=\int[d U] \exp \left[\sum_{n=1}^{\infty} \frac{a_{n}}{n} \operatorname{tr}\left(U^{n}\right) \operatorname{tr}\left(U^{-n}\right)\right]
$$

Keeping only the $n=1$ term gives the a_{1} model

The a_{1} model.

$$
Z\left(a_{1}\right)=\int[d U] \mathrm{e}^{a_{1} \operatorname{tr}(U) \operatorname{tr}\left(U^{-1}\right)}
$$

The Hagedorn (confining/deconfining) Phase Transition.

High Temperature (small β)

$$
S[X, A]=\frac{1}{2} \int_{0}^{\beta} d \tau \operatorname{Tr}\left\{\left(D_{\tau} X\right)^{2}+X^{2}\right\} \quad D_{\tau}=\partial_{\tau}+i[A, \cdot]
$$

for β small becomes the random matrix model

$$
S[X, A] \simeq \frac{\beta}{2} \operatorname{Tr}\left\{-[A, X]^{2}+X^{2}\right\}
$$

The eigenvalues of βA, the θ_{i}, are distributed roughly with a Wigner semi-circle distribution.

For $\beta \rightarrow 0$

$$
\begin{gathered}
Z_{N}(t, d) \sim \beta^{(d-1) N^{2}}=\mathrm{e}^{(d-1) N^{2} \ln (-\ln t)} \\
\operatorname{dim}_{n}(N, d) \sim \mathrm{e}^{N^{2}(d-1) \ln n}
\end{gathered}
$$

The transition Point

From

$$
S(\theta, d) \simeq N^{2} \sum_{n=1}^{\infty} \frac{\left(1-a_{n}\right)}{n}\left|u_{n}\right|^{2}
$$

we see that the transition occurs at $a_{1}=1$ where the coefficient of $\left|u_{1}\right|^{2}$ changes sign. For $a_{1}=\sum_{i=1}^{d} t_{i}=d \mathrm{e}^{-\beta}$ the transition occurs at $T_{H}=\frac{1}{\beta_{H}}=\frac{1}{\ln d}$.

If we integrate over u_{n} (Aharoney et al arXiv:hep-th/0310285) and set $Z_{\infty}=1$ for $a_{n}=0$, we obtain

$$
Z_{\infty}=\prod_{n=1}^{\infty} \frac{1}{1-a_{n}}=\prod_{n=1}^{\infty} \frac{1}{1-\sum_{i=1}^{d} t_{i}^{n}}
$$

F. Dolan arXiv:0704.1038 obtained this for $d=2$ by exact methods. Though the result is exact for $d=1$ it breaks down for $a_{1} \rightarrow 1$, but still allows us to count low energy states count states at large N.

Counting states at large N

$$
Z_{\infty}(t, d)=\prod_{n=1}^{\infty} \frac{1}{1-d t^{n}}=\sum_{n=1}^{\infty} \operatorname{dim}_{n}(\infty, d) t^{n}
$$

This is dominated by the $n=1$ term so one gets $\operatorname{dim}_{n}(\infty, d) \sim d^{n}$. A more careful estimate gives

$$
\operatorname{dim}_{n}(\infty, d) \sim \frac{1}{\phi\left(\frac{1}{d}\right)} d^{n} \quad \text { with } \phi(q) \text { the Euler function. }
$$

To estimate $\operatorname{dim}_{n}(N, d)$ for large n and and large N we use the a_{1} model.

The a_{1} model in detail

$$
Z\left(a_{1}\right)=\int[d U] \mathrm{e}^{a_{1} \operatorname{tr}(U) \operatorname{tr}\left(U^{-1}\right)}
$$

Expanding directly in a_{1} gives

$$
Z\left(a_{1}\right)=\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{R}\left[d_{R}\left(S_{k}\right)\right]^{2} a_{1}^{k}
$$

where $d_{R}\left(S_{k}\right)$ is the dimension of the representation R of the permutation group S_{k}.

$$
d_{n_{1}, \cdots, n_{N}}\left(S_{k}\right)=\left(n_{1}+\cdots n_{N}\right)!\frac{\prod_{i=1}^{N-1} \prod_{j=i+1}^{N}\left(n_{i}-i-\left(n_{j}-j\right)\right)}{\prod_{i=1}^{N}\left(n_{i}+N-i\right)!}
$$

We have

$$
\frac{1}{k!} \sum_{R}\left[d_{R}\left(S_{k}\right)\right]^{2}=1 \quad k \leq N
$$

and decreases slowly above N (at least initially).

Coefficients of a_{1} model

The N dependence of the a_{1} model

The coefficients

$$
c_{k}(N)=\frac{1}{k!} \sum_{R}\left[d_{R}\left(S_{k}\right)\right]^{2}
$$

Coefficients of a_{1} model $\mathrm{N}=5$ and 8

Solving the a_{1} model for $a_{1}>1$

For large N we wish to solve

$$
\begin{aligned}
\left.Z_{N}(\theta, d)=\sum_{k=1}^{d} \frac{1}{2} \sum_{i, j=1}^{N} \ln \right\rvert\, & 1-\left.t_{k} \mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2} \\
& -\frac{1}{2} \sum_{i \neq j=1}^{N} \ln \left|1-\mathrm{e}^{i\left(\theta_{i}-\theta_{j}\right)}\right|^{2}
\end{aligned}
$$

for $\theta_{n} \rightarrow \theta(n)$ with $\frac{d n}{d \theta}=\rho(\theta)$ and

$$
\begin{aligned}
\frac{Z(\rho)}{N^{2}}=\frac{1}{2} \sum_{k=1}^{d} \int & \rho(\alpha) \int \rho(\beta) \ln \left|1-t_{k} \mathrm{e}^{i(\alpha-\beta)}\right|^{2} d \alpha d \beta \\
& -\frac{1}{2} P \int \rho(\alpha) \rho(\beta) \ln \left|1-\mathrm{e}^{i(\alpha-\beta)}\right|^{2} d \alpha d \beta
\end{aligned}
$$

The large $N a_{1}$ model is solvable

$$
\frac{S_{a_{1}}}{N^{2}}=-a_{1}\left|u_{1}\right|^{2}-\frac{1}{2} P \int \rho(\alpha) \rho(\beta) \ln \left|1-\mathrm{e}^{i(\alpha-\beta)}\right| d \alpha d \beta
$$

Has the solution

$$
\rho(\theta)=\left\{\begin{array}{lll}
\frac{1}{2 \pi} & \text { for } & a_{1}<1 \tag{1}\\
\frac{1}{\pi \sin ^{2}\left(\frac{\theta_{0}}{2}\right)} \sqrt{\sin ^{2}\left(\frac{\theta_{0}}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)} \cos \left(\frac{\theta}{2}\right) & \text { for } & a_{1}>1
\end{array}\right.
$$

and θ_{0} is specified by

$$
\begin{equation*}
s^{2} \equiv \sin ^{2}\left(\frac{\theta_{0}}{2}\right)=1-\sqrt{1-\frac{1}{a_{1}}} . \tag{2}
\end{equation*}
$$

The large N free energy as

$$
-\frac{1}{N^{2}} \ln Z=\beta F= \begin{cases}0 & a_{1}<1 \\ \frac{1}{2}-\frac{1}{2 s^{2}}-\frac{1}{2} \ln s^{2} & a_{1}>1\end{cases}
$$

Taking $a_{1}=d \mathrm{e}^{-\beta}$ and expanding in the vicinity of the Hagadorn temperature we find with $\beta_{H}=\ln d$

$$
-\frac{1}{N^{2}} \ln Z=\beta F= \begin{cases}0 & \beta>\beta_{H} \\ \frac{\beta-\beta_{H}}{4}-\frac{1}{3}\left(\beta_{H}-\beta\right)^{3 / 2}+\cdots & \beta<\beta_{H}\end{cases}
$$

The energy

$$
E=\frac{\partial(\beta F)}{\partial \beta}= \begin{cases}0 & \beta>\beta_{H} \\ \frac{1}{4}+\frac{1}{2} \sqrt{\beta_{H}-\beta}+\cdots & \beta<\beta_{H}\end{cases}
$$

The transition occurs is $E=\frac{1}{4}$ or $n=\frac{N^{2}}{4}$.

The Phase Transition

The transition is NOT simply 1st order.

The transition has a divergent specific heat on either side of the transition. The stronger divergence appears to be on the low temperature side, but this is coming from subdominant contributions as the limit is approached.

Entropy from Free the Energy

$$
\frac{d S}{d E}=\beta(E)
$$

$$
E=\frac{1}{4}+\frac{1}{2} \sqrt{\ln d-\beta}+\cdots \quad \Longrightarrow \beta(E)=\ln d-4\left(E-\frac{1}{4}\right)^{2}+\cdots
$$

Inverting the expression for $E(\beta)$ and integrating gives and matching at $E=\frac{1}{4}$ gives

$$
S(E)=E \ln d-\frac{4}{3}\left(E-\frac{1}{4}\right)^{3}+\cdots
$$

The exact result from the a_{1} model consistent with the eigenvalue distribution $\rho(\theta)$ is

$$
S(E)=(1+\ln d) E-\frac{1+2 \ln 2}{4}+E \ln E-\left(E+\frac{1}{4}\right) \ln \left(E+\frac{1}{4}\right)^{2}
$$

Matching across the transition

The transition occurs at $E=\frac{1}{4}$.
At low temperatures

$$
Z_{\infty}(t, d)=\prod_{n=1}^{\infty} \frac{1}{1-d t^{n}}=\sum_{n=1}^{\infty} d^{n} t^{n}=\mathrm{e}^{N^{2} \ln d E}
$$

using $E_{n}=\frac{n}{N^{2}}$
Entropy at the transition

$$
S\left(\frac{1}{4}\right)=\frac{\ln d}{4}
$$

So at the transition

$$
n_{c}=\frac{N^{2}}{4}
$$

The transition is one from where trace relations can be ignored to where they become significant.

Implications for Matrix Traces

We have found that

- The number of states grows with energy as $\operatorname{dim}_{n}(N, d) \sim d^{n}=\mathrm{e}^{N^{2} \ln (d) E}$ (with $E=\frac{n}{N^{2}}$) below the transition.
- $\operatorname{dim}_{n}(N, d) \sim \mathrm{e}^{N^{2}\left\{c+\ln (d) E-\frac{4}{3}\left(E-\frac{1}{4}\right)^{3}+\cdots\right\}}$ above.
- The low n and large n entropy match at $E=\frac{1}{4}$.

Trace relations become dominant at $n=\frac{N^{2}}{4}$

Rephrasing:

Main result

- For large N and all $d>1$ trace relations "switch on" at $n=\frac{N^{2}}{4}$.
This is true for bosons or fermions or a mixture of these!

$$
\operatorname{dim}_{n}(N, d)=\left\{\begin{array}{lr}
c(d) d^{n} & \frac{N^{2}}{4} \geq n \gg 1 \\
c(d) d^{n} \mathrm{e}^{-\frac{4 N^{2}}{3}\left(\frac{n}{N^{2}}-\frac{1}{4}\right)^{3} \ldots} & n \geq \frac{N^{2}}{4}
\end{array}\right.
$$

with $c(d)=\frac{1}{\phi\left(\frac{1}{d}\right)}$ with $\phi(q)$ the Euler function.

- For large N trace relations become significant for traces of length $\frac{N^{2}}{4}$ even though we know that traces as long as $\mathcal{N}(N)=\frac{N(N+1)}{2}$ still play a role providing new states.

Conclusions

Entropy, $S(n)=\frac{1}{N^{2}} \ln \operatorname{dim}_{n}(N, d)$

- $S(n)$ has universal large N transition at $n=\frac{N^{2}}{4}$

Speculation

In many matrix models the Hagedorn (confining/deconfining) transition is argued to be the Hawking-Pope transition in gravitational duals. In the Hawking-Page transition a large AdS black hole becomes unstable as its mass (temperature) is decreased and there is a transition to thermal particle gas.
Entropy of black-holes universal form $S_{B H}=\frac{A}{4 G}$. Is this a coincidence?

Thanks for Your Attention!

