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Introduction

Path integral derivation of the operators T that lift the action of a
finite group G to the twisted sectors of bosonic strings on the orbifold
M/G in a 3-form magnetic background H.

String propagator written as a sum over worldsheets each carrying its
own magnetic contribution.

The algebra generated by the operators T is the quasi-quantum group
D, [G], introduced in the context of conformal field theory by R.
Dijkgraaf, V. Pasquier and P. Roche with

e a product is determined by the commutation with propagation

T =COT (1)

e a coproduct follows from the commutation with the most basic

interaction
T @ _ @ AT, 2)

Magnetic amplitude for twisted sectors are also ground states of a version
of the Kitaev lattice model



States and symmetries in quantum mechanics

A quantum system is defined by a Hilbert space H and observables
which are Hermitian operators acting on . A state of the system is
defined by a line s in H (normalized vectors defined up to a phase).

The probability of observing the system in the state represented by x
. L . 2
knowing that it is in the state represented by 1 is |<@/}»X>’ .

A symmetry is a transformation of the space of states s — s’ preserving
.. g 2 2
the transition probabilities, }(1/}’,X’>| = |<7,Z1,X)|

Theorem (Wigner)

Each symmetry acting on states s — s’ can be implemented by a unitary
or antiunitary operator U on H.

YpeEs=Y =Uypes

and these operators are unique up to a phase.
Antiunitary symmetries : time reversal T, charge conjugation C



Projective representations

If a group G acts on the states preserving the transition probabilities, the
operators Ug are only defined up to phases

Ug Uh = Wg,h Ugh

Projective representations are classified using group cohomology
e associativity constraint : w is a 2-cocycle

Ug(UhUk) = (UgUh)Uk < Whk w;,ik Wg, hk w;% =1

(6w)g,h.k
e triviality : w is a coboundary
Weh = Mg Mg & VgVh=Ven with Vg =n,U,
———
(én)g.h

General group cohomology : n-cochains are functions on n copies of G
with values in a abelian group carrying an action of G, 62 = 0 with

é“"’Y(gOagL e 7gn) = 80" w(gla e 7gn)

n—1 i—1 n—1
(=1 1)
X H |:W(g0, -1 8i8i+1s - - ):|
i=0

(7
X |:W(g(), 81, -- agn—l)



Magnetic amplitude for a particle

For a particle on a manifold M in a magnetic background B (closed
2-form with integral periods), wave functions are sections of a line bundle
L over M with a connection V of curvature B.

In the path integral approach, the kernel of the evolution operator is

K(y.x) = / [Dg] eS¢l Afg], 3)

p(a)=x
(b)=y

S classical action (not involving the magnetic field)
A[p] holonomy of V along the path ¢.

Both £ and Afy] are constructed using a good open cover {U;}

B, = dA, on U,'7
Aj —A; = id Iog f}j on U, N Uj, (4)
f(f) "1 = 1 on U; N U; N Uy,

Invariance under gauge transformations of A; and f;;.



Explicit expression of the magnetic amplitude

Using a cover of the path, the magnetic amplitude (holonomy of the
connection along the path) is

Aij[w]—expi{Z/ sO*Aia} I £ (e(ve)), (5)
loella el
vg €Dl

where e,3 = +1 if I, is arriving at vg and —1 if it is leaving.

In accordance with its interpretation as a map from the fibre at x of £ to
that at y, it is independent of the covering and gauge invariant,
except at the boundaries.



Projective group action on wave functions
Classical symmetry : Action of a (finite) group G on M such that S is
genuinely invariant and g*B = B.

Quantum symmetry : Lift of the action of G to the Hilbert space H of
wave functions (¢, isomorphism between (g*L, g*V) and (£, V))
Tep(x) = dg(x) ¥(x-g) (6)

The phases are determined in the path integral formalism by the
commutation of T, with propagation (KTz = TgK)

Alp-gl = o5 ' (v) Alg] b (). (7)
Projective representation T, T; = wg » Tgn with the group 2-cocycle
wg,h = dn(x-g) ¢;h1(x)¢g(x)- (8)

The operators T, generate the twisted group algebra.

The cohomology class of w is an obstruction to the existence of a
quantum theory on M /G (no invariant states in #).

Generalization of magnetic translations for a particle on RV in a
uniform magnetic field with G = ZN. (twisted group algebra =
noncommutative torus.)



Magnetic fields for closed strings

A closed string on H sweeping a worldsheet ¥ couples to a 2-form
magnetic potential B (Kalb-Ramond field) with 3-form field strength

H=dB _
S »

In general the potentials are only locally defined and correspond to a
gerb with connection from which we compute the holonomy around ¥
using a triangulation

H,‘ = dB, on U,'

Bj — B,' dB,_, on U,' n Uj,

Bjx — Bix + Bjj idlog fix on Uin UpN Uy,

i (Fiar) Hp(F) ™ = 1 on ununucnu,
(10)

with two layers of gauge transformations.
Example of WZW models with M = SU(N) and H = 1£-Tr(gdg)>.

Interpretation of the holonomy around cylinders as parallel transport for a
line bundle over the loop space.



Tricomplex with de Rham, Cech and group cohomologies
Tricomplex with cochains C, 4, that are de Rham forms of degree p,
defined on (g + 1)-fold intersections of a "good invariant cover",

U, N---N U, and functions of r group indices.

Three commuting differentials
o de Rham differential in the p direction (idlog for functions)
e Cech coboundary § in the g direction
e group coboundary ¢ in the r direction

For any fixed value of r, we have a Cech-de Rham bicomplex,
Crt,(;t = @ Cp,q,m (11)
pt+q=s

with the Deligne differential defined by D = d + ¢ fulfilling D? = 0
and 0D = Dé.



Symmetries of 2-form potentials

Starting with H = (H;,0,0,1) € (5% such that DH =0 and 6H = 0
(globally defined closed invariant 3-form), we solve a series of
cohomological equations ending in a constant 3-cocycle w € C;f{,t, with
gauge ambiguities in the definition of B and A.

©=30
—
@ DO=5A
© A DA=SB
s I
o -
] A B H-DB

o g'B—B=DA,
° g*Ah — Agh + Ag = 'Dq)g’h

. g*¢h,k(¢gh,k)_l¢g,hk (¢g,h)_1 = Wg,h,k



Magnetic amplitude for twisted sectors
Twisted sectors on M /G are strings X : [0,27] — M that close up to
their winding w € G:  X(27) = X(0) - w.

Free string propagation involves a path integral with magnetic
amplitude _ _
Alg] = el e BH I A (12)

for the cylinder with cut and triangulation embedded in M

String wave functions W = sections of a line bundle over twisted sectors
Magnetic amplitude for cylinders = parallel transport

Invariance under simultaneous gauge transformations of B, A, ® and ¥



Stringy magnetic translations and their algebra

Stringy magnetic translations T,;” : H,: — H,, lift the group action to
the twisted sectors commuting with propagation

TYW(X) =T g(x)e™ A w(X - g), (13)
with [y g = &g e ®, L and w8 = g7 lwg.

Projective representation on the twisted sectors identical to the
multiplication law of the quasiquantum group D, [G]

Ww, g, h Wg h weh

wTV __ &5 &g,n,w w

To Ty = G — 2B T (14)
g,wé,

Combinatorial interpretation in terms of tetrahedra representing the
3-cocycle (transgression (n + 1)-cocycle — n-cocycle depending on w)




Interactions

Most basic interaction involves pair of pants

X XVwW

with magnetic amplitude contributing to the decay H,, — H, @ Hu
Alp] = el e BH L At 7 AF L AL g1 (1), (15)
® is inserted at the splitting point to maintain gauge invariance for A.

Global anomalies for magnetic amplitudes on arbitrary surfaces that
depend on w and on a representation of m1(X).

Consistency condition w =1 for the orbifold M /G. (Analogous to the
particle’s case.)



Quasi-Hopf algebras

An algebra A is a Hopf algebra if it admits a counit e : A — K,

coproduct A: A - A® A and and antipode S : A — A such that

mo(S®id)ocA=mo(id®S)oA =¢.

e group algebra C[G] = {Z )g} with A(g) =g®g,
e(g)=1and S(g) =g~*

e functions on G with pointwise product, Af(g,h) =
f(gh). e(f) =1, Sf(g) = f(g™").

Modules over a Hopf algebra form a category with trivial representation

(€), tensor products (A) and duals (S).

Examples :

A quasi-Hopf algebra A has a coproduct associative up to the Drinfel'd
associator Qe AQ A® A

(id®A)oA=Q[A®id)oA]Q "

obeying the pentagon axiom.

A bialgebra is quasi-cocommutative, if there is an invertible R € A ® A
A°P(b) = RA(B)R™?!

= braid group actionco R: H1 @ Ho > Ho Q@ H1, c( @ x) = x Q¢



Derivation of the coproduct

Commutation of the orbifold group action with the decay process dictates
the action of T on H,®@H, form whcih we read the coproduct

uy __ wv,w,g wg-,Vg,Wg v w
ATYH =D Wrg@@@. (16)

Combinatorial interpretation of the extra phase in the action on tensor
products

The operators T, generate the quasi-quantum group D,[G] which is a

quasi-triangular quasi-Hopf algebra deformation of the quantum double
of the group algebra of G.



Action of the quasi-Hopf algebra

R-matrix defines a braid group action on tensor products

AN

Coassociativity up to the Drinfeld associator : states in
(Hy ® Hy) ® Hw and in Hy, ® (H, ® Hy) only differ by the global phase

Wu,v,w-

-1
Antipode related to reversing the string orientation S(T,") =oc T( ¥



Discrete de Rham cohomology

A n-form Q(xp, ..., x,) is an antisymmetric function on X"*1 with values
in an abelian group, equipped with a differential

n+1
dQ(X07 s ;Xn+1) = Z(_l)IQ(Xov cey Xiy e 7Xn+1)
i=0
x; removed
Geometrical interpretation : Q(x, ..., x,) flux over a n-simplex with

n+ 1 vertices xg, ..., Xp.
Some simple examples
do(x,y) = d(y) — ®(x)

dA(X,y,Z) = A(y,Z) - A(X,Z) +A(Xa.)/)
dB(X7y727 t) = B(y7z7 t) - B(X727 t)+ B(Xaya t) - B(X,y72)

This differential is nilpotent d? = 0.



Kitaev model

Kitaev model defined on a triangular graph I on a surface X with Hilbert
space constructed by assigning group elements to the (oriented) edges

V({ge}) € H = (X) Fun(G - C)

edges

H==> P— Y 4,

faces f vertices v

P¢ (translation of face variables v — g~u,w — wg,...) and 4,

(constraint uvw~! = 1) are mutually commuting projectors
Ground states given by moduli space Hom(m1(X) — G)/Ad(G)



Twisted Kitaev model
See "Twisted Quantum Double Model of Topological Phases in
Two—Dimension" Yuting Hu, Yidun Wan, Yong-Shi Wu,
https://arxiv.org/abs/1211.3695

uNz W
x[y

v Y

Triangulate each face of I and decorate vertices with variables x, € X

V({ge}, {x}) € @) Fun(G = C) (X) Fun(X —C)

edges vertices

Prp(x,w,...) =(xg, g tw,...) x H Wuv.g for x,w € f

vertices in Of

5V = H 5Xj,ngij

around v


https://arxiv.org/abs/1211.3695

Ground states
A ground state can be constructed using the previous gerbe amplitude

({ge} {XV} H 5><uy yvz(sywz><

vertices
X H expiB(x,y,z H expiAn(x,y) H b, (x
triangles edges vertices

e lift of a single corner

() -1 (X)
Do, -1y (XE) We g1y -1y = ££_7
8 ' ( g) 88 ’ b,y (X)¢g gt (X)

e lift of a triangle :
B(XgaygaZg) = B(X,y72) +Ag(XaY) +Ag(YaZ) +Ag(zax)

e lift of an edge

Ag*’-w(xgayg) =
AW(X?y) - Ag(Xay) + |Og _icbg,g*lw(y) + |Og _icbg,g*lw(x)



Conclusion and outlooks

’ D, [G] is a higher dimensional generalization of projective group representations

particles strings
2-form B 3-form H
line bundle gerbe
2-cocycle w 3-cocycle w
twisted group algebra | quasi-quantum group

In both cases, theory on M/G is consistent only if w = 1.

Alternative application : Ground state of a twisted and extended Kitaev
model :

e Enlarge Hilbert space by adding "matter" degrees of freedom.
e Enforce gauge invariance and flatness constraint.

e Are there anyonic excitations ?



