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Main Topics

Multi-index (-level) Monte Carlo for UQ problems with a ’homotopy’
parameter

M(u(ω, t); t) = 0 t ∈ [0, 1]

Find E[Φ(u(·, 1))]

but problem hard to solve for t = 1; often solved via continuation,
i.e. solving iteratively for 0 = t0 < t1 . . . < tk−1 < tk = 1.

More generally, can have a system parameter α that controls
’difficulty’ of the problem (typically linked to cost), e.g.,

I regularisation parameter in a regularised minimisation problem
I strength of advection or nonlinear reaction term in an

advection-reaction-diffusion problem
I loading in a nonlinear elasticity problem
I box size in a particle system (periodic BCs)

Some other topics: e.g., MLMC for problems with stability constraints
and sample-dependent mesh size restrictions.
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Multi Index Monte Carlo method

Assume several discretization parameters
(e.g. spatial mesh, time step, domain size, model, . . . )

Introduce sequences h
(i)
0 > h

(i)
0 > . . . > h

(i)
Li

For ~̀= (`1, . . . , `d), denote Q~̀ = Q(u
h
(1)
`1

,...,h
(d)
`d

)

Difference operators

∆jQ~̀ =

{
Q~̀− Q~̀−~ej , if `j > 0

Q~̀, if `j = 0

∆Q~̀ =
d⊗
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∑

~j∈{0,1}d
(−1)|
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Multi Index Monte Carlo method
Telescopic formula: given finest discretization level ~L = (L1, . . . , Ld)

E[Q~L
] =

∑
~̀≤~L

E[∆Q~̀]

Multi Index idea: compute each expectation independently

µMIMC
~L

=
∑
~̀≤~L

1

M~̀

M~̀∑
i=1

∆Q
(i ,~̀)
~̀

L1

L2

`1

`2

Further sparsification: often the set {~̀≤ ~L} is not the optimal one.
Optimized index sets I ⊂ Nd can lead to substantial improvement

µMIMC
I =

∑
~̀∈I

1

M~̀
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Particle System Example – Paul Rohrbach’s Talk

Coarse graining:

π1,j(g1,j)− π0,j(g0,j) < εCG

Domain size:

πi ,1(gi ,1)− πi ,0(gi ,0) < εDS

“Double difference”:

(π1,1(g1,1)− π0,1(g0,1))− (π1,0(g1,0)− π0,0(g0,0)) ≈ εCGεDS ≈ 0

=⇒ π1,1(g1,1) ≈ π0,1(g0,1) + (π1,0(g1,0)− π0,0(g0,0))

Recombination technique (Bungartz, Griebel, . . . )
+ possibly variance reduction
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Other systems
Nonlinear Elasticity
(Dodwell, Scheichl, Seelinger,...)

Incremental loading of beam; nonlinear
solves get harder and harder

Should have ’good decoupling’ of
hierarchies (mixed regularity)
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Ice Sheet Dynamics (Cui, Peherstorfer,...)

Simplified model

−∇ · (η (u)∇u)− f = 0,

η(u) = (2γ(u) + ε)
p−2
2 , γ(u) =

1

2
|∇u|2,

Homotopy over nonlinearity p

Problem: Do we have mixed regularity (i.e. good decouplig of
discretisation hierarchies)? Not sure for advection-diffusion, for example!
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MIMC / Multifidelity

The problems mentioned above feature clear “discretization”
parameters, for which a hierarchy of models with increasing accuracy
and cost can be constructed. MIMC framework seems appropriate

However, these problems might not have the necessary mixed
regularity (the double differences may not decay fast enough). What
to do alternatively?

Explore other forms or regularity or other “recombination of terms”
(different telescoping sums)

Learn the best recombinations of terms from data (multifidelity /
multilevel BLUE estimator)
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All Research Themes 2022
A. Adaptivity within multilevel & multifidelity methods (Farcas, Haji-Ali, Spence,

Barth, Scheichl, Feischl, Baumgarten, Khodabakhshi, Jakeman, Tamellini)

B. Multilevel & multifidelity methods for chaotic systems and other models that
are difficult to couple pathwise (Madrigal-Cianci, Nobile, Haji-Ali, Hoel, Croci

C. Multilevel & Multifidelity for SPDEs (+ Chada)

D. Path Branching for SDEs and SPDEs (Haji-Ali, Spence, Stein, Scheichl)

E. Randomise-then-Optimise (Qian, Cui, Hoel)

F. Beyond Gaussian priors & Gaussian random fields

G. Multilevel MCMC and Multilevel Delayed Acceptance (+ Khodabakhshi)

H. Fault tolerant UQ (Tamelini)

I. Benchmarking and Comparing Competing Methods (+ Khodabakhshi,

Jakeman, Tamellini)

J. Parallelisation Issues

K. Beyond Plain-Vanilla MLMC/MIMC (+ Farcas, Khodabakhshi, Croci, Robbe)
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