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1. Stochastic Reformulations of Linear Systems
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Solving Very Large Linear Systems

In this lecture we are concerned with the problem of solving a linear
system. In particular, consider the problem

solve Ax = b, (1)

where 0 6= A ∈ Rm×n, and m is very large.

Let Ai : denote the ith row of A, and A:j denote the jth column of A. Let
b = (b1, . . . , bm). Problem (1) can also be written more explicitly as a
system of m linear equations:

A1:x = b1

A2:x = b2

...

Am:x = bm.

The ith equation in the system has the form
m∑
j=1

Aijxj = bj .
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Consistency

We shall assume throughout the lecture that:

Assumption 1
Linear system (1) is consistent. In other words, it has a solution:

L def
= {x : Ax = b} 6= ∅.
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Introduction

I We will present a fundamental and flexible way of reformulating
each consistent linear system into a stochastic problem.

I Stochasticity is introduced in a controlled way, into an otherwise
deterministic problem, as a decomposition tool which can be
leveraged to design efficient, granular and scalable randomized
algorithms.

I Two parameters:
I Distribution D describing an ensemble of random matrices

S ∈ Rm×q.
I Symmetric positive definite matrix B ∈ Rn×n.

I Presented approach and underlying theory support virtually all
thinkable distributions D. The choice of the distribution should
ideally depend on the problem itself, as it will affect the complexity
of the associated algorithms.

I In this specific setup (=linear systems), we can study many popular
stochastic methods used in optimization and machine learning in a
unified way. You will thus get strong foundations in the field.
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Positive Definite Matrices, Inner Products
and Norms
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Positive Definite Matrices

Definition 1
Let M ∈ Rn×n be a symmetric matrix.

(i) We say that M is positive semidefinite if

x>Mx ≥ 0 ∀x ∈ Rn.

We write this concisely as M � 0.

(ii) We say that M is positive definite if

x>Mx > 0 ∀0 6= x ∈ Rn.

We write this concisely as M � 0.
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Inner Products and Norms

Inner Product in Rn

Given a symmetric positive definite matrix B ∈ Rn×n, we equip the space
Rn with the Euclidean inner product defined by

〈x , y〉B
def
= x>By =

n∑
i=1

n∑
j=1

xiBijyj , x , y ∈ Rn.

Norm in Rn

We also define the induced norm: ‖x‖B
def
=
√
〈x , x〉B.

Remark: We also use the short-hand notation ‖ · ‖ to mean ‖ · ‖I, where
I ∈ Rn×n is the identity matrix. We shall sometimes refer to the quantity
‖x‖M with matrix M ∈ Rn×n being merely positive definite.
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Stochastic Reformulations
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Four Reformulations

We reformulate (1) into 4 seemingly different, but equivalent stochastic
problems:

1. Stochastic optimization problem (2)

2. Stochastic linear system (4)

3. Stochastic fixed point problem (5)

4. Probabilistic intersection problem (6)
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Reformulation 1: Stochastic Optimization Problem

Consider the stochastic optimization problem

minimize f (x)
def
= ES∼D [fS(x)] , (2)

where

fS(x)
def
=

1

2
‖Ax − b‖2

H =
1

2
(Ax − b)>H(Ax − b). (3)

When solving the problem, we do not have (or do not wish to exercise, as
it may be prohibitively expensive) explicit access to f , its gradient or
Hessian. Rather, we can repeatedly sample S ∼ D and receive unbiased
samples of these quantities at points of interest. That is, we may obtain
local information about the stochastic function fS(x), such as the
stochastic gradient ∇fS(x), or the stochastic Hessian ∇2fS(x).
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Reformulation 2: Stochastic Linear System

Consider the following stochastic linear system:

solve B−1A>ES∼D [H] Ax = B−1A>ES∼D [H] b. (4)

I The system arises by pre-multiplying the system (1) on both sides
from the left by matrix P = B−1A>ES∼D [H].

I The preconditioner P is not assumed to be known explicitly.

I Instead, when solving the problem, we are able to sample S ∼ D,
obtaining an unbiased estimate of the preconditioner (not necessarily
explicitly), B−1A>H, for which we coin the name stochastic
preconditioner. This gives us access to a random sample of system
(4):

B−1A>HAx = B−1A>Hb.

I This information can be obtained by repeatedly querying the
stochastic sampling S ∼ D and utilized by an iterative algorithm.
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Reformulation 3: Stochastic Fixed Point Problem

Let ΠB
LS

(x) denote the projection of x onto LS
def
= {x : S>Ax = S>b},

in the norm ‖x‖B
def
=
√
x>Bx .

Consider the stochastic fixed point problem

solve x = ES∼D
[
ΠB
LS

(x)
]
. (5)

That is, we seek to find a fixed point of the mapping

x → ES∼D
[
ΠB
LS

(x)
]
.

When solving the problem, we do not have an explicit access to the
average projection map. Instead, we are able to repeatedly sample
S ∼ D, and use the stochastic projection map x → ΠB

LS
(x).
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Reformulation 4: Probabilistic Intersection Problem

Note that L ⊆ LS for all S. We would wish to design D in such a way
that a suitably chosen notion of an intersection of the sets LS is equal to
L. The correct notion is what we call probabilistic intersection,
denoted ∩S∼DLS, and defined as the set of points x which belong to LS

with probability one.

This leads to the problem:

find x ∈ ∩S∼DLS
def
= {x : Prob(x ∈ LS) = 1}. (6)

As before, we typically do not have an explicit access to the probabilistic
intersection when designing an algorithm. Instead, we can repeatedly
sample S ∼ D, and utilize the knowledge of LS to drive the iterative
process. If D is a discrete distribution, probabilistic intersection reduces
to standard intersection.
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Reformulations: Remarks

I All of the above formulations have a common feature: they all
involve an expectation over S ∼ D, and we either do not assume
this expectation is known explicitly, or even if it is, we prefer, due to
efficiency or other considerations, to sample from unbiased estimates
of the objects (e.g., stochastic gradient ∇fS, stochastic
preconditioner B−1A>H, stochastic projection map x → ΠB

LS
(x),

random set LS) appearing in the formulation.

I As we shall see later, all these stochastic formulations are equivalent.
In particular, the following sets are identical: the set of minimizers of
the stochastic optimization problem (2), the solution set of the
preconditioned system (4), the set of fixed points of the stochastic
fixed point problem (5), and the probabilistic intersection (6).

I Further, we give necessary and sufficient conditions for this set to be
equal to L. Distributions D satisfying these conditions always exist,
independently of any assumptions on the system beyond consistency.
The simplest, but also the least useful choice of a distribution is to
pick S = I (the m ×m identity matrix), with probability one. In this
case, all of our reformulations become trivial.
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Three Algorithms

Besides proposing a family of stochastic reformulations of (1), we also
propose several stochastic algorithms for solving them:

I Basic Method: Algorithm 1

I Parallel Method: Algorithm 2

I Accelerated Method: Algorithm 3

Each method can be interpreted naturally from the viewpoint of each of
the reformulations.
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Introduction to Randomized Methods in Convex Optimization
Peter Richtárik

2. The Basic Method
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Basic Method

We shall now discuss some of the interpretations of the basic method,
which performs updates of the form

xk+1
def
= xk − ωB−1A>Sk(S>k AB−1A>Sk)†S>k (Axk − b)︸ ︷︷ ︸

φω(xk ,Sk )

, (7)

where Sk ∼ D is sampled afresh in each iteration, and † denotes the
Moore-Penrose pseudoinverse.

Algorithm 1 Basic Method

1: Parameters: distribution D from which to sample matrices; positive
definite matrix B ∈ Rn×n; stepsize/relaxation parameter ω ∈ R

2: Choose x0 ∈ Rn . Initialization
3: for k = 0, 1, 2, . . . do
4: Draw a fresh sample Sk ∼ D
5: Set xk+1 = xk − ωB−1A>Sk(S>k AB−1A>Sk)†S>k (Axk − b)
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Interpretations of the Basic Method
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Stochastic Gradient Descent

Algorithm 1 can be seen as stochastic gradient descent, with fixed
stepsize, applied to (2).

In iteration k of the method, we sample Sk ∼ D, and compute ∇fSk
(xk),

which is an unbiased stochastic approximation of ∇f (xk). We then
perform the step

xk+1 = xk − ω∇fSk
(xk), (8)

where ω > 0 is a stepsize.
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Stochastic Newton Method

The method can also be seen as a stochastic Newton method.

At iteration k we sample Sk ∼ D, and instead of applying the inverted
Hessian of fSk

to the stochastic gradient (this is not possible as the
Hessian is not necessarily invertible), we apply the B-pseudoinverse. That
is, we perform the step

xk+1 = xk − ω(∇2fSk
(xk))†B∇fSk

(xk), (9)

where ω > 0 is a stepsize, and the B-pseudoinverse of a matrix M is

defined as M†B
def
= B−1M>(MB−1M>)†.

Remark: One may wonder, why are methods (8) and (9) equivalent?
Certainly, in general, stochastic gradient descent and stochastic Newton
methods are not equivalent. It turns out that the stochastic gradient is
always an eigenvector of the B-pseudoinverse Hessian, with eigenvalue 1
(see Lemma 11).
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Stochastic Proximal Point Method

The method can also be seen as a stochastic proximal point method.

At iteration k we sample Sk ∼ D, and perform the step

xk+1 = arg min
x∈Rn

{
fSk

(x) +
1− ω

2ω
‖x − xk‖2

B

}
. (10)

Remarks:

(i) The proximal point method is obtained from (10) by replacing fSk

with f .

(ii) Unlike in the case of all other methods, here are limited to choose
stepsize 0 < ω < 1
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Stochastic Fixed Point Method

From the perspective of the stochastic fixed point problem (5),
Algorithm 1 can be interpreted as a stochastic fixed point method,
with relaxation.

We first reformulate the problem into an equivalent form using
relaxation, which is done to improve the contraction properties of the
map. We pick a relaxation parameter ω > 0, and instead consider the
equivalent fixed point problem

x = ES∼D
[
ωΠB
LS

(x) + (1− ω)x
]
.

Now, at iteration k, we sample Sk ∼ D, which enables us to obtain an
unbiased estimate of the new fixed point mapping, and then simply
perform one step of a fixed point method on this mapping:

xk+1 = ωΠB
LSk

(xk) + (1− ω)xk . (11)
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Stochastic Projection Method

Algorithm 1 can also be seen as a stochastic projection method
applied to the probabilistic intersection problem (6).

By sampling Sk ∼ D, we are one of the sets defining the intersection,
namely LSk

. We then project the last iterate onto this set, in the
B-norm, followed by a relaxation step with relaxation parameter ω > 0.
That is, we perform the update

xk+1 = xk + ω(ΠB
LSk

(xk)− xk). (12)

This is a randomized variant of an alternating projection method. Note
that the representation of L as a probabilistic intersection of sets is not
given to us. Rather, we construct it with the hope to obtain faster
convergence.
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Filling in Some Technical Details
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Moore-Penrose Pseudoinverse - I

Let M ∈ Rn×n. If M is invertible, then there exists a matrix, denoted by
M−1 ∈ Rn×n, called the inverse matrix, with the properties:

MM−1 = I, M−1M = I.

Not every square matrix has an inverse.

There is a generalization of the concept of the inverse, called
(Moore-Penrose) pseudoinverse. The nice thing about it is that every
matrix, even rectangular matrices, have a unique pseudoinverse.

Exercise 1
Use one of the properties of the pseudoinverse listed on the next slide to
show that the pseudoinverse of a real number α ∈ R is given by:

α† =

{
1
α , if α 6= 0,

0, if α = 0.
(13)
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Moore-Penrose Pseudoinverse - II

Fact 2
Every matrix A ∈ Rm×n has a unique pseudoinverse A† ∈ Rn×m. Among
others, this matrix satisfies the following properties:

(i) AA†A = A

(ii) A> = A†AA>

(iii) A> = A>AA†

(iv) A†AA† = A†

(v) (A†)> = (A>)†

Exercise 2
Use the above fact to show that: i) the pseudoinverse of a symmetric
matrix is symmetric, ii) the pseudoinverse of a positive semidefinite
matrix is positive semidefinite, iii) if A is invertible, then A† = A−1.
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Assumption on D
Without the following assumption, the reformulations would not make
sense (i.e., the expectations would not be defined/finite):

Assumption 2 (Finite mean)
The random matrix

H = HS
def
= S(S>AB−1A>S)†S> (14)

has a mean. That is, the following matrix has finite entries:

E [H] = ES∼D [H] = ES∼D
[
S(S>AB−1A>S)†S>

]
Remark:

(i) H = HS is a random matrix because it depends on the random
matrix S. However, in order to simplify notation, we will drop the
subscript highlighting this dependency and will simply write H.

(ii) By E [H] we simply mean the matrix whose (i , j) entry is the mean
of the (i , j) entry of H:

(E [H])ij = E [Hij ] .
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Assumption on D: Exercises

Exercise 3

(i) Show that the matrix S>AB−1A>S is symmetric and positive
semidefinite.

(ii) It is known (see Exercise 2) that the pseudoinverse of a symmetric
and positive semidefinite matrix is again symmetric and positive
semidefinite. Show that H is symmetric and positive semidefinite.

(iii) Show that E [H] is symmetric and positive semidefinite.
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Assumption on D: Examples

Let e1, e2, . . . , em be standard basis vectors (aka coordinate vectors) in
Rm. That is, ei is the vector whose all entries are zeros, except for the
ith entry, which is equal to 1.

Example 3 (Uniform sampling unit of basis vectors)
Let D be the uniform distribution over {ei}. That is, for all
i = 1, 2, . . . ,m we let

S = ei with probability 1/m.

We can then compute:

E [H] =
∑m

i=1
1
mei (Ai :B−1A>i : )†e>i = 1

mDiag (α1, . . . , αm) ,

where

αi
def
= (Ai :B

−1A>i : )†
(13)
= 1/‖A>i : ‖2

B−1 , i = 1, 2, . . . ,m,

and Diag (α) is the diagonal matrix with vector α on the diagonal.

Note that if A has nonzero rows, then E [H] � 0.
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Is f well defined?

We may wonder: does the expectation in (2) exist? That is, is f well
defined? The next result says that all is fine.

Lemma 4
Let x∗ be any solution of the linear system Ax = b (that is, let x∗ ∈ L).
Then

fS(x) =
1

2
(x − x∗)

>A>HA(x − x∗). (15)

Moreover,

f (x) = ES∼D [fS(x)] =
1

2
(x − x∗)

>A>ES∼D [H] A(x − x∗), (16)

and hence f (x) is finite for all x ∈ Rn. Thus, f is well defined.
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Proof of Lemma 4

Step 1: x∗ ∈ L implies Ax∗ = b. Plugging this into (3) gives (15).

Step 2: It remains to establish (16). We will use two facts:

Fact 5
For any X ∈ Rn×n and h ∈ Rn, we have1 h>Xh = Trace

(
Xhh>

)
.

Fact 6
Fix any M ∈ Rn×n. The map X 7→ Trace (XM) is linear.

Now back to the proof. Let h = A(x − x∗). Utilizing the above two facts,
we get

f (x)
(2)
= E [fS(x)]

(15)
= 1

2E
[
h>Hh

] (Fact 16)
= 1

2E
[
Trace

(
Hhh>

)]
(Fact 17)

= 1
2Trace

(
E [H] hh>

) (Fact 16)
= 1

2h
>E [H] h,

which gives (16). Note that when applying Fact 17, we have also used
linearity of expectation.

1Recall that trace of a matrix, denoted Trace (·), is the sum of its diagonal
elements.
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3. Equivalence and Exactness
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Projection and Pseudoinverse
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Projection Operators and Pseudoinverse Matrices - I

Definition 7
The B-pseudoinverse of a matrix M, is defined as

M†B
def
= B−1M>(MB−1M>)†, (17)

where † denotes the standard pseudoinverse.

Exercise 4
Show that

(i) A†A is a symmetric matrix

(ii) A>(AA>)† = A†

(iii) The I-pseudoinverse is the standard Moore-Penrose pseudoinverse.
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Projection Operators and Pseudoinverse Matrices - II

Lemma 8
The projection onto L = {x : Ax = b} is given by

ΠB
L(x) = x − B−1A>(AB−1A>)†(Ax − b)

(17)
= x − A†B (Ax − b). (18)

Proof.
Do it yourself.

Exercise 5
Show that B-pseudoinverse satisfies

A†Bb = ΠB
L(0) = arg min

x
{‖x‖B : Ax = b}.
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Equivalence of Algorithms

38 / 124



Gradient and Hessian of fS(x) - I

In order to keep the expressions as brief as possible throughout, it will be
useful to define

Z
def
= A>HA

(14)
= A>S(S>AB−1A>S)†S>A. (19)

Lemma 9
B−1Z is the projection, in the B-norm, onto Range

(
B−1A>S

)
. In

particular,
(B−1Z)2 = B−1Z and ZB−1Z = Z. (20)

Recall from (3) that fS(x)
def
= 1

2‖Ax − b‖2
H = 1

2 (Ax − b)>H(Ax − b). By
combining this with (19), this can be also written in the compact form

fS(x) =
1

2
(x − x∗)

>Z(x − x∗), (21)

where x∗ is any point in L.
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Gradient and Hessian of fS(x) - II

Lemma 10
For each x , h ∈ Rn we have the expansion

fS(x + h) = fS(x) + 〈∇fS(x), h〉B + 1
2

〈
(∇2fS)h, h

〉
B
,

where

∇fS(x)
def
= B−1A>H(Ax − b) and ∇2fS

def
= B−1Z (22)

are the gradient and Hessian of fS with respect to the B-inner product,
respectively.2

In view of (19) and (22), the gradient can also be written as

∇fS(x) = B−1Z(x − x∗), x ∈ Rn, x∗ ∈ L. (23)

2If B = I, then 〈·, ·〉B is the standard Euclidean inner product, and we recover
formulas for the standard gradient and Hessian. Note that B−1Z is both self-adjoint
and positive semidefinite with respect to the B-inner product. Indeed, for all x , y ∈ Rn

we have
〈
B−1Zx , y

〉
B

= 〈Zx , y〉I = 〈x ,Zy〉I =
〈
x ,B−1Zy

〉
B

, and〈
B−1Zx , x

〉
B

= 〈Zx , x〉I ≥ 0.
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Useful Identities Involving fS(x)

Lemma 11
For all x ∈ Rn, we have

∇fS(x) = (∇2fS)∇fS(x) = (∇2fS)†B∇fS(x) (24)

= x − ΠB
LS

(x) = B−1A>H(Ax − b).

Moreover,

fS(x) =
1

2
‖∇fS(x)‖2

B. (25)

Finally, if LS is the set of minimizers of fS, then L ⊆ LS, and

(i) LS = {x : fS(x) = 0} = {x : ∇fS(x) = 0}
(ii) LS = x∗ + Null

(
B−1Z

)
for all x∗ ∈ L

(iii) LS = {x : B−1A>HAx = B−1A>Hb} (see (4))

(iv) LS = {x : S>Ax = S>b} (see (6))
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Some Consequences of Lemma 11

I The identity (∇2fS)∇fS(x) = ∇fS(x) means that the stochastic
gradients of fS are eigenvectors of the stochastic Hessian ∇2fS,
corresponding to eigenvalue one.

I The identity (∇2fS)†B∇fS(x) = ∇fS(x) means that the stochastic
gradients of fS are eigenvectors of the B-pseudoinverse of the
stochastic Hessian ∇2fS, corresponding to eigenvalue one.

I Function f can be represented in multiple ways:

f (x) =
1

2
E
[
‖x − ΠB

LS
(x)‖2

B

]
=

1

2
E
[
‖∇fS(x)‖2

B

]
. (26)

I The gradient and Hessian of f (with respect to the B-inner product)
are given by

∇f (x) = B−1E [Z] (x − x∗), and ∇2f = B−1E [Z] , (27)

respectively, where x∗ is any point in L.
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Equivalence of Algorithms

Theorem 12
Algorithm 1 (Basic Method) can be equivalently written as stochastic
gradient descent (8), stochastic Newton method (9), stochastic fixed
point method (11), and stochastic projection method (12).

Proof.
This follows from identities (24) in Lemma 11.
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Proof of Lemma 11 - I
Pick any x∗ ∈ L. First, we have

ΠB
LS

(x)
(18)
= x − B−1A>H(Ax − b)

(22)
= x −∇fS(x).

To establish (24), it now only remains to consider the two expressions
involving the Hessian. We have

∇2fS∇fS(x)
(22)+(23)

= B−1ZB−1Z(x − x∗)
(20)
= B−1Z(x − x∗)

(23)
= ∇fS(x),

and

(∇2fS)†B∇fS(x)
(17)
= B−1(∇2fS)>

(
(∇2fS)B−1(∇2fS)>

)†∇fS(x)

(22)
= B−1(B−1Z)>

(
(B−1Z)B−1(B−1Z)>

)†
B−1Z(x − x∗)

= B−1ZB−1
(
B−1ZB−1ZB−1

)†
B−1Z(x − x∗)

(20)
=

(
B−1ZB−1

) (
B−1ZB−1

)† (
B−1ZB−1

)
B(x − x∗)

= B−1Z(x − x∗)

(23)
= ∇fS(x).
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Proof of Lemma 11 - II

Identity (25) follows from

1

2
‖∇fS(x)‖2

B

(23)
=

1

2
(x−x∗)>ZB−1Z(x−x∗)

(20)
=

1

2
(x−x∗)>Z(x−x∗)

(21)
= fS(x).

If x ∈ L, then by picking x∗ = x in (23), we see that x ∈ LS.

It remains to show that the sets defined in (i)–(iv) are identical.

I Equivalence between (i) and (ii) follows from (23).

I Now consider (ii) and (iii). Any x∗ ∈ L belongs to the set defined in
(iii), which follows immediately by substituting b = Ax∗. The rest
follows after observing the nullspaces are identical.

I In order to show that (iii) and (iv) are equivalent, it suffices to
compute ΠB

LS
(x) and observe that ΠB

LS
(x) = x if and only if x

belongs to the set defined in (iii).
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Equivalence of 4 Stochastic Reformulations
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Equivalence of the Stochastic Formulations

The below theorem says that the solution sets of the fours stochastic
problems (2), (4), (5), and (6) are identical. In this sense, the four
stochastic problems are equivalent.

Theorem 13 (Equivalence of stochastic formulations)
Let x∗ ∈ L. The following sets are identical:

(i) X = arg min f (x) = {x : f (x) = 0} = {x : ∇f (x) = 0} → (2)

(ii) X = {x : B−1A>E [H] Ax = B−1A>E [H] b} = x∗ + Null (E [Z])
→ (4)

(iii) X = {x : E
[
ΠB
LS

(x)
]

= x} → (5)

(iv) X = {x : Prob(x ∈ LS) = 1} → (6)

Moreover, X does not depend on B.
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Proof of Theorem 13 - Part I

As f is convex, nonnegative and achieving the value of zero (since
L 6= ∅), the sets in (i) are all identical. We shall now show that the sets
defined in (ii)–(iv) are equal to that defined in (i).

(i)↔ (ii): Using the formula for the gradient from (27), we see that

{x : ∇f (x) = 0} = {x : B−1E [Z] (x − x∗) = 0}
= {x : E [Z] (x − x∗) = 0}
= x∗ + {h : E [Z] h = 0}
= x∗ + Null (E [Z]) ,

which shows that (i) and (ii) are the same.

(i)↔ (iii): Equivalence of (i) and (iii) follows by taking expectations in
(24) to obtain

∇f (x) = E [∇fS(x)]
(24)
= E

[
x − ΠB

LS
(x)
]
.
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Proof of Theorem 13 - Part II
(i)↔ (iv): It remains to establish equivalence between (i) and (iv). Let

X = {x : f (x) = 0} (26)
=
{
x : E

[∥∥x − ΠB
LS

(x)
∥∥2

B

]
= 0
}

(28)

and let X ′ be the set from (iv).

We need to show that X ′ = X . For easier reference, let

ξS(x)
def
=
∥∥x − ΠB

LS
(x)
∥∥2

B
.

Note that the following three probabilistic events are identical:

[x ∈ LS] =
[
x = ΠB

LS
(x)
]

= [ξS(x) = 0] . (29)

We first show that X ′ ⊆ X .

In view of (29), if x ∈ X ′, then the random variable ξS(x) is equal to
zero with probability 1, which implies E [ξS(x)] = 0, whence x ∈ X .

49 / 124

Proof of Theorem 13 - Part III

Let us now sow that X ⊆ X ′.

Let 1[ξS(x)≥t] be the indicator function of the event [ξS(x) ≥ t]. Note
that since ξS(x) is a nonnegative random variable, for all t ∈ R we have
the inequality

ξS(x) ≥ t1ξS(x)≥t . (30)

Now take x ∈ X and consider t > 0. By taking expectations in (30), we
obtain

0 = E [ξS(x)] ≥ E
[
t1ξS(x)≥t

]
= tE

[
1ξS(x)≥t

]
= tProb(ξS(x) ≥ t),

which implies that Prob(ξS(x) ≥ t) = 0. Now choose ti = 1/i for
i = 1, 2, . . . and note that the event [ξS(x) > 0] can be written as

[ξS(x) > 0] =
∞⋃
i=1

[ξS(x) ≥ ti ].
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Proof of Theorem 13 - Part IV

Therefore, by the union bound,

Prob(ξS(x) > 0) ≤
∞∑
i=1

Prob(ξS(x) ≥ ti ) = 0,

which immediately implies that Prob(ξS(x) = 0) = 1. From (29) we
conclude that x ∈ X ′.

Independence on B. Since characterization (iv) of X does not depend
on B, we conclude that X does not depend on B.
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Exactness of the Reformulations
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Rangespace and Nullspace of a Matrix - I

Let M ∈ Rm×n.

Definition 14 (Rangespace of a matrix)
By Range (M) we mean the rangespace of matrix M. This is the linear
subspace of Rm generated by the columns of M:

Range (M)
def
= {Mx : x ∈ Rn} =

{∑
j M:jxj , x ∈ Rn

}
.

Definition 15 (Nullspace of a matrix)
By Null (M) we mean the nullspace of matrix M. This is the linear
subspace of Rn formed by the vectors orthogonal (under standard
Euclidean inner product) to all rows of M:

Null (M)
def
= {x ∈ Rn : Mx = 0} =

{
x ∈ Rn : 〈M>i : , x〉 = 0 ∀i

}
.
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Rangespace and Nullspace of a Matrix - II

Definition 16 (Orthogonal complement)
Let X be a subspace of a vector space. The orthogonal complement of

X is the linear subspace X⊥
def
= {y : 〈y , x〉 = 0 ∀x ∈ X}.

Here we collect some useful identities involving rangespaces and
nullspaces of a matrix:

Fact 17
For any M ∈ Rm×n, we have

(i) Range
(
M>

)
= Null (M)⊥

(ii) Range
(
M>

)⊥
= Null (M)

(iii) If G � 0, then Null
(
M>GM

)
= Null (M)
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Exactness

Key Question: When are the stochastic formulations (2), (4), (5), (6)
equivalent to the linear system (1)? That is, when is their set of solutions
X identical to solution set of the linear system L?

This leads to the concept of exactness:

Assumption 3 (Exactness)
Stochastic reformulations (2), (4), (5), (6) of problem (1) are exact.
That is, X = L.

In what follows, we will

I Give sufficient, and necessary & sufficient conditions for
exactness.

I Use this assumption to prove convergence of the algorithms to a
specific point in L.
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Necessary and Sufficient Conditions for Exactness

Theorem 18 (⇔ Conditions for exactness)
The following statements are equivalent:

(i) Assumption 3 (exactness) holds

(ii) Null (E [Z]) = Null (A)

(iii) Null
(
B−1/2E [Z] B−1/2

)
= Null

(
AB−1/2

)
(iv) Range (A) ∩Null (E [H]) = {0}
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Proof of Theorem 18 - I

(i)↔ (ii): Choose any x∗ ∈ L. We know that L = x∗ + Null (A). On
the other hand, Theorem 13 says that X = x∗ + Null (E [Z]).

(ii)↔ (iii): If (ii) holds, then

Null (A) = Null (E [Z]) = Null
(

B−1/2E [Z]
)
,

and (iii) follows. If (iii) holds, then

Null (A) = Null
(

B−1/2E [Z]
)

= Null (E [Z]) ,

proving (ii).
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Proof of Theorem 18 - II

(ii)↔ (iv): First, note that

E [Z] = A>(E [H])1/2(E [H])1/2A.

In view of Fact 17, for any matrix M we have Null
(
M>M

)
= Null (M).

Therefore,

Null (E [Z]) = Null
(

(E [H])1/2A
)
.

Moreover, we know that

(a) Null
(
(E [H])1/2A

)
= Null (A) if and only if

Range (A) ∩Null
(
(E [H])1/2

)
= {0}, and

(b) Null
(
(E [H])1/2

)
= Null (E [H]) (see Fact 17).

It remains to combine these observations.
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Sufficient Conditions for Exactness

We now list some sufficient conditions for exactness.

Lemma 19 (Sufficient conditions for exactness)
Any of these conditions implies that Assumption 3 is satisfied:

(i) E [H] � 0

(ii) Null (E [H]) ⊆ Null
(
A>
)

Proof.
If (i) holds, then Null (E [Z]) = Null

(
A>E [H] A

)
= Null (A), where the

last equality follows from Fact 17. Exactness now follows by applying
Theorem 18.

On the other hand, in view of Fact 17, (ii) implies statement (iv) in
Theorem 18, and hence exactness follows.
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Condition Number
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Spectral Decomposition of the Hessian of f

Recall that the Hessian of f is given by

∇2f = ES∼D
[
∇2fS

]
= B−1E [Z] . (31)

Lemma 20
Matrices B−1E [Z] and B−1/2E [Z] B−1/2 have the same eigenvalues.

Proof.
It is known that for any X,Y ∈ Rn×n, the matrices XY and YX have the
same eigenvalues. It only remains to apply this to X = B−1/2 and
Y = B−1/2E [Z].

The above result allows us to study spectral properties of the Hessian
∇2f through the eigenvalue decomposition of the symmetric positive
definite matrix B−1/2E [Z] B−1/2.

61 / 124

Eigenvalues of the Hessian of f

Let

W
def
= B−1/2E [Z] B−1/2 = UΛU> =

n∑
i=1

λiuiu
>
i (32)

be the eigenvalue decomposition of W, where

U = [u1, . . . , un] ∈ Rn×n

is an orthonormal matrix composed of eigenvectors (i.e., we have
UU> = U>U = I), and

Λ = Diag (λ1, λ2, . . . , λn)

is a diagonal matrix of eigenvalues. Assume without loss of generality
that the eigenvalues are ordered from largest to smallest:

λmax
def
= λ1 ≥ λ2 ≥ · · · ≥ λn

def
= λmin.
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All Eigenvalues of W are Between 0 and 1

Lemma 21
0 ≤ λi ≤ 1 for all i .

Proof.
Since B−1/2ZB−1/2 is symmetric positive semidefinite, so is its
expectation W, implying that λi ≥ 0 for all i .

Further, note that B−1/2ZB−1/2 is a projection matrix. Indeed, it is the
projection (in the standard I-norm) onto Range

(
B−1/2A>S

)
. Therefore,

its eigenvalues are all zeros or ones. Since the map X 7→ λmax(X) is
convex, by Jensen’s inequality we get

λmax(W) = λmax

(
E
[
B−1/2ZB−1/2

])
≤ E

[
λmax(B−1/2ZB−1/2)

]
≤ 1.
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Smallest Nonzero Eigenvalue

Lemma 22
If Assumption 3 (exactness) holds, then λmax > 0.

Proof.
Assume, by contradiction, that λi = 0 for all i . Then from Theorem 18
and the fact that Null (W) = Range (ui : λi = 0) we conclude that
Null

(
AB−1/2

)
= Rn, which in turn implies that Null (A) = Rn. This can

only happen if A = 0, which is contradicts with our assumption on A.

Now, let j be the largest index for which λj > 0. This identifies the
smallest nonzero eigenvalue of W, which we shall denote as

λ+
min = λj .

If all eigenvalues {λi} are positive, then j = n.
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Condition Number

Definition 23
The condition number associated with the four stochastic
reformulations is the quantity3

ζ(A,B,D) = ζ
def
= ‖W‖‖W†‖ =

λmax

λ+
min

. (33)

Remark:

I As we shall see, convergence rate of the Basic Method is described
by ζ.

I As one varies the parameters defining the reformulation (i.e., D and
B), ζ changes. As a general rule of thumb, simple distributions will
lead to reformulations with a small condition number. For instance,
choosing S = I with probability one gives ζ = 1. However, in such a
case each step of the Basic Method is very expensive. One needs to
strike the right balance.

3‖X‖ denotes the spectral norm of X. In general, ‖X‖ =
(
λmax(X>X)

)1/2
. If X is

symmetric positive semidefinite, then ‖X‖2 = λmax(X>X) = λmax(X2) = (λmax(X))2.
Therefore, ‖X‖ = λmax(X).

65 / 124

Introduction to Randomized Methods in Convex Optimization
Peter Richtárik

4. Convergence Analysis of the Basic Method
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Covariance Matrix and Total Variance of a Random Vector

Definition 24 (Covariance matrix)
If x ∈ Rn is a random vector, then the matrix

Var (x)
def
= E

[
(x − E [x ])(x − E [x ])>

]
is called the covariance matrix of x .

Definition 25 (Total Variance)
If x ∈ Rn is a random vector, then the value

TVar (x)
def
= E

[
(x − E [x ])>(x − E [x ])

]
= E

[
‖x − E [x ] ‖2

]
is called the total variance of x .

Exercise 6
Let x ∈ Rn be a random vector. Show that:

(i) The total variance is the trace of the covariance matrix:
TVar(x) = Tr (Var (x))

(ii) TVar (U>B1/2x) = E
[
‖x − E [x ] ‖2

B

]
.
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Strong vs Weak Convergence

Definition 26 (Strong and Weak Convergence)
We say that a sequence of random vectors {xk} converges to x∗
I weakly if ‖E [xk − x∗] ‖2

B → 0 as k →∞
I strongly if E

[
‖xk − x∗‖2

B

]
→ 0 as k →∞ (aka L2 convergence)

The following lemma explains why strong convergence is a stronger
convergence concept than weak convergence.

Lemma 27
For any random vector xk ∈ Rn and any x∗ ∈ Rn we have the identity

E
[
‖xk − x∗‖2

B

]
= ‖E [xk − x∗]‖2

B + E
[
‖xk − E [xk ]‖2

B

]
︸ ︷︷ ︸

TVar (U>B1/2xk )

.

As a consequence, strong convergence implies

I weak convergence,

I convergence of TVar (U>B1/2xk) to zero.
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Proof of Lemma 27

Let µ = E [xk ]. Then

E
[
‖xk − x∗‖2

B

]
= E

[
‖xk − µ+ µ− x∗‖2

B

]
= E

[
‖xk − µ‖2

B + ‖µ− x∗‖2
B + 2〈xk − µ, µ− x∗〉B

]
= E

[
‖xk − µ‖2

B

]
+ ‖µ− x∗‖2

B + 2〈E [xk − µ]︸ ︷︷ ︸
0

, µ− x∗〉B

= E
[
‖xk − µ‖2

B

]
+ ‖µ− x∗‖2

B.

In the first step we have expanded the square and in the second step we
have used linearity of expectation.
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Weak Convergence
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Weak Convergence
Theorem 28 (Weak Convergence 1)
Choose any x0 ∈ Rn and let {xk} be the random iterates produced by
Algorithm 1. Let x∗ ∈ L be chosen arbitrarily. Then

E [xk+1 − x∗] =
(
I− ωB−1E [Z]

)
E [xk − x∗] . (34)

Moreover, by transforming the error via the linear mapping
h→ U>B1/2h, this can be written in the form

E
[
U>B1/2(xk − x∗)

]
= (I− ωΛ)kU>B1/2(x0 − x∗), (35)

which is separable in the coordinates of the transformed error:

E
[
u>i B1/2(xk − x∗)

]
= (1− ωλi )ku>i B1/2(x0 − x∗), i = 1, 2, . . . , n.

(36)
Finally,

‖E [xk − x∗] ‖2
B =

n∑
i=1

(1− ωλi )2k
(
u>i B1/2(x0 − x∗)

)2

. (37)
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Weak Convergence

Theorem 29 (Convergence 2)
Let x∗ = ΠB

L(x0). Then for all i = 1, 2, . . . , n,

E
[
u>i B1/2(xk − x∗)

]
=

{
0 if λi = 0,

(1− ωλi )ku>i B1/2(x0 − x∗) if λi > 0.

(38)
Moreover,

‖E [xk − x∗] ‖2
B ≤ ρk(ω)‖x0 − x∗‖2

B, (39)

where the rate is given by

ρ(ω)
def
= max

i :λi>0
(1− ωλi )2. (40)

72 / 124



Necessary and Sufficient Conditions for Convergence

Corollary 30 (Necessary and sufficient conditions)
Let Assumption 3 (exactness) hold. Choose any x0 ∈ Rn and let
x∗ = ΠB

L(x0).

If {xk} are the random iterates produced by Algorithm 1, then the
following statements are equivalent:

(i) |1− ωλi | < 1 for all i for which λi > 0

(ii) 0 < ω < 2/λmax

(iii) E
[
u>i B1/2(xk − x∗)

]
→ 0 for all i

(iv) ‖E [xk − x∗] ‖2
B → 0
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Proof of Theorems 28 and 29 - I

We first start with a lemma.

Lemma 31
Let Assumption 3 (exactness) hold. Consider arbitrary x ∈ Rn and let
x∗ = ΠB

L(x). If λi = 0, then u>i B1/2(x − x∗) = 0.

Proof.
From (18) we see that x − x∗ = B−1A>w for some w ∈ Rm. Therefore,
u>i B1/2(x − x∗) = u>i B−1/2A>w . By Theorem 18, we have
Range (ui : λi = 0) = Null

(
AB−1/2

)
, from which it follows that

u>i B−1/2A> = 0.

Proof of Theorem 28: Algorithm 1 can be written in the form

ek+1 = (I− ωB−1Zk)ek , (41)

where ek = xk − x∗. Multiplying both sides of this equation by B1/2 from
the left, and taking expectation conditional on ek , we obtain

E
[
B1/2ek+1 | ek

]
= (I− ωB−1/2E [Z] B−1/2)B1/2ek .
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Proof of Theorems 28 and 29 - II

Taking expectations on both sides and using the tower property, we get

E
[
B1/2ek+1

]
= E

[
E
[
B1/2ek+1 | ek

]]
= (I−ωB−1/2E [Z] B−1/2)E

[
B1/2ek

]
.

We now replace B−1/2E [Z] B−1/2 by its eigenvalue decomposition
UΛU> (see (32)), multiply both sides of the last equality by U> from
the left, and use linearity of expectation to obtain

E
[
U>B1/2ek+1

]
= (I− ωΛ)E

[
U>B1/2ek

]
.

Unrolling the recurrence, we get (35). When this is written
coordinate-by-coordinate, (36) follows. Identity (37) follows immediately
by equating standard Euclidean norms of both sides of (35).

Proof of Theorem 29: If x∗ = ΠB
L(x0), then from Lemma 31 we see

that λi = 0 implies u>i B1/2(x0 − x∗) = 0. Using this in (36) gives (38).
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Proof of Theorems 28 and 29 - III
Finally, inequality (39) follows from

‖E [xk − x∗] ‖2
B

(37)
=

n∑
i=1

(1− ωλi )2k
(
u>i B1/2(x0 − x∗)

)2

=
∑

i :λi>0

(1− ωλi )2k
(
u>i B1/2(x0 − x∗)

)2

(40)

≤ ρk (ω)
∑

i :λi>0

(
u>i B1/2(x0 − x∗)

)2

= ρk (ω)
∑

i :λi>0

(
u>i B1/2(x0 − x∗)

)2
+ ρk (ω)

∑
i :λi=0

(
u>i B1/2(x0 − x∗)

)2

= ρk (ω)
∑
i

(
u>i B1/2(x0 − x∗)

)2

= ρk (ω)
∑
i

(x0 − x∗)
>B1/2uiu

>
i B1/2(x0 − x∗)

= ρk (ω)(x0 − x∗)
>B1/2

(∑
i

uiu
>
i

)
B1/2(x0 − x∗) = ρk (ω)‖x0 − x∗‖2

B.

The last identity follows from the fact that
∑

i uiu
>
i = UU> = I.
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Optimal Stepsize Choice for Weak Convergence
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Convergence Rate as a Function of ω

We now consider the problem of choosing the stepsize (relaxation)
parameter ω.

In view of (39) and (40), the optimal relaxation parameter is the one
solving the following optimization problem:

min
ω∈R

{
ρ(ω) = max

i :λi>0
(1− ωλi )2

}
. (42)

We solve the above problem in the next result (Theorem 32).
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Optimal Stepsize
Theorem 32 (Stepsize Choice)

Let ω∗
def
= 2/(λ+

min + λmax). Then the objective of (42) is given by

ρ(ω) =


(1− ωλmax)2 if ω ≤ 0

(1− ωλ+
min)2 if 0 ≤ ω ≤ ω∗

(1− ωλmax)2 if ω ≥ ω∗
. (43)

Moreover, ρ is decreasing on (−∞, ω∗] and increasing on [ω∗,+∞), and
hence the optimal solution of (42) is ω∗. Further, we have:

(i) If we choose ω = 1 (no over-relaxation), then

ρ(1) = (1− λ+
min)2. (44)

(ii) If we choose ω = 1/λmax (over-relaxation), then

ρ(1/λmax) =
(

1− λ+
min

λmax

)2 (33)
=
(

1− 1
ζ

)2

. (45)

(iii) If we choose ω = ω∗ (optimal over-relaxation), the optimal rate is

ρ(ω∗) =
(

1− 2λ+
min

λ+
min+λmax

)2 (33)
=
(

1− 2
ζ+1

)2

. (46)
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Proof of Theorem 32

Recall that λmax ≤ 1. Letting

ρi (ω) = (1− ωλi )2,

it can be shown that

ρ(ω) = max{ρj(ω), ρn(ω)},

where j is such that λj = λ+
min. Note that ρj(ω) = ρn(ω) for ω ∈ {0, ω∗}.

From this we deduce that ρj ≥ ρn on (−∞, 0], ρj ≤ ρn on [0, ω∗], and
ρj ≥ ρn on [ω∗,+∞), obtaining (43). We see that ρ is decreasing on
(−∞, ω∗], and increasing on [ω∗,+∞).

The remaining results follow directly by plugging specific values of ω into
(43).
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Strong Convergence
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Decrease of Distance is Proportional to fS

Lemma 33 (Decrease of Distance)
Choose x0 ∈ Rn and let {xk}∞k=0 be the random iterates produced by
Algorithm 1, with an arbitrary relaxation parameter ω ∈ R. Let x∗ ∈ L.

Then we have the identities ‖xk+1 − xk‖2
B = 2ω2fSk

(xk), and

‖xk+1 − x∗‖2
B = ‖xk − x∗‖2

B − 2ω(2− ω)fSk
(xk). (47)

Moreover, E
[
‖xk+1 − xk‖2

B

]
= 2ω2E [f (xk)], and

E
[
‖xk+1 − x∗‖2

B

]
= E

[
‖xk − x∗‖2

B

]
− 2ω(2− ω)E [f (xk)] . (48)

Remarks: Equation (47) says that for any x∗ ∈ L, in the k-th iteration of
Algorithm 1 the distance of the current iterate from x∗ decreases by the
amount 2ω(2− ω)fSk

(xk).
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Lower Bound on a Quadratic
Lemma 34
Let Assumption 3 be satisfied. Then the inequality

x>B−1/2E [Z] B−1/2x ≥ λ+
min(B−1/2E [Z] B−1/2)x>x (49)

holds for all x ∈ Range
(
B−1/2A>

)
.

Proof.
It is known that for any matrix M ∈ Rm×n, the inequality

x>M>Mx ≥ λ+
min(M>M)x>x

holds for all x ∈ Range
(
M>

)
. Applying this with M = (E [Z])1/2B−1/2,

we see that (49) holds for all x ∈ Range
(
B−1/2(E [Z])1/2

)
. However,

Range
(

B−1/2(E [Z])1/2
)

= Range
(

B−1/2(E [Z])1/2(B−1/2(E [Z])1/2)>
)

= Range
(

B−1/2E [Z] B−1/2
)

= Range
(

B−1/2A>
)
,

where the last identity follows by combining Assumption 3 and
Theorem 18.
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Proof of Lemma 33 - I
Recall that Algorithm 1 performs the update

xk+1 = xk − ωB−1Zk(xk − x∗).

From this we get

‖xk+1 − xk‖2
B = ω2‖B−1Zk(xk − x∗)‖2

B

(20)
= ω2(xk − x∗)

>Zk(xk − x∗)

(21)
= 2ω2fSk

(xk). (50)

In a similar vein,

‖xk+1 − x∗‖2
B = ‖(I− ωB−1Zk)(xk − x∗)‖2

B

= (xk − x∗)
>(I− ωZkB−1)B(I− ωB−1Zk)(xk − x∗)

(20)
= (xk − x∗)

>(B− ω(2− ω)Zk)(xk − x∗)

(21)
= ‖xk − x∗‖2

B − 2ω(2− ω)fSk
(xk), (51)
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Proof of Lemma 33 - II

establishing (47).

Taking expectation in (50) and using the tower property, we get

E
[
‖xk+1 − xk‖2

B

]
= E

[
E
[
‖xk+1 − xk‖2

B | xk
]]

(50)
= 2ω2E [E [fSk

(xk) | xk ]]

= 2ω2E [f (xk)] ,

where in the last step we have used the definition of f .

Taking expectation in (47), we get

E
[
‖xk+1 − x∗‖2

B

]
= E

[
E
[
‖xk+1 − x∗‖2

B | xk
]]

(51)
= E

[
‖xk − x∗‖2

B − 2ω(2− ω)f (xk)
]

= E
[
‖xk − x∗‖2

B

]
− 2ω(2− ω)E [f (xk)] .
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Quadratic Bounds

Lemma 35 (Quadratic bounds)
For all x ∈ Rn and x∗ ∈ L we have

λ+
min · f (x) ≤ 1

2
‖∇f (x)‖2

B ≤ λmax · f (x). (52)

and

f (x) ≤ λmax

2
‖x − x∗‖2

B. (53)

Moreover, if Assumption 3 holds, then for all x ∈ Rn and x∗ = ΠB
L(x) we

have
λ+

min

2
‖x − x∗‖2

B ≤ f (x). (54)
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Proof of Lemma 35 - I
In view of (16) and (32), we obtain a spectral characterization of f :

f (x) =
1

2

n∑
i=1

λi

(
u>i B1/2(x − x∗)

)2

, (55)

where x∗ is any point in L. On the other hand, in view of (27) and (32),
we have

‖∇f (x)‖2
B = ‖B−1E [Z] (x − x∗)‖2

B (56)

= (x − x∗)
>E [Z] B−1E [Z] (x − x∗)

= (x − x∗)
>B1/2(B−1/2E [Z] B−1/2)(B−1/2E [Z] B−1/2)B1/2(x − x∗)

= (x − x∗)
>B1/2U(U>B−1/2E [Z] B−1/2U)2U>B1/2(x − x∗)

(32)
= (x − x∗)

>B1/2UΛ2U>B1/2(x − x∗)

=
n∑

i=1

λ2
i

(
u>i B1/2(x − x∗)

)2
. (57)

Inequality (52) follows by comparing (55) and (56), using the bounds

λ+
minλi ≤ λ

2
i ≤ λmaxλi ,

which hold for i for which λi > 0.
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Proof of Lemma 35 - II

We now move to the bounds involving norms. First, note that for any
x∗ ∈ L we have

f (x)
(16)
=

1

2
(x − x∗)

>E [Z] (x − x∗) (58)

=
1

2
(B1/2(x − x∗))>(B−1/2E [Z] B−1/2)B1/2(x − x∗).

The upper bound follows by applying the inequality

B−1/2E [Z] B−1/2 � λmaxI.

If x∗ = ΠB
L(x), then in view of (18), we have

B1/2(x − x∗) ∈ Range
(

B−1/2A>
)
.

Applying Lemma 34 to (58), we get the lower bound.
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Strong Convergence

Theorem 36 (Strong convergence)
Let Assumption 3 (exactness) hold and set x∗ = ΠB

L(x0). Let {xk} be the
random iterates produced by Algorithm 1, where the relaxation parameter

satisfies 0 < ω < 2, and let rk
def
= E

[
‖xk − x∗‖2

B

]
. Then for all k ≥ 0 we

have
(1− ω(2− ω)λmax)k r0 ≤ rk ≤ (1− ω(2− ω)λ+

min)k r0. (59)

The best rate is achieved when ω = 1.

Proof.
Let φk = E [f (xk)]. We have

rk+1
(48)
= rk − 2ω(2− ω)φk

(54)

≤ rk − ω(2− ω)λ+
minrk ,

and

rk+1
(48)
= rk − 2ω(2− ω)φk

(53)

≥ rk − ω(2− ω)λmaxrk .

Inequalities (59) follow from this by unrolling the recurrences.
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Convergence of f (xk)
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Convergence of f (xk)

Theorem 37 (Convergence of f )
Choose x0 ∈ Rn, and let {xk}∞k=0 be the random iterates produced by
Algorithm 1, where the relaxation parameter satisfies 0 < ω < 2.

(i) Let x∗ ∈ L. The average iterate x̂k
def
= 1

k

∑k−1
t=0 xt for all k ≥ 1

satisfies

E [f (x̂k)] ≤ ‖x0 − x∗‖2
B

2ω(2− ω)k
. (60)

(ii) Now let Assumption 3 hold. For x∗ = ΠB
L(x0) and k ≥ 0 we have

E [f (xk)] ≤
(
1− ω(2− ω)λ+

min

)k λmax‖x0 − x∗‖2
B

2
. (61)

The best rate is achieved when ω = 1.
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Proof of Theorem 37

(i) Let φk = E [f (xk)] and rk = E
[
‖xk − x∗‖2

B

]
. By summing up the

identities from (48), we get

2ω(2− ω)
k−1∑
t=0

φt = r0 − rk .

Therefore, using Jensen’s inequality, we get

E [f (x̂k)] ≤ E

[
1

k

k−1∑
t=0

f (xt)

]
=

1

k

k−1∑
t=0

φt =
r0 − rk

2ω(2− ω)k
≤ r0

2ω(2− ω)k
.

(ii) Combining inequality (53) with Theorem 36, we get

E [f (xk)] ≤ λmax

2
E
[
‖xk − x∗‖2

B

] (59)

≤
(
1− ω(2− ω)λ+

min

)k λmax‖x0 − x∗‖2
B

2
.
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5. Parallel and Accelerated Methods
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Parallel Method (“Minibatch Method”)
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Parallel Method (“Minibatch Method”)

Algorithm 2 Parallel Method

1: Parameters: distribution D from which to sample matrices; positive
definite matrix B ∈ Rn×n; stepsize/relaxation parameter ω ∈ R; par-
allelism parameter τ (aka “minibatch size”)

2: Choose x0 ∈ Rn . Initialization
3: for k = 0, 1, 2, . . . do
4: for i = 1, 2, . . . , τ do
5: Draw Ski ∼ D
6: Set zk+1,i = xk − ωB−1A>Ski (S>kiAB−1A>Ski )

†S>ki (Axk − b)

7: Set xk+1 = 1
τ

∑τ
i=1 zk+1,i . Average the results

I Note that for τ = 1, the parallel method (Algorithm 2) reduces to
the basic method (Algorithm 1).

I We take one step of the basic method τ times, independently,
started from xk . The results are then averaged to obtain xk+1.

I The τ computations can (but do not have to!) be performed in
parallel, whence the name of the method.
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Convergence of the Parallel Method

Theorem 38
Let Assumption 3 hold and set x∗ = ΠB

L(x0). Let {xk}∞k=0 be the random
iterates produced by Algorithm 2, where the relaxation parameter

satisfies 0 < ω < 2/ξ(τ), where ξ(τ)
def
= 1

τ +
(
1− 1

τ

)
λmax. Then

E
[
‖xk+1 − x∗‖2

B

]
≤ ρ(ω, τ) · E

[
‖xk − x∗‖2

B

]
,

and

E [f (xk)] ≤ ρ(ω, τ)k
λmax

2
‖x0 − x∗‖2

B,

where
ρ(ω, τ)

def
= 1− ω [2− ωξ(τ)]λ+

min.
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Understanding the Behaviour of the Parallel Method - I
The convergence factor

ρ(ω, τ) = 1− ω

2− ω
(

1
τ +

(
1− 1

τ

)
λmax

)︸ ︷︷ ︸
ξ(τ)

λ+
min

depends on the choice of the stepsize ω and on the minibatch size τ .

I The stepsize rate function

ω 7→ ρ(ω, τ),

is minimized for ω(τ)
def
= 1/ξ(τ) and the associated optimal rate is

ρ(ω(τ), τ) = 1−
λ+

min
1
τ +

(
1− 1

τ

)
λmax

. (62)

I The minibatch rate function

τ 7→ ρ(ω(τ), τ)

is decreasing on [1,∞), with

ρ(ω(1), 1) = 1− λ+
min, lim

τ→∞
ρ(ω(τ), τ) = 1−

λ+
min

λmax
.
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Understanding the Behaviour of the Parallel Method - II
Convergence Rate for τ = 1 (with optimal stepsize ω = ω(τ)):

k ≥ 1

λ+
min

log

(
‖x0 − x∗‖2

B

ε

)
⇒ E

[
‖xk − x∗‖2

B

]
≤ ε

Convergence Rate for τ = +∞ (with optimal stepsize ω = ω(τ)):

k ≥ λmax

λ+
min

log

(
‖x0 − x∗‖2

B

ε

)
⇒ E

[
‖xk − x∗‖2

B

]
≤ ε

Recall what we proved about the basic method:

I The weak convergence rate of the basic method is “fast”:

Õ
(
λmax/λ

+
min

)
I The strong convergence rate of the basic method is “slow”:

Õ
(
1/λ+

min

)
So, how does minibatching improve the basic method?

I The strong convergence rate of the parallel method interpolates
between slow and fast!
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Accelerated Method
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Accelerated Method

In order to obtain further acceleration, we suggest to perform an update
step in which xk+1 depends on both xk and xk−1. In particular, we take
two dependent steps of Algorithm 1, one from xk and one from xk−1, and
then take an affine combination of the results. That is, the process is
started with x0, x1 ∈ Rn, and for k ≥ 1 involves an iteration of the form

xk+1 = γφω(xk ,Sk) + (1− γ)φω(xk−1,Sk−1) (63)

where the matrices {Sk} are independent samples from D, and γ ∈ R is
an acceleration parameter.

Remarks:
I By choosing γ = 1 (no acceleration), we recover the Basic Method.
I Theory suggests that γ should be always between 1 and 2. In

particular, for well conditioned problems (small ζ), one should
choose γ ≈ 1, and for ill conditioned problems (large ζ), one should
choose γ ≈ 2.

I By a proper combination of overrelaxation (choice of ω) with
acceleration (choice of γ), Algorithm 3 enjoys the accelerated
convergence rate of Õ(

√
ζ), where ζ is the condition number.
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Accelerated Method

Algorithm 3 Accelerated Method

1: Parameters: distribution D from which to sample matrices; positive
definite matrix B ∈ Rn×n; stepsize/relaxation parameter ω > 0; accel-
eration parameter γ > 0

2: Choose x0, x1 ∈ Rn such that x0−x1 ∈ Range
(
B−1A>

)
(for instance,

choose x0 = x1)
3: Draw S0 ∼ D
4: Set z0 = φω(x0,S0)
5: for k = 1, 2, . . . do
6: Draw a fresh sample Sk ∼ D
7: Set zk = φω(xk ,Sk)
8: Set xk+1 = γzk + (1− γ)zk−1 . Main update step

9: Output xk
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Convergence
Theorem 39 (Complexity of Algorithm 3)
Let Assumption 3 (exactness) be satisfied and let {xk}∞k=0 be the
sequence of random iterates produced by Algorithm 3, started with
x0, x1 ∈ Rn satisfying the relation x0 − x1 ∈ Range

(
B−1A>

)
, with

relaxation parameter 0 < ω ≤ 1/λmax and acceleration parameter
γ = 2/(1 +

√
µ), where µ ∈ (0, ωλ+

min). Let x∗ = ΠB
L(x0). Then there

exists a constant C > 0, such that for all k ≥ 2 we have

‖E [xk − x∗] ‖2
B ≤ (1−√µ)2kC . (64)

(i) If we choose ω = 1/λmax (overrelaxation), then we can pick µ = 0.99/ζ (recall
that ζ = λmax/λ

+
min is the condition number), which leads to the rate

‖E [xk − x∗]‖2
B ≤

(
1−

√
0.99λ+

min
λmax

)2k

C . (65)

(ii) If we choose ω = 1 (no overrelaxation), then we can pick µ = 0.99λ+
min, which

leads to the rate

‖E [xk − x∗] ‖2
B ≤

(
1−

√
0.99λ+

min

)2k

C . (66)
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Comments

Alternative Way of Writing Convergence Rate (65):

k ≥ 1

2
√

0.99

√
λmax

λ+
min

log

(
C

ε

)
⇒ ‖E [xk − x∗] ‖2

B ≤ ε

Alternative Way of Writing Convergence Rate (66):

k ≥ 1

2
√

0.99

√
1

λ+
min

log

(
C

ε

)
⇒ ‖E [xk − x∗] ‖2

B ≤ ε
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I All three methods: basic (Algorithm 1), parallel (Algorithm 2) and
accelerated (Algorithm 3) enjoy linear convergence. That is, their
complexity has logarithmic dependence on 1/ε. This means that the
error decays exponentially fast.

I However, the leading constants in the complexity bounds are
different.

I Both the basic and parallel methods depend either on 1/λ+
min

(slow) or λmax/λ
+
min (fast), depending on how we set the parameters

ω, τ and γ, and whether we are interested in weak or strong
convergence.

I However, the accelerated method depends on the square root
of these quantities. This is why the method is called accelerated.
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6. Duality
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Motivation
I Recall that assuming exactness, and under certain assumptions in

the stepsize ω, the iterates of the basic method converge4 in the
weak sense and/or in the strong sense to

x∗ = ΠB
L(x0).

I That is, the basic method actually solves the optimization problem:

minimize P(x)
def
= 1

2‖x − x0‖2
B

subject to Ax = b (67)

x ∈ Rn.

I We will call (67) the primal problem, and P the primal objective
function.

I In optimization, one can associate with each optimization problem a
closely related optimization problem, called the dual problem.

I We shall now investigate several very interesting relationships
between the primal and the dual problems.

4This is also true for the parallel and accelerated methods. However, we shall not
deal with them in this lecture.
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Dual Problem
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Dual Problem: Concave Quadratic Maximization
The dual problem to (67) is the optimization problem

maximize D(y)
def
= (b − Ax0)>y − 1

2‖A
>y‖2

B−1 (68)

subject to y ∈ Rm.

I D : Rm → R is the dual objective function (quadratic)

I The dimension of the dual variable (y) is m (# rows of A).
The dimension of the primal variable (x) is n (# columns of A).

I A more detailed look at the terms:
I The first term, (b − Ax0)>y , is linear in y .
I The second term can be written as − 1

2
y>AB−1A>y .

I Thus, the gradient and Hessian of D are given by:

∇D(y) = b − Ax0 − AB−1A>y , ∇2D(y) = −AB−1A> (69)

I Note that ∇2D(y) is a negative semidefinite matrix. Equivalently,
−∇2D(y) is a positive semidefinite matrix. Hence
I D is a concave quadratic function
I −D is a convex quadratic function
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Weak Duality

Lemma 40 (Weak Duality)
For any primal feasible point x (i.e., x ∈ Rn for which Ax = b) and for
any dual feasible point (i.e., y ∈ Rm), we have

P(x) ≥ D(y).

Proof.
For any x ∈ Rn for which Ax = b and for any y ∈ Rm we have

P(x)− D(y)
(67)+(68)

= 1
2‖x − x0‖2

B + 1
2‖A

>y‖2
B−1 + (x − x0)>A>y

= 1
2‖B

1/2(x − x0)‖2 + 1
2‖B

−1/2A>y‖2 + (x0 − x)>A>y

= 1
2‖B

−1/2A>y + B1/2(x0 − x)‖2

= 1
2‖x0 + B−1A>y − x‖2

B ≥ 0.
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Optimality Conditions
Definition 41 (Duality Mapping)
The duality mapping is the function x(y) : Rm → Rn defined by

x(y)
def
= x0 + B−1A>y . (70)

Theorem 42

(i) Dual boundedness. D is bounded above ⇔ the primal problem is
feasible

(ii) Dual optimality.

y is dual optimal ⇔ Ax(y) = b (71)

(iii) Primal optimality.

x = x∗ ⇔ Ax = b and x = x(y) for some y (72)

(iv) x∗ can be obtained from any dual optimal point:

y∗ is dual optimal ⇒ x(y∗) = x∗ (73)
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Convex Quadratic Optimization

Exercise 7
Consider a general convex quadratic optimization problem

min
y∈Rm

1
2y
>Qy + d>y ,

and assume that the problem is bounded. Show that the problem can be
equivalently written in the form (70) for suitable A,B, x0 and b.
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Proof of Theorem 42

(i) Since D is a concave quadratic function, it has a maximizer if and
only if there exists y such that ∇D(y) = 0 (in which case any such
y is a maximizer). In view of (69), this happens if and only if the
following linear system has a solution:

AB−1A>y = b − Ax0. (74)

This system has a solution if and only if

b − Ax0 ∈ Range
(
AB−1A>

) Fact 17iii
= Range (A) .

(ii) Using the reasoning in (i), we know that y is dual optimal ⇔ y
solves (74). It remains to notice that (74) can equivalently be
written as Ax(y) = b.

(iii) Do this as an exercise. Hint: Use weak duality; in particular, the
derived expression for P(x)− D(y).

(iv) This follows by combining (ii) and (iii).
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Dual Suboptimality vs Primal Suboptimality
The dual-to-primal mapping enjoys the following insightful property:

Theorem 43
Let y∗ be any dual optimal point and y ∈ Rm. Then

D(y∗)− D(y) = 1
2‖x∗ − x(y)‖2

B. (75)

Proof.

D(y∗)− D(y)
(68)
= (b − Ax0)>(y∗ − y)− 1

2y
>
∗ AB−1A>y∗ + 1

2y
>AB−1A>y

(70)+(71)
= y>∗ AB−1A>(y∗ − y)− 1

2y
>
∗ AB−1A>y∗ + 1

2y
>AB−1A>y

= 1
2 (y − y∗)

>AB−1A>(y − y∗)

(70)
= 1

2‖x(y)− x(y∗)‖2
B.

It remains to use (73) which states that x(y∗) = x∗.
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Dual Algorithms Solve the Primal Problem

Let {yk}∞k=0 be any sequence for which

D(yk)→ D(y∗).

Such a sequence can be obtained by any algorithm that solves the
dual problem. In view of Theorem 43, we automatically have

x(yk)→ x(y∗) = x∗.

Now, define an associated primal algorithm via the iterates:

xk
def
= x(yk). (76)

Conclusion: Any convergent dual algorithm automatically leads to a
convergent primal algorithm.
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Stochastic Dual Subspace Ascent
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Algorithm: Stochastic Dual Subspace Ascent (SDSA)
Consider the following algorithm for solving the dual problem (68):

yk+1 = yk + Skλk (77)

Above, Sk is a fresh sample from D, and λk is a suitably chosen
“stepsize” parameter. We refer to this method by the name stochastic
dual subspace ascent (SDSA).
I Why stochastic? Because the iterates are random vectors, which

follows from the fact that Sk is a random matrix.
I Why subspace? The step, Skλk , can potentially be any point in a

specific random subspace of Rm. In particular, this is the space
Range (Sk), i.e., the subspace spanned by the columns of the
random matrix Sk . We hope that by focusing on a random subspace
(of a sufficiently small dimension) in each iteration, we can perform
the iteration much faster, particularly if m is big.

I Why ascent? We wish the method to always improve the dual
function value (or, at least, not to make it worse):
D(yk+1) ≥ D(yk). We achieve this by an appropriate choice of λk .
In particular, in SDSA we pick the best vector λk ; i.e., the vector for
which D(yk + Skλk) is maximized!
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How to Compute the Best λk? I

In SDSA we pick the stepsize parameter λk via

λk
def
= arg max

λ
D(yk + Skλ).

Since the function ψ(λ) = D(yk + Skλ) is a concave quadratic, λ is its
maximizer if and only if

∇ψ(λ) = 0. (78)

Since

∇ψ(λ) = S>k ∇D(yk + Skλ)
(69)
= S>k (b − Ax0 − AB−1A>(yk + Skλ))

= S>k

b − A (x0 + B−1A>yk)︸ ︷︷ ︸
(70)
= x(yk )

− S>k AB−1A>Skλ

= S>k (b − Ax(yk))− S>k AB−1A>Skλ,

118 / 124



How to Compute the Best λk? II
equation (78) is equivalent to the linear system:

S>k AB−1A>Skλ = S>k (b − Ax(yk)). (79)

If we wish to be greedy, we may choose λk as any solution of the linear
system (79). In SDSA, we pick a particular solution of (79): the
least-norm solution. In view of Exercise 5, the least-norm solution of a
linear system is given by applying the pseudoinverse of the system matrix
to the right hand side. Thus, we get:

λk
def
= arg min

λ
{‖λ‖ : (79) holds} (80)

Exercise 5
= (S>k AB−1A>Sk)†S>k (b − Ax(yk)). (81)

Plugging this back into the SDSA iteration (77), we get

yk+1
(77)+(81)

= yk − Sk(S>k AB−1A>Sk)†S>k (Ax(yk)− b) (82)
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Duality of SDSA and the Basic Method with Unit Stepsize
A natural question: How do the iterates of the primal algorithm
(defined in (76)) associated with the dual iterates of SDSA (defined in
(82)) look like?

x(yk+1)
(70)
= x0 + B−1A>yk+1

(82)
= x0 + B−1A>yk − B−1A> Sk(S>k AB−1A>Sk)†S>k︸ ︷︷ ︸

Hk

(Ax(yk)− b)

(76)
= x(yk)− B−1A>Hk(Ax(yk)− b).

Observe:
I If we set y0 = 0,then x(y0) = x0

I This is the basic method with unit stepsize! (see (7))

Thus, we obtain the following result:

Theorem 44 (The Basic Method with Unit Stepsize is a
“Mirror Image” of SDSA)
Let y0 = 0 and let {yk}∞k=0 be the iterates (82) of SDSA. Then the
primal iterates xk = x(yk) associated with SDSA exactly correspond to
the basic method with unit stepsize (ω = 1).
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Convergence of SDSA
By applying Theorem 43 to SDSA (with starting point y0 = 0) and
iterates {yk}, we get

D(y∗)− D(yk) = 1
2‖x∗ − xk‖2

B,

where in view of Theorem 44, {xk} are the iterates of the basic method
with unit stepsize.
By taking expectations on both sides of the above identity, we get

E [D(y∗)− D(yk)] = 1
2E
[
‖xk − x∗‖2

B

]
. (83)

By applying Theorem 36 (strong convergence of the basic method) to
(83), with ω = 1, we get:

Theorem 45 (Convergence of SDSA)
Choose any x0 ∈ Rn. Let Assumption 3 (exactness) hold and set
x∗ = ΠB

L(x0). Let y0 = 0 and {yk}∞k=0 be the random iterates produced

by SDSA (see (82)). Further, let tk
def
= E [D(y∗)− D(yk)]. Then for all

k ≥ 0 we have

(1− λmax)kt0 ≤ tk ≤ (1− λ+
min)kt0. (84)
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Special Case: Sk is a Random Vector

If Sk has a single column only, then SDSA is moving in the random
direction Sk ∈ Rm, using stepsize λk ∈ R.
Special cases:

I If Sk is a random coordinate vector, i.e., if D is given by Sk = ei
(the ith unit basis vector in Rm) with probability pi > 0, then SDSA
is called stochastic dual coordinate ascent (SDCA).

I If Sk is a random Gaussian vector, then SDSA is called stochastic
dual Gaussian ascent (SDGA).
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