Calculi, cohomology, and Hopf algebroids

Niels Kowalzig

U Napoli Federico II

General picture: spaces, symmetries, cohomology

	Diff. Geom.	Algebraic Geom.	Noncommut. Geom.
Spaces	Manifolds	Commut. Algebras	Noncommut. Algebras
		(,, Schemes)	(,, Spectral Triples)
Symmetries	Lie Groups	Algebraic Groups,	Quantum Groups,
		Group Schemes	Hopf Algebras
Generalised	Lie Groupoids,	Groupoid Schemes	Quantum Groupoids,
Symmetries	Pseudogroups		Hopf Algebroids

Cohomology in 🖙	Differential	Noncommutative
for 🗟	Geometry	Geometry
Spaces	De Rham Cohomology	Cyclic Cohomology
Symmetries	Lie Algebra Cohomology	Hopf-Cyclic Cohomology
Gen. Symmetries	Lie Algebroid Cohomology	Hopf-Cyclic Cohomology

(Co)homology theories

• The general pattern is: define two sequences

 $H^{0}(X, M), H^{1}(X, M), \ldots, H_{0}(X, N), H_{1}(X, N), \ldots$

of abelian groups, respectively called the (co)homology groups of X with coefficients in M respectively N.

• Here X is some mathematical structure and the coefficients are the objects of categories C_X and C^X that are associated to X. Leaving M and N blank, this defines functors

$$H^m(X,-): \mathcal{C}^X \to \mathbb{Z} ext{-}\mathbf{Mod}, \quad H_n(X,-): \mathcal{C}_X \to \mathbb{Z} ext{-}\mathbf{Mod}.$$

• Example: X compact smooth manifold,

$$H^n(X,\mathbb{C}) := \ker d_n / \operatorname{im} d_{n-1},$$

where

$$d_n:\Omega^n(X,\mathbb{C})\to\Omega^{n+1}(X,\mathbb{C})$$

is the exterior derivative acting on smooth complex-valued differential *i*-forms (recall that $d_n \circ d_{n-1} = 0$).

Examples

- Geometry and topology have created a whole zoo of (co)homology theories. Here X is a (sometimes special sort of) topological space with various C_X, C^X involved, *e.g.*, sheaves of abelian groups on an arbitrary topological space X, or vector bundles with a flat connection on a smooth manifold, or coherent sheaves on an algebraic variety.
- In this talk, we mostly consider algebraic structures, e.g.,
 - X a group, $C_X = C^X$ its k-linear representations.
 - X a k-algebra, $C_X = C^X$ its bimodules with symmetric k-action.
 - X a Lie algebra, $C_X = C^X$ its k-linear representations.
 - X a Poisson k-algebra, C^X the left Poisson modules, C_X the right Poisson modules.

How to define (co)homology?

- One first associates to X a suitable k-algebra U:
 - To a group G its group algebra kG. (here A = k is a field)
 → group (co)homology.
 - To a Lie algebra g its universal enveloping algebra U(g)
 → Lie algebra (co)homology.
 - Similarly (but more involved) for Lie algebroids (or Lie-Rinehart algebras, see below).
 - To an algebra A its enveloping algebra A^e := A ⊗_k A^{op}.
 → Hochschild (co)homology.
 - To a Poisson algebra A the universal enveloping algebra of the associated Lie-Rinehart algebra Ω¹(A)
 - \rightsquigarrow Poisson (co)homology.
- In all cases, there is a distinguished left *U*-module *A*:
 - For groups and Lie algebras the **trivial representation** A = k.
 - For associative respectively Poisson algebras A the A-bimodule respectively Poisson module A itself.

How to define (co)homology?

- Then C_X is the category **Mod**-*U* of right *U*-modules while C^X is the category *U*-**Mod** of left *U*-modules.
- This defines two functors:

 $H^0 := \operatorname{Hom}_U(A, -) : U\operatorname{-Mod} \to k\operatorname{-Mod},$

 $H_0 := - \otimes_U A : \mathbf{Mod} \cdot U \to k \cdot \mathbf{Mod}.$

- The higher (co)homology groups are the derived functors of these (alternative definitions via the bar construction).
- To sum up, (under suitable projectivity assumptions) all these (co)homology theories can be realised as

$$H^m(X, M) := \operatorname{Ext}_U^m(A, M), \quad H_n(X, N) := \operatorname{Tor}_n^U(N, A)$$

for an augmented ring (U, A) (a ring U with a distinguished left module A) that is functorially attached to a given object X.

- Clarify the origin and interplay of "higher structures", that is, multiplicative structures, brackets, Lie derivatives, differentials, divergence, and dualities between such (co)homologies, which, in particular, recovers all well-known operations from differential and Poisson geometry as well as those found by Rinehart, Connes, Nest-Tamarkin-Tsygan for associative algebras.
- Insight: what one needs is that U is a *left bialgebroid* (as defined by Takeuchi) and sometimes even a *left Hopf algebroid* (as defined by Schauenburg). These are generalisations of bialgebras resp. Hopf algebras over possibly noncommutative base algebras A, and will be explained in a moment (or two).

A warm up: group (co)homology

• Let G be a group and

 $\mathbb{C}G = \{u: G
ightarrow \mathbb{C} \mid u(g) = 0 \text{ for all but finitely many } g\}$

for $k = \mathbb{C}$ be its complex group algebra (with convolution product). Regard this as the vector space with basis $\{e_g\}_{g \in G}$ labelled by the group elements and multiplication

$$e_g e_h := e_{gh},$$

and write typical elements in the form $\sum_{g \in G} \lambda_g e_g$, where $\lambda_g e_g$ means the map $u \in kG$ such that $\lambda_g = u(g)$ and zero else.

• Left and right kG-modules can be identified via

$$e_g \triangleright m := m \triangleleft e_{g^{-1}}$$

and they are simply complex representations of G.

• Put $A := \mathbb{C}$ with the trivial action of G

$$e_{g} \triangleright \lambda := \lambda, \quad \lambda \in \mathbb{C}, \ g \in G,$$

and we now know what the (co)homology of a group G with coefficients in a complex representation is.

Niels Kowalzig

Groups, still

- Given two representations M, N of a group G we can indeed form the tensor product M ⊗_k N of the underlying C-vector spaces (if M, N have linear bases {m_i}, {n_j}, this has a basis {m_i ⊗_k n_j}).
- This becomes a representation again, just by putting

$$e_g \triangleright (m \otimes_k n) := (e_g m_i) \otimes_k (e_g n_j).$$

• Crucial observation here: There is an algebra homomorphism

$$\Delta: kG \to kG \otimes_k kG, \quad e_g \mapsto e_g \otimes_k e_g$$

and the action of some $u \in kG$ on $m \otimes_k n$ is given by acting with the left leg of $\Delta(u) \in kG \otimes_k kG$ on m and with the right on n. Sweedler had the idea to write this as

$$u \triangleright (m \otimes_k n) := u_{(1)} \triangleright m \otimes_k u_{(2)} \triangleright n.$$

Hopf algebras

• Note there is a bit more structure available here: There is a map

$$\varepsilon: kG \to k, \quad \sum_{g \in G} \lambda_g e_g \mapsto \sum_{g \in G} \lambda_g$$

such that

$$\varepsilon(u_{(1)})u_{(2)} = u_{(1)}\varepsilon(u_{(2)}) = u \quad \forall u \in kG$$

and we have $(\Delta \otimes_k \operatorname{id}_U) \circ \Delta = (\operatorname{id}_U \otimes_k \Delta) \circ \Delta$.

- So kG is a coalgebra and an algebra, and the two structures are compatible in the sense that Δ and ε are algebra homomorphisms, and such things are called **bialgebras**.
- Hopf algebras are just a little better and have some additional datum *S* which allows one to identify left and right modules over them via a map

$$S: kG \to kG, \quad e_g \mapsto e_{g^{-1}}.$$

Now towards the real thing

• Fix a commutative ground ring k and a k-algebra A, *i.e.*, a homomorphism

$$\eta_A: k \to Z(A),$$

which maps k to multiples of the unit element in A.

- The main player is a sort of algebra U over A^e := A ⊗_k A^{op}, the enveloping algebra of A: A^e is an algebra generated as algebra by two commuting copies of A and of its opposite algebra A^{op} which is the same set as A but with the product a b := ba.
- A^e-modules are the same as A-bimodules (with symmetric action of k) and U a k-algebra with a k-algebra homomorphism

$$\eta \colon A^e \to U$$

that does not necessarily land in the centre, and these object are called A^{e} -*rings*.

• We consider $M \in U$ -Mod, $N \in$ Mod-U as A-bimodules with

$$a \triangleright m \triangleleft b := \eta(a \otimes_k b)m, \quad a, b \in A, m \in M.$$

$$a \triangleright m \triangleleft b := n\eta(b \otimes_k a), \quad a, b \in A, n \in N.$$

In particular, U itself carries two left and two right A-actions all commuting with each other.

For the homological stuff, ⊳ U ∈ A-Mod and U ⊲ ∈ A^{op}-Mod should be projective.

Bialgebroids (= \times_A -bialgebras)

 Now assume U is also a coalgebra in the monoidal category A^e-Mod. That is, there are maps

$$\Delta: U \to U \otimes_A U, \quad \varepsilon: U \to A$$

satisfying the coalgebra axioms, where

$$U \otimes_{A} U = U \otimes_{k} U / \operatorname{span}_{k} \{ u \triangleleft a \otimes_{k} v - u \otimes_{k} a \triangleright v \mid a \in A, u, v \in U \}.$$

 Recall: for A = k one calls U a bialgebra if Δ and ε are algebra homomorphisms. But in general there is no natural algebra structure on U ⊗_A U.

1

Bialgebroids

• Takeuchi's solution: consider the embedding

 $\iota: U \times_A U \to U \otimes_A U,$

where $U \times_A U$ is the centre of the *A*-bimodule $\underset{a}{\bullet} U_{\lhd} \otimes_A \underset{b}{\circ} U_{\triangleleft}$: $U \times_A U := \left\{ \sum_i u_i \otimes_A v_i \in U \otimes_A U \mid \sum_i a \underset{a}{\bullet} u_i \otimes_A v_i = \sum_i u_i \otimes_A v_i \triangleleft a \right\}.$

• The product of U turns this into an A^{e} -ring, with

 $\eta_{U\times_{\mathcal{A}}U}: \mathcal{A}^{e} \to U \times_{\mathcal{A}} U, \quad \mathbf{a} \otimes_{k} \mathbf{b} \mapsto \eta(\mathbf{a} \otimes_{k} 1) \otimes_{\mathcal{A}} \eta(1 \otimes_{k} \mathbf{b}).$

• Similarly, A is an algebra over k, but not an A^e-ring in general. To handle this, one needs the canonical map

$$\pi: \operatorname{End}_k(A) \to A, \quad \varphi \mapsto \varphi(1),$$

and the fact that $\operatorname{End}_k(A)$ is an A^{e} -ring, with

 $\eta_{\operatorname{End}_k(A)}: A^e \to \operatorname{End}_k(A), \quad (\eta_{\operatorname{End}_k(A)}(a \otimes b))(c) := acb.$

Bialgebroids

• Now it makes sense to require Δ, ε to factor through ι and π :

Definition

A (left) bialgebroid is an A^{e} -ring U together with two homomorphisms

 $\hat{\Delta}: U \to U \times_A U,$

$$\hat{\varepsilon}: U \to \operatorname{End}_k(A)$$

of A^{e} -rings such that U is a coalgebra in A^{e} -**Mod** via $\Delta = \iota \circ \hat{\Delta}$ and $\varepsilon = \pi \circ \hat{\varepsilon}$.

 Be aware that the four A-actions are not the only feature of bialgebroids that disappears for A = k. For example, ε : U → A is not necessarily a ring homomorphism.

Theorem (Schauenburg)

The bialgebroid structures on the A^{e} -ring $\eta : A^{e} \to U$ correspond bijectively to monoidal structures on U-**Mod** for which the forgetful functor U-**Mod** $\to A^{e}$ -**Mod** induced by η is strictly monoidal.

Given a bialgebroid structure on U, the monoidal structure on U-**Mod** is defined as for bialgebras: take $M \otimes_A N$ and define

 $u(m \otimes_A n) := u_{(1)}m \otimes_A u_{(2)}n, \quad u \in U, m \in M, n \in N.$

The unit object in *U*-**Mod** is *A* on which *U* acts via $\hat{\varepsilon}$.

Right bialgebroids

- There is an analogous notion of right bialgebroid for which **Mod**-*U* is monoidal.
- Note: for a left bialgebroid there is no canonical monoidal structure on **Mod**-*U* or even only a right action of *U* on *A*.
- At first glance, this might seem of little interest but observe that while for X = (U, A) we can always speak about

$$H^{\bullet}(X,A) = \operatorname{Ext}^{\bullet}_{U}(A,A),$$

there is in general no way of making sense of

$$H_{\bullet}(X,A) = \operatorname{Tor}_{\bullet}^{U}(A,A).$$

• This really becomes relevant in, for example, Poisson homology, or more general in Lie algebroid (Lie-Rinehart) homology, and in general impedes the definition of an "antipodal" map S on U.

Left Hopf algebroids

• Let U be a left bialgebroid and define the Galois map of U

 $\beta: {}_{\blacktriangleright} U \otimes_{\mathcal{A}^{\mathrm{op}}} U_{\lhd} \to U_{\lhd} \otimes_{\mathcal{A}} {}_{\triangleright} U, \quad u \otimes_{\mathcal{A}^{\mathrm{op}}} v \mapsto u_{(1)} \otimes_{\mathcal{A}} u_{(2)} v.$

 For bialgebras over fields β is bijective if and only if U is a Hopf algebra with β⁻¹(u ⊗_k v) := u₍₁₎ ⊗ S(u₍₂₎)v, where S is the antipode of U. This motivates:

Definition (Schauenburg)

A left bialgebroid U is called a *left Hopf algebroid* if β is a bijection.

• We adopt a Sweedler-type notation

$$u_+\otimes_{\mathcal{A}^{\mathrm{op}}} u_- := \beta^{-1}(u\otimes_{\mathcal{A}} 1)$$

for the translation map $\beta^{-1}(\cdot \otimes_A 1) : U \to \mathbf{I} \otimes_{A^{\mathrm{op}}} U_{\lhd}$.

Observe: there is no notion of antipode for left Hopf algebroids.

Examples

- Hopf algebras over k.
- Universal enveloping algebras of Lie algebroids or Lie-Rinehart algebras, as discussed below.
- The enveloping algebra U := A^e of any k-algebra A is a left bialgebroid with η = id_{A^e} and

 $egin{aligned} \Delta : A^{ ext{e}} &
ightarrow A^{ ext{e}} \otimes_{\mathcal{A}} A^{ ext{e}}, \quad a \otimes_k b \mapsto (a \otimes_k 1) \otimes_{\mathcal{A}} (1 \otimes_k b), \ arepsilon : A^{ ext{e}} &
ightarrow A, \quad a \otimes_k b \mapsto ab, \end{aligned}$

and a left Hopf algebroid by

$$(a \otimes_k b)_+ \otimes_{\mathcal{A}^{\mathrm{op}}} (a \otimes_k b)_- = (a \otimes_k 1) \otimes_{\mathcal{A}^{\mathrm{op}}} (b \otimes_k 1).$$

This might look boring but turns Hochschild theory into a subsection of bialgebroid theory, and cannot be seen as a conventional Hopf algebra, while it is a fundamental example of a non-commutative non-co-commutative bialgebroid.

The cup and cap product

 As already seen, the base algebra A of a bialgebroid (U, A) carries a left U-action and the bialgebroid structure induces the structure of a monoidal category on U-Mod with unit object A, *i.e.*, there exists a functor

 $\otimes: \textit{U-Mod} \times \textit{U-Mod} \rightarrow \textit{U-Mod}, \quad \textit{A} \otimes \textit{M} \simeq \textit{M} \otimes \textit{A} \simeq \textit{M}.$

- This induces (under some projectivity assumptions) a *cup* product $\sim : H^{i}(X, M) \times H^{j}(X, N) \rightarrow H^{i+j}(X, M \otimes N), \quad X = (U, A).$
- Dually, and adding the left Hopf structure, there is a functor

 $\otimes: \textit{U-Mod} \times \textit{Mod-} U \rightarrow \textit{Mod-} U$

turning **Mod**-U into a (left) module category over $(U-Mod, \otimes, A)$. • This induces for $N \in U$ -**Mod** and $P \in Mod$ -U a *cap* product

$$\frown : H^i(X, \mathbb{N}) \times H_j(X, \mathbb{P}) \to H_{j-i}(X, \mathbb{N} \otimes \mathbb{P}).$$

However, there exists much more structure on the pair $H^i(X, N)$, $H_j(X, P)$ or rather $\operatorname{Ext}^{\bullet}_U(A, N)$, $\operatorname{Tor}^{U}_{\bullet}(P, A)$, which we will discuss next.

Definition

A Gerstenhaber algebra is a graded commutative k-algebra (V[•], ⊂) along with a graded Lie bracket {·, ·} on the desuspension V[1] for which all operators {γ, ·} satisfy the graded Leibniz rule

$$\{\gamma, \alpha \smile \beta\} = \{\gamma, \alpha\} \smile \beta + (-1)^{(\gamma-1)\alpha} \alpha \smile \{\gamma, \beta\}.$$

A Gerstenhaber module Ω_• over a Gerstenhaber algebra (V[•], \sim, {.,.}) is simultaneously a graded module over (V[•], \sim) and a graded Lie algebra module over (V[•][1], {.,.}) with respective actions

$$\label{eq:constraint} \ensuremath{\sim} = \iota \colon V^p \otimes \Omega_n \to \Omega_{n-p}, \qquad \mathcal{L} \colon V^{p+1} \otimes_k \Omega_n \to \Omega_{n-p}$$

which for $\alpha,\beta\in {\it V}$ satisfy the mixed Leibniz rule

$$[\iota_{\alpha}, \mathcal{L}_{\beta}] = \iota_{\{\alpha, \beta\}}.$$

A Gerstenhaber module *O* is Batalin-Vilkovisky (BV) if equipped with a differential B : Ω_n → Ω_{n+1} such that the Cartan homotopy formula

$$\mathcal{L}_{\alpha} = [B, \iota_{\alpha}]$$

holds. A pair (V, Ω) of a Gerstenhaber algebra and a BV module is also called a **(noncommutative) Cartan(-Tamarkin-Tsygan) (differential) calculus**.

Example (Classical geometric example)

 For a smooth manifold Q, consider V[•] = (X[•](Q), [.,.]_{SN}) and Ω_• = Ω[•](Q). Choosing B = d_{deRham}, the standard Lie derivative and contraction of a form by a multivector field, gives the well-known calculus of "fields acting on forms" with the customary formulae

$$\mathcal{L} = [\iota, d], \quad [d, \mathcal{L}] = 0, \quad [\mathcal{L}, \iota] = \iota_{[., .]_{SN}}, \quad \mathcal{L}_{[., .]_{SN}} = [\mathcal{L}, \mathcal{L}]$$

from differential (or algebraic) geometry.

 The case "fields acting on fields" is obtained by (X[•](Q), [.,.]_{SN}) acting on (X[•](Q), d_{CE}) with ι_XY := X ∧ Y, the Lie derivative for multivector fields, and the differential d_{CE} from Lie algebra homology.

Example (Classical algebraic example)

The pair of Hochschild cohomology and homology

$$V^{\bullet} = \operatorname{Ext}_{A^{\operatorname{e}}}^{\bullet}(A, A) = H^{\bullet}(A, A), \qquad \Omega_{\bullet} = \operatorname{Tor}_{\bullet}^{A^{\operatorname{e}}}(A, A) = H_{\bullet}(A, A)$$

forms a calculus (Rinehart 1963, Connes, Getzler, Goodwillie, Nest-Tsygan (80/90s)). I will skip the explicit formulas of the involved operations.

The Gerstenhaber algebra

• The bar construction yields an explicit cochain complex

 $C^n(U,A) := \operatorname{Hom}_{A^{\operatorname{op}}}(U^{\otimes_{A^{\operatorname{op}}}n},A)$

that computes $\operatorname{Ext}_{U}^{\bullet}(A, A)$ for a left bialgebroid (U, A). This becomes an **operad with multiplication** via

$$\begin{aligned} (\varphi \circ_i \psi)(u^1, \dots, u^{p+q-1}) &:= \varphi(u^1, \dots, D_{\psi}(u^i, \dots, u^{i+q-1}), \dots, u^{p+q-1}), \\ \text{for } \varphi \in C^p(U, A), \ \psi \in C^q(U, A), \text{ and } i = 1, \dots, p, \text{ where} \\ D_{\psi} &: U^{\otimes_A \circ_P q} \to U, \quad (u^1, \dots, u^q) \mapsto \psi(u^1_{(1)}, \dots, u^q_{(1)}) \triangleright u^1_{(2)} \cdots u^q_{(2)} \end{aligned}$$

replaces the insertion operations used by Gerstenhaber (and reflects the DG coalgebra structure of the bar resolution).

• Finally, the Gerstenhaber bracket is

$$\{\varphi,\psi\} := \varphi \bar{\circ} \psi - (-1)^{(p-1)(q-1)} \psi \bar{\circ} \varphi$$

with $\varphi \,\overline{\circ} \,\psi := \sum_{i=1}^{p} \pm \varphi \circ_{i} \psi$.

For P ∈ Mod-U, one can compute Tor_•^U(M, A) for right A-projective U by means of the canonical chain complex

$$C_n(U,M) := M \otimes_{A^{\mathrm{op}}} U^{\otimes_{A^{\mathrm{op}}} n}, \qquad b := \sum_{i=0}^n (-1)^i d_i$$

with faces and degeneracies, abbreviating $(m, x) := (m, u^1, \dots, u^n)$:

$$d_{i}(m,x) = \begin{cases} (m, u^{1}, \dots, \varepsilon(u^{n}) \blacktriangleright u^{n-1}), & \text{if } i = 0, \\ (m, \dots, u^{n-i}u^{n-i+1}, \dots, u^{n}) & \text{if } 1 \le i \le n-1, \\ (mu^{1}, u^{2}, \dots, u^{n}) & \text{if } i = n, \end{cases}$$
$$s_{j}(m,x) = \begin{cases} (m, u^{1}, \dots, u^{n}, 1) & \text{if } j = 0, \\ (m, \dots, u^{n-j}, 1, u^{n-j+1}, \dots, u^{n}) & \text{if } 1 \le j \le n. \end{cases}$$

• An additional left U-coaction $M \to U \otimes_A M$, $m \mapsto m_{(-1)} \otimes_A m_{(0)}$ on M allows for a cyclic operator

$$t_n(m,x) = (m_{(0)}u_+^1, u_+^2, \ldots, u_+^n, u_-^n \cdots u_-^1 m_{(-1)}),$$

which in turn induces a map (see below)

$$B: C_{\bullet}(U, M) \to C_{\bullet+1}(U, M),$$

that generalises Connes' cyclic boundary operator.

Cyclic and saYD modules

 If there is a suitable compatibility between action and coaction on the coefficients *M*, the above operators lead to both a Gerstenhaber and a BV module; the easiest case if *M* is a stable anti Yetter-Drinfel'd module. In Sweedler notation this means

$$(mu)_{(-1)} \otimes_{\scriptscriptstyle A} (mu)_{(0)} = u_{-}m_{(-1)}u_{+(1)} \otimes_{\scriptscriptstyle A} m_{(0)}u_{+(2)}$$

for all $u \in U, m \in M$ and

$$m_{(0)}m_{(-1)}=m.$$

 $(1 (1)n,) \wedge c$

In this case, the pieces (d_•, s_•, t_•) define a cyclic k-module structure on C_•(U, M), that is, a simplicial k-module with a compatible Z_n-action encoded in the operator t_n: the cyclic coboundary is then obtained by means of

$$B := (1 - (-1)^n t_{n+1}) s_{-1} \mathcal{N}$$

where $\mathcal{N} := \sum_{j=0}^n (-1)^n t_{n+1}^j$ and $s_{-1} := t_{n+1} s_n$.

The Gerstenhaber module: illustration of the Lie derivative

Extending k to the formal power series k[[r]], for any k[[r]]-linear map $D: C_n(U, M)[[r]] \rightarrow C_n(U, M)[[r]]$, define the operators $t^D := D t, T^D := (t^D)^{n+1}$. Apply this with D being the exp. series

$$\exp(r\varphi) := \sum_{i\geq 0} \frac{1}{i!} (rD'_{\varphi})^i.$$

for a 1-cocycle φ , where D'_{φ} is D_{φ} applied to the last element in $C_n(U, M)$. Thinking of φ as of a generalised vector field, of $\exp(r\varphi)$ as of its flow, and of

$$\Omega_{\varphi} := \mathrm{id} - T^{\exp(r\varphi)}$$

as of a curvature along an integral curve, define

$$\mathcal{L}_{arphi} := rac{d}{dr} \Omega_{arphi}|_{r=0}$$

for n > 0. Explicitly,

$$\mathcal{L}_{\varphi} = \sum_{i=1}^{n} \pm t^{n-i} D'_{\varphi} t^{i+1} + t^n D'_{\varphi} t.$$

Niels Kowalzig

The universal Lie derivative

If φ is a general p-cochain, the expression for the Lie derivative assumes the truly unpleasant form

$$\mathcal{L}_{\varphi} := \sum_{i=1}^{n-p+1} \pm t^{n-p+1-i} D'_{\varphi} t^{i+p} + \sum_{i=1}^{p} \pm t^{n-p+1} D'_{\varphi} t^{i},$$

where now D'_{φ} is D_{φ} applied on the last p components of an element in $C_n(U, M)$.

Theorem

If *M* is SaYD and (*U*, *A*) a left Hopf algebroid, the triple (\mathcal{L}, ι, B) induces the structure of a noncommutative calculus on the pair (Ext[•]_U(*A*, *A*), Tor^U_•(*M*, *A*)). In particular, one has the Cartan homotopy formula

$$\mathcal{L} = [\iota, \mathsf{B}]$$

on homology.

Lie-Rinehart algebras (Lie algebroids)

• Let (A, L) be a Lie-Rinehart algebra over k: L is a k-Lie algebra and a module over the commutative k-algebra A, but it also acts via derivations ∂_X on A (called the *anchor*) such that

$$[X, aY] = (\partial_X a)Y + a[X, Y], \quad \partial_{aX} = a\partial_X, \quad a \in A, X, Y \in L.$$

- Examples: L = Der_k(A, A). Foliations are sub Lie-Rinehart algebras. Poisson algebras (A, {·, ·}) with L = Ω¹(A) and [da, db] := d{a, b}.
- U := VL is a generalised universal algebra equipped with two maps

$$\iota_A : A \to VL, \quad \iota_L : L \to VL$$

of k-algebras resp. k-Lie algebras subject to

$$\iota_{A}(a)\iota_{L}(X) = \iota_{L}(aX), \quad \iota_{L}(X)\iota_{A}(a) - \iota_{A}(a)\iota_{L}(X) = \iota_{A}(\partial_{X}(a))$$

for $a \in A, X \in L$. The map ι_A is injective. If L is A-projective, then ι_L is injective as well. We'll suppress the maps in the sequel.

Lie-Rinehart algebras (Lie algebroids)

• VL carries the structure of a left bialgebroid with $\eta(-\otimes 1) = \eta(1\otimes -)$ given by ι_A . The prescriptions

 $\Delta(X) = 1 \otimes_A X + X \otimes_A 1, \quad \Delta(a) = a \otimes_A 1$

can be extended by the universal property to a coproduct $\hat{\Delta} : VL \rightarrow VL \times_A VL$. The counit is similarly given by the extension of the anchor to VL.

• Easy observation: the Galois map is bijective, the translation map is given on generators as

 $a_+\otimes_{\mathcal{A}^{\operatorname{op}}}a_-:=a\otimes_{\mathcal{A}^{\operatorname{op}}}1,\quad X_+\otimes_{\mathcal{A}^{\operatorname{op}}}X_-:=X\otimes_{\mathcal{A}^{\operatorname{op}}}1-1\otimes_{\mathcal{A}^{\operatorname{op}}}X$

and then extended via universality and axioms to an inverse of the Galois map.

Application: jet spaces

The classical operators on forms & fields are obtained as follows:

- The A-linear dual $JL := \text{Hom}_A(VL, A)$ of the universal enveloping algebra VL of a Lie-Rinehart algebra (A, L) is called the **jet space**. JL is a (topological) commutative left Hopf algebroid: actually all that was said before now has to be repeated for topological Hopf algebroids and all tensor products have to be completed and speak of continuous chains & cochains.
- Assume that *L* is fin. gen. projective over *A*. With $L^* := \text{Hom}_A(L, A)$, one has $\text{Hom}_A(\bigwedge_A^{\bullet} L, A) \simeq \bigwedge_A^{\bullet} L^*$, and chain morphisms

$$\begin{array}{rcl} F: (C_{\bullet}(JL,A),b) & \rightarrow & (\bigwedge_{A}^{\bullet}L^{*},0) \\ F^{*}: (\bigwedge_{A}^{\bullet}L,0) & \rightarrow & (C^{\bullet}(JL,A),\delta), \end{array}$$

and if $\mathbb{Q} \subseteq k$, the map F has a right inverse F'.

• These morphisms may be seen as HKR maps for Lie algebroids.

Generalised forms and vector fields

• In the case of a Lie algebroid $E \rightarrow M$ over a smooth manifold M (*e.g.*, the tangent bundle E = TM), the pair

$$\left(\bigwedge_{A}^{\bullet} L, \bigwedge_{A}^{\bullet} L^{*}\right),$$

where

$$L = \Gamma^{\infty}(E), \quad A = C^{\infty}(M), \quad L^* \simeq \Gamma^{\infty}(E^*),$$

forms a differential calculus with respect to the well-known operators $(\mathcal{L}_X, \iota_X, d_{dR})$ of (E-)Lie derivative of an (E-)form along an (E-)vector field $X \in L$, along with (E-)contraction and the (E-)de Rham differential.

• The connection to our general operators is then, on homology,

$$d_{dR} \circ F = F \circ B,$$

$$\iota_X \circ F = F \circ \iota_{F^*X},$$

$$\mathcal{L}_X \circ F = F \circ \mathcal{L}_{F^*X}$$

More satisfactory

- You might find the last slide not very satisfactory due to the fact that I skipped all the topological details. That was on purpose.
- A slightly different approach avoids involving the jet spaces and hence any topological issues, and also drops the finiteness assumptions on *L*. On the other hand, it involves *contramodules, cotensor products, cohomomorphisms,* and their more exotic derived functors:

Corollary

Let (A, L) be a Lie-Rinehart algebra, with L not necessarily finitely generated but projective as an A-module, and M an A-injective VL-module. Then the HKR map

Alt:
$$\bigwedge_{A}^{n} L \to V L^{\otimes_{A} n}$$

of antisymmetrisation induces an isomorphism of nc differential calculi between $(\bigwedge_{A}^{\bullet}L, \operatorname{Hom}_{A}(\bigwedge_{A}^{\bullet}L, M))$ and $(\operatorname{Cotor}_{VL}^{\bullet}(A, A), \operatorname{Coext}_{\bullet}^{VL}(A, M))$. On homology,