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Introduction

Consider counting the number of invariants of a system of N × N
matrices, i.e. for g ∈ U(N) invariant under conjugation:

Xi → gXig
−1

X ∈ Mat(N) has N2 degrees of freedom

But there are only N invariants—the N eigenvalues of X .

Eigenvalues are roots or the characteristic polynomial

PN(λ) = Det[X − λ1N ]
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Hamilton-Cayley

The Hamilton-Cayley Theorem

Every finite rank square matrix, X , over a commutative ring
satisfies its own characteristic equation

PN(X ) = 0

where PN(λ) is the characteristic polynomial of X .

PN(X ) recursively

PN(X ) = PN−1(X )X − 1

N
tr(PN−1(X )X ).

with P1(X ) = X − tr(X ).

tr(PN(X )) = 0 gives det(X ) in terms of traces.

Similarly tr(XN+1) becomes products of traces of lower powers.
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2× 2 matrices and 3× 3 traceless matrices

For X , a generic 2× 2 matrix,

P2(x) = P1(X )X − 1

N
tr(P1(X )X )12 P1(X ) = X − tr(X )

=⇒ P2(X ) = X 2 − X tr(X )− 1

2

(
tr(X 2)− tr2(X )

)
12

tr(X 3)− 3

2
tr(X )tr(X 2) +

1

2
tr3(X ) = 0 .

For Y a generic traceless 3× 3 traceless matrix

P3(Y ) = Y 3 − 1

2
tr(Y 2)Y − 1

3
tr(Y 3)

=⇒ tr(Y 4)− 1

2
(tr(Y 2))

2
= 0 .

More generally for an N × N matrix tr(XN+1) is expressible in
terms of products of lower traces.
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All matrix invariants are expressible in terms of the generating set
{tr(X k)} with k ≤ N.

The algebra of GLN invariants

The algebra of invariants of a single generic matrix X is generated
by the N traces tr(X k), k = 1, . . . ,N.

The invariants of X are, of course, the eigenvalues.
The number of invariants for a given power of the matrix is
captured by a generating function (Hilbert-Poincaré series)

ZN(t) =
∞∑
n

dimn(N)tn =
∞∑
n=0

pN(n)t
n

where dimn is the number of invariants formed from n X ’s.
dimn(N) = pN(n) = # partitions of n into N or less parts.

ZN(t) =
N∏

m=1

1

1− tm
= 1+ t +2t2 +3t3 +5t4 +7t5 +11t6 + · · · .
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Fock Space Realisation

For a single matrix the low lying states are:

|0⟩,
tr(a†)|0⟩,
tr2(a†)|0⟩, tr((a†)

2
)|0⟩,

tr3(a†)|0⟩, tr(a†)tr((a†)
2
)|0⟩, tr((a†)

3
)|0⟩,

tr4(a†)|0⟩, tr2(a†)tr((a†)
2
)|0⟩, tr((a†)2)tr((a†)

2
)|0⟩, tr(a†)tr((a†)

3
)|0⟩, tr((a†)

4
)|0⟩,

tr5(a†)|0⟩, tr3(a†)tr((a†)
2
)|0⟩ · · · · · ·

The partition function (Hilbert Poincaré series).

ZN(t) = TrPhys(e
−β(tr(a†a)) = TrPhys(t

N̂) =
N∏

m=1

1

1− tm
..

Where t = e−β, and Phys refers to U(N)—gauge invariant states.

Z∞(t) =
1

ϕ(t)
ϕ(t) =

∞∏
n=1

(1− tn) is the Euler function.
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Two or more Matrices

What happens if we consider a pair of matrices X and Y ?

For more than one matrix the invariants are no longer eigenvalues.

What can we say about the invariants of this system? A few
theorems guide what to expect.

Trace Relations and Matrix Models



Theorem: (Nagata-Higman Theorem), Nagata (1953), Higman
(1956), Dubnov and Ivanov (1943)

If the (nonunitary) algebra R is nil of bounded index ≤ N, i.e.
rN = 0 for all r ∈ R, then R is nilpotent, i.e. there exists an
N = N (N) such that r1 · · · rN = 0 for all r1, · · · , rN ∈ R.

Theorem: (Formanek (1986), Procesi (1976& 1979), Razmyslov
(1974))

Let N (N) be the class of nilpotency in the Nagata-Higman
theorem. Then the algebra of invariants ΩGLN

nd is generated by the
traces tr(X i1 · · ·X im) of degree ≤ N (N). For d sufficiently large
this bound is sharp.

Razmyslov (1974) N (N) ≤ N2; Kuzmin (1975)
N (n) ≥ 1

2N(N + 1).

Hence:
1

2
N(N + 1) ≤ N (N) ≤ N2.

See page 8 of V. Drensky, Computing with Matrix Invariants,
arXiv:math/0506614.
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Hilbert-Poincaré series: Molien-Weyl formula

Theorem (Teranishi 1986)

The Hilbert-Poincaré series for the system on N matrices is given
by the Molien-Weyl formula:

ZU(N)(t1, · · · , td) =
1

N!

∫ N∏
l=1

dzl
2πizl

∆(z)∆(
1

z
)

d∏
i=1

N∏
l ,m=1

1

1− tizlz
−1
m

with ∆(z) the Vandermonde determinant. For small N and small d
the integrals can be performed exactly and some results are known.

ZN(t1, t2) have been evaluated up to N = 6 and Z7(t, t) was
evaluated in Kristensson et al arXiv:2005.06480.
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The invariants of 2× 2 matrices

Two matrices X and Y

Z2(t1, t2) =
1

(1− t1)(1− t2)(1− t21 )(1− t1t2)(1− t22 )

The invariants are built from tr(X ), tr(X 2), tr(Y ), tr(Y 2) and
tr(X .Y ).

Three matrices X ,Y and Z

Z2(t1, t2, t3) =
1 + t1t2t3∏3

a=1(1− ta)
∏3

b≤c=1(1− tbtc)

The term t1t2t3 indicates that we need tr(X .Y .Z ) but not higher
powers—it satisfies a quadratic relation. It captures a Z2 invariant.
The highest product appearing in the generating set is 2 consistent
with the lower bound N (2) = 3.
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Schur Polynomials

The low lying states and Schur Polynomials

ZN(ρt1, ρt2, ρt3) = 1 + s(1,0,0)ρ+ 2s(2,0,0)ρ
2

+(2s(3,0,0) + s(2,1,0) + s(1,1,1))ρ
3 + · · ·

where
s(1,0,0) = t1 + t2 + t3, s(2,0,0) = t21 + t1t2 + t22 + t2t3 + t23 + t3t1
s(3,0,0) = t31 + t21 t2 + · · · , s(2,1,0) = t21 t2 + t2t

2
1 + · · ·

s(1,1,1) = t1t2t3

Traceless matrices∏3
a=1(1− ta)ZN(ρt1, ρt2, ρt3) = 1 + s(2,0,0)ρ

2 + s(1,1,1)ρ
3 + · · ·
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The Molien-Weyl formula from Path Integrals

A Gauge Gaussian Model

S [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX )2 + X 2

}
Dτ = ∂τ + i [A, ·] .

Z =
∫
[dX ][dA]e−S[X ,A]−E0

DτX
lat−→ Un,n+1Xn+1Un+1,n − Xn

a
,Un,n+1 = Pei

∫ (n+1)a
na dτ A(τ) ,

with P a path ordered product, Un+1,n = U†
n,n+1.

Slat =
Λ−1∑
n=0

tr

{
1

a
(X 2

n − XnUn,n+1Xn+1U
†
n,n+1) +

a

2
X 2
n

}
,
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Z (t) = 1
N!

∫ π
−π

dθ1···dθN
(2π)N

e−S(θ)

S(θ) = N ln(1− t) +
1

2

N∑
i ̸=j=1

ln |1− tei(θi−θj )|2

−1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2

The last sum is from the Vandermonde due to diagonalisation of U.

Performing the contour integrals yields

ZN(t) =
N∏

m=1

1

1− tm
=

∞∑
n=0

pN(n)t
n
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Summary:

The Euclidean action with d matrices

S [X ,A] =
1

2

∫ β

0
dτ

d∑
k=1

Tr
{
(DτX

k)2 +m2
k(X

k)2
}
,

Z (t1, · · · , td) =
∫

dθ1 · · · dθN
(2π)NN!

e−S(θ,d) tk = e−mkβ

Molien-Weyl (Hilbert-Poincaré series) formula=partition function

S(θ, d) =
d∑

k=1

N ln(1− tk) +
1

2

N∑
i ̸=j=1

ln |1− tke
i(θi−θj )|2


−1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2 .

The first term arises from i = j in the double sum.
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For t1 = t2 = · · · = td = t

ZN(t, · · · , t) = ZN(t, d) =
1

N!

∫ N∏
i=1

dzi
2πizi

∆({z})∆({z−1})
(1− t)d∆(t, {z})d

=
∑
n

dimn(N, d)tn.

The dimensions dimn(N, d) will be our principal interest.

For N = 4 SUSY Yang Mills dimn(N, d) count BPS states, with
d = 1 counting 1

2 -BPS sector and d = 2 counting the 1
4 -BPS

sector.
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Dimensions for small N and n

ZN(t1, t2) N = 2, · · · 6 and Z7(t, t) have been evaluated. Also, for
ti ≪ 1, one can show (F. Dolan arXiv:0704.1038) that

Z∞(t1, · · · , td) =
∞∏
n=1

1

1−
∑d

i=1 t
n
i

Z∞(t, d) =
∞∏
n=1

1

1− dtn
.
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dimN (n, 2)
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for N=5,7 and ∞ and Φ(

1

2
)-1
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Fermionic Matrix Models

We can ask the same questions for fermionic systems.

States for a single 2× 2 matrix

|0⟩, tr(b†)|0⟩ >, tr((b†)
3
)|0⟩, tr((b†)3tr(b†)|0⟩

So the partition function is:

Z2(t) = 1 + t + t3 + t4 = (1 + t)(1 + t3)

N × N single matrix

ZN(t) =
N∏

n=1

(1 + t2n−1)
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Finite N fermionic two matrix model

Z2(t1, t2) = (1+t1)(1+t2)(1+t31+t1t2+t21 t2+t1t
2
2+t21 t

2
2+t32+t31 t

3
2 )

Palendromic—due to fermion hole symmetry

Z2(t) = 1 + 2t + 2t2 + 6t3 + 10t4 + 6t5 + 2t6 + 2t7 + t8

Z3(t) = 1+2t+2t2+6t3+14t4+26t5+40t6+50t7+71t8+88t9

+71t10 + · · ·+ 2t17 + t18
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Fermionic Matrix Models:Small N Observables.

1 2 3 4
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Free Energy for N=2,3,4,5,6,7,8 and 9
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0.2
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E

E=<H>/N^2 for N=2,3,4,5,6,7,8 and 9

The Free Energy and Internal Energy for gauged Fermion matrix
models.
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Fermionic Matrix models
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<(H-<H>)^2>/N^2

Energy fluctuations N=2,3,4,5,6,7,8 and 9
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C=β^2<(H-<H>)^2>/N^2; N=2,3,4,5,6,7,8 and 9

The Standard Deviation of the Energy and the Heat Capacity for
gauged fermion matrix models.
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The Entropy as a function of the Energy

An advantage of small N studies is that one can extract the
Boltzmann entropy, S = lnΩ, from the partition function. Taking
t = e−β then the coefficients in a power series in t give Ω the
number of states.
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Entropy,S=Ln(Ω); N=4,5,6, 7 and ∞
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Entropy,S=Ln(Ω); N=4,5,6,7 and 8 and ∞

The Entropy vs Energy for pure Bosonic and Fermionic models.
Note:

Z
SU(∞)
B (t, 2) =

∞∏
n=1

1

1− 2tn
Z

SU(∞)
F (t, 2) =

∞∏
n=1

1

1 + 2(−t)n
.
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Comparing Bosonic and Fermionic Matrix models
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Free Energy for SU(N) N=6
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E=<H>/N^2 for N=6

The Free Energy and Internal Energy for N = 6 of Bosonic and
Fermionic models.
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Comparing Bosonic and Fermionic Matrix models
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<(H-<H>)^2>/N^2

Energy fluctuations; SU(N) N=6
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C=β^2<(H-<H>)^2>/N^2; SU(N), N=6

The Standard Deviation of the Energy and the Heat Capacity for
N = 6 of Bosonic and Fermionic models.
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Limiting Entropy
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Entropy,S=Ln(Ω); N=4,5,6,7 and 8 and ∞
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Boltzman Entropy S
∞
and N=9

Note: The diagram has been centered by restoring the zero-point
energy so that E = n−N2

N2 . The flat edges in blue have
dS(E)
dE = βH = ln 2. The flat region at low energy (E = −1 to

E = −3
4) is universal and agrees with N = ∞ . Generalised

Caley-Hamilton relations enter at E = −1 + 1
N but only become

important at E = −1 + 1
4 where they become dominant.
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Large N low temperature fermionic mode, d matrices

Large N ignoring traces

ZN(t) =
∞∏
n=1

1

1 + 2(−t)n

This reproduces the finite N fermionic coefficients up to
k = 2N − 1
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A large N analysis

Low temperature, β → ∞ =⇒ tk ≪ 1

Expanding the ti logarithms one finds

S(θ, d) = −N2
∞∑
n=1

∑d
k=1 t

n
k

n
|un|2 −

1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2 .

where un = 1
N

∑N
i=1 e

inθi .The partition function becomes

Z (t1, · · · , td) =
∫
[dU] exp[

∞∑
n=1

an
n
tr(Un)tr(U−n)]

Keeping only the n = 1 term gives the a1 model

The a1 model.

Z (a1) =

∫
[dU]ea1tr(U)tr(U−1)
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The Hagedorn (confining/deconfining) Phase Transition.

High Temperature (small β)

S [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX )2 + X 2

}
Dτ = ∂τ + i [A, ·]

for β small becomes the random matrix model

S [X ,A] ≃ β

2
Tr

{
−[A,X ]2 + X 2

}
The eigenvalues of βA, the θi , are distributed roughly with a
Wigner semi-circle distribution.

For β → 0

ZN(t, d) ∼ β(d−1)N2
= e(d−1)N2 ln(− ln t)

dimn(N, d) ∼ eN
2(d−1) ln n
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The transition Point

From

S(θ, d) ≃ N2
∞∑
n=1

(1− an)

n
|un|2 ,

we see that the transition occurs at a1 = 1 where the coefficient of
|u1|2 changes sign. For a1 =

∑d
i=1 ti = de−β the transition occurs

at TH = 1
βH

= 1
ln d .

If we integrate over un (Aharoney et al arXiv:hep-th/0310285) and
set Z∞ = 1 for an = 0, we obtain

Z∞ =
∞∏
n=1

1

1− an
=

∞∏
n=1

1

1−
∑d

i=1 t
n
i

F. Dolan arXiv:0704.1038 obtained this for d = 2 by exact
methods. Though the result is exact for d = 1 it breaks down for
a1 → 1, but still allows us to count low energy states count states
at large N.
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Counting states at large N

Z∞(t, d) =
∞∏
n=1

1

1− dtn
=

∞∑
n=1

dimn(∞, d)tn

This is dominated by the n = 1 term so one gets
dimn(∞, d) ∼ dn. A more careful estimate gives

dimn(∞, d) ∼ 1

ϕ( 1d )
dn with ϕ(q) the Euler function.

To estimate dimn(N, d) for large n and and large N we use the a1
model.
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The a1 model in detail

Z (a1) =

∫
[dU]ea1tr(U)tr(U−1)

Expanding directly in a1 gives

Z (a1) =
∞∑
k=0

1

k!

∑
R

[dR(Sk)]
2ak1

where dR(Sk) is the dimension of the representation R of the
permutation group Sk .

dn1,··· ,nN (Sk) = (n1 + · · · nN)!
∏N−1

i=1

∏N
j=i+1(ni − i − (nj − j))∏N
i=1(ni + N − i)!

We have
1

k!

∑
R

[dR(Sk)]
2 = 1 k ≤ N

and decreases slowly above N (at least initially).
Trace Relations and Matrix Models



Coefficients of a1 model

The N dependence of the a1 model

The coefficients

ck(N) =
1

k!

∑
R

[dR(Sk)]
2

10 20 30 40

k

0.2

0.4

0.6

0.8

1.0

c_k(N)

Coefficients of a1 model N=5 and 8
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Solving the a1 model for a1 > 1

For large N we wish to solve

ZN(θ, d) =
d∑

k=1

1

2

N∑
i ,j=1

ln |1− tke
i(θi−θj )|2

−1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2 .

for θn → θ(n) with dn
dθ = ρ(θ) and

Z (ρ)

N2
=

1

2

d∑
k=1

∫
ρ(α)

∫
ρ(β) ln |1− tke

i(α−β)|2dαdβ

−1

2
P

∫
ρ(α)ρ(β) ln |1− ei(α−β)|2dαdβ .
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The large N a1 model is solvable

Sa1
N2

= −a1|u1|2 −
1

2
P

∫
ρ(α)ρ(β) ln |1− ei(α−β)|dαdβ .

Has the solution

ρ(θ) =


1
2π for a1 < 1

1

π sin2(
θ0
2
)

√
sin2( θ02 )− sin2( θ2) cos(

θ
2) for a1 > 1

(1)

and θ0 is specified by

s2 ≡ sin2(
θ0
2
) = 1−

√
1− 1

a1
. (2)
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The large N free energy as

− 1

N2
lnZ = βF =

{
0 a1 < 1
1
2 − 1

2s2
− 1

2 ln s
2 a1 > 1

Taking a1 = de−β and expanding in the vicinity of the Hagadorn
temperature we find with βH = ln d

− 1

N2
lnZ = βF =

{
0 β > βH
β−βH

4 − 1
3(βH − β)3/2 + · · · β < βH

The energy

E =
∂(βF )

∂β
=

{
0 β > βH
1
4 + 1

2

√
βH − β + · · · β < βH .

The transition occurs is E = 1
4 or n = N2

4 .
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The Phase Transition

The transition is NOT simply 1st order.

The transition has a divergent specific heat on either side of the
transition. The stronger divergence appears to be on the low
temperature side, but this is coming from subdominant
contributions as the limit is approached.
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4

Cv

Cv with N=∞, D=2
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Entropy from Free the Energy

dS

dE
= β(E )

E =
1

4
+
1

2

√
ln d − β+ · · · =⇒ β(E ) = ln d−4(E− 1

4
)2+ · · ·

Inverting the expression for E (β) and integrating gives and
matching at E = 1

4 gives

S(E ) = E ln d − 4

3
(E − 1

4
)3 + · · ·

The exact result from the a1 model consistent with the eigenvalue
distribution ρ(θ) is

S(E ) = (1 + ln d)E − 1 + 2 ln 2

4
+ E lnE − (E +

1

4
) ln(E +

1

4
)2

Trace Relations and Matrix Models



Matching across the transition

The transition occurs at E = 1
4 .

At low temperatures

Z∞(t, d) =
∞∏
n=1

1

1− dtn
=

∞∑
n=1

dntn = eN
2 ln dE

using En = n
N2

Entropy at the transition

S(
1

4
) =

ln d

4

So at the transition

nc =
N2

4

The transition is one from where trace relations can be
ignored to where they become significant.
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Implications for Matrix Traces

We have found that

The number of states grows with energy as
dimn(N, d) ∼ dn = eN

2 ln(d)E (with E = n
N2 ) below the

transition.

dimn(N, d) ∼ eN
2{c+ln(d)E− 4

3
(E− 1

4
)3+··· } above.

The low n and large n entropy match at E = 1
4 .
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Trace relations become dominant at n = N2

4

Rephrasing:

Main result

For large N and all d > 1 trace relations “switch on” at
n = N2

4 .
This is true for bosons or fermions or a mixture of these!

dimn(N, d) =

{
c(d)dn N2

4 ≥ n ≫ 1

c(d)dne−
4N2

3
( n
N2−

1
4
)3··· n ≥ N2

4 .

with c(d) = 1
ϕ( 1

d
)
with ϕ(q) the Euler function.

For large N trace relations become significant for traces of
length N2

4 even though we know that traces as long as

N (N) = N(N+1)
2 still play a role providing new states.
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Conclusions

Entropy, S(n) = 1
N2 lndimn(N, d)

S(n) has universal large N transition at n = N2

4

Speculation

In many matrix models the Hagedorn (confining/deconfining)
transition is argued to be the Hawking-Pope transition in
gravitational duals. In the Hawking-Page transition a large AdS
black hole becomes unstable as its mass (temperature) is
decreased and there is a transition to thermal particle gas.
Entropy of black-holes universal form SBH = A

4G .
Is this a coincidence?
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