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From Models to Decisions . . .

• Huge explosion of ‘data-driven’ methods!

• Huge explosion of High Performance

Simulations!

• What do ‘industry’ really want / care

about?

• The perfect model? → No!

• A high dimensional output → Often Not!

• Understanding of what happens on

average → Often not!

• I want models and data to sing together!

• I want predictions to revert to our scientific

knowledge of physics in the absense of data

- with an appropriate level uncertainty.
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Adaptive Multilevel Delayed Acceptance - a team sport!

• Mikkel Lykeggaard (Exeter)

• Colin Fox (Otago)

• Rob Scheichl (Heidelberg)
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Bayesian Inverse Problems

• We have (limited) observations of a system

d ∈ RM

• A (mathematical) model F(θ) : RZ → RM

which predicts our data given parameters θ.

• We connect our model and data

ε = d−F(θ) ∼ N (0, σ2
ε I)

• We have some prior of parameters - π(θ).

• We wish to find the distribution of

parameters given our observations - π(θ|d)

• Quantity of Interest is functional Q(θ)

which to compute statistics, e.g.

Eπ(θ|d)[Q(θ)]
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Markov Chain Monte Carlo - Metropolis-Hastings

Algorithm 1. Metropolis-Hastings (MH)

• Given θ(j), generate a proposal ψ distributed as q(ψ|θ(j)),

• Accept proposal ψ as the next state, i.e. set θ(j+1) = ψ, with

probability

α(ψ|θ(j)) = min

{
1,

πt(ψ)q(θ(j)|ψ)

πt(θ(j))q(ψ|θ(j))

}
(1)

otherwise reject ψ and set θ(j+1) = θ(j).
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Markov Chain Monte Carlo - Metropolis-Hastings

The Good Things Metropolis-Hastings

• Simple!

• Alg. 1 simulates a fixed (stationary) transition kernel K (y |x)

• Repeated iterations generate a (homogeneous) Markov chain.

• MH (Alg. 1) is in detailed balance with πt, i.e.

πt (x)K (y |x) = πt (y)K (x |y) ,

• Mild conditions on q(·|·) and start point, Θ := {θ0, θ1, . . . , θN} ∼ πt

The Big Challenges with Metropolis-Hastings

1. Evaluating πt - can be computationally expensive!

2. Markov Chain is strongly correlated Θ := {θ0, θ1, . . . , θN}.

3. Difficult to Parallelise - fundamental challenge since by their

nature Markov processes are sequential.
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Exploiting Hierarchies of Models

Lemma 1. If the proposal transition kernel q(·|·) in Alg. 1 is in detailed

balance with some distribution πC , then the acceptance probability (1)

may be written

α(ψ|θ(j)) = min

{
1,
πt(ψ)πC (θ(j))

πt(θ(j))πC (ψ)

}
(2)

Proof Sub. the detailed balance statement πC (ψ)q(θ(j)|ψ) = πC (θ(j))q(ψ|θ(j))

into (1) to get (2), almost everywhere.

• Idea is to exploit a hierarchy of
approximate models F`

• Grid resolution (norm for us) /

Parameters θ` / Data d`.

• Consider just two levels and no level

dependence on θ or d.

• Therefore have

• Fine / Target πF ≡ πt

• Coarse / Approximate πC 6



Multilevel Markov Chain Monte Carlo - Bottom Up Approach

Dodwell, Ketelsen, Scheichl, and Teckentrup, Multilevel Markov Chain Monte Carlo,

SIAM Rev., 61:509-545, 2019.

Two key motivating points

1. Use subchains generated πC to cheaply build ‘good’ proposals.

2. Exploit multilevel variance reduction mechanism - Giles (Oxford)

EπF
(QF ) = EπC

(QC ) + [EπF
(QF )− EπC

(QC )]︸ ︷︷ ︸
Make correlated!

Algorithm in a picture
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Multilevel Markov Chain Monte Carlo - The problem

• MLMCMC is not a Markov Process!

• If we reject on the fine, coarse is not reset

• Theoretically only works if subsampling rate J =∞
• Works well in practise if J > τ (autocorr. length of subchain).

• Struggles if difference between πF and πC is big.

Adaptive Multilevel Delayed Acceptance (this work) addresses these

problems!
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Multilevel Delayed Acceptance - Top Down

• Run finite length subchain of random length J ∼ p(·) (why??) on

approximate level.

• Idea cheaply generate (more) independent proposal from

approximate posterior πC ∼ πF
• Cost saving is approx. different in cost between F and FC times

acceptance rate (typically high).

• Generates a Markov Chain and can prove detailed balance.
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Multilevel Delayed Acceptance - Step 1

Alg. 2. Randomised-Length-Subchain Surrogate Transition (RST)

Input: Fine density πF(·), Coarse density πC(·), proposal kernel q(·|·),

probability mass function over subchain length p(·), start state θ0

• Draw the subchain length n ∼ p(·).

• Starting at θ(j), generate a subchain of length n using the

Metropolis–Hastings Alg. 1 targeting the coarse target

ψ = MH
(
πC(·), q(·|·), θ(j), n

)
(3)

• Accept the proposal ψ as the next sample, i.e. set θ(j+1) = ψ, with

probability

α(ψ|θ(j)) = min

{
1,
πF(ψ)πC(θ(j))

πF(θ(j))πC(ψ)

}
. (4)

otherwise reject and set θ(j+1) = θ(j).
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Multilevel Delayed Acceptance - Detailed Balance

Lemma 2 If transition kernels K1(x |y) and K2(x |y) are each in detailed

balance with a distribution π, and K1 and K2 commute, then the

composition of the kernels (K1 ◦ K2) is in detailed balance with π.

Lemma 3 Alg. 2 simulates a Markov chain that is in detailed balance

with πF(·).

• qC computes with itself

• By induction qnC (application n times) is in detailed balance with

πC (·).

• Random subchain length gives an effective mixture kernel∑
n∈Z+

p(n)qnC (·|·)

• Apply Lemma 1 → in detailed balance with πF .
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Multilevel Delayed Acceptance - Variance Reduction

• Coarse subchain � πC - Like mini burn ins from πF

• Samples from “hybrid” mixture distributions

π̃C =
1

J

J∑
j=1

K j
C πF (5)

where J is max subchain length and K j
C = KC ◦ KC ◦ . . . ◦ KC︸ ︷︷ ︸

j times

• Variance Reduction then

EπF
(QF ) = Eπ̃C

(QC ) + [EπF
(QF )− Eπ̃C

(QC )]
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Adaptive Correction - Wrong models can be made less wrong!

• Significant issue if big difference between fine and coarse posterior!

• Every time we do accept / reject we can evaluate FF −FC

• Multilevel trick on our statistical model

d −FC = FF−FC︸ ︷︷ ︸
BF∼N (µB,F ,ΣB,F )

+ e︸︷︷︸
N (0,Σe)
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Adaptive Correction - Learning on-the-fly

• Likelihood on `− 1 now addition of two Gaussians

LC = exp

(
−1

2
(FC (θ) + µB,F − d)T(ΣB,F + Σe)−1(FC(θ) + µB,F − d)

)
• Repeat over all levels - by summing all biases

between levels

• These corrections can be built recursively - little

overhead

µF ,i+1 =
1

i + 1

(
iµF ,i + B(θi+1)

)
and

ΣF ,i+1 =
i − 1

i
ΣF ,i+

1

i

(
iµF ,iµ

T
F ,i−(i+1)µF ,i+1µ

T
F ,i+1+BF (θi+1)BF (θi+1)T

)
Open Question: Can you prove adaptive version gives

convergence algorithm - without using diminishing

adaptivity?
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Implementation in pymc3 - version >3.10

https://docs.pymc.io

https://docs.pymc.io/notebooks/MLDAintroduction.html

Lightweight code called tinyDA by Mikkel

https://github.com/mikkelbue/tinyDA
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Subsurface flow in Heterogeneous Rock

• Spatially uncertainty in rock permeability

• Parameterised by θ ∈ RZ , Z large > 1, 000.

• Sparse measurements of ‘real’ pressure head

• Evaluated at x(j) ∈ D for j = 1 . . .M points

• Store in vector d ∈ RM .

• Forward Model F(θ) : RZ 7→ RM predicts

pressure at x(j) given θ.

• Quantity of Interest Q(θ) Could be θ it’s

self, full pressure field, flow over boundary

• Introduce a Gaussian Model connecting

model and data

d = F(θ) + ε where ε ∼ N (0, σ2
f I)

• Likelihood L(d|θ) ∼ N (d−F(θ), σ2
f I)
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Subsurface flow in Heterogeneous Rock

• Our model is Darcy’s equation.

• u(x) pressure head, k(x,θ) permeability,

source/pumping f (x)

• Classical FEM approximation of Darcy equations

u(x) =
∑N

i=1 uiφi (x) on Th, for all v ∈ Vh∫
D

k(x,θ)∇u · ∇v dx +

∫
D

fv dx = 0

• Large sparse (linear) system of equation

A(θ)u = b, u ∈ RN
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UQ: More independent samples is better!

We sampled the same model, with and without the AEM.

• Without AEM:

• Acceptance rate: 0.02

• Effective Sample Size, θ1: 4/20000

• With AEM:

• Acceptance rate: 0.66

• Effective Sample Size, θ1: 3319/20000

• 800 fold increase in efficiency.
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UQ: More independent samples is better!
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Variance Reduction - nothing to write home about

• Leads to factor ∼ 2.5 additional speed up in estimating QoI
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Concluding Remarks

• Addressed Issues with MLMCMC

• Adaptive Error Model has large gains

• Adaptive Multilevel Delayed

Acceptance embedded in pymc3

• Model hierarchy can be general!

• Parallelisation a new challenge

• New applications Crystal Plasticity,

Fusion Reactor, Trajectory Prediction

and Reinforcement Learning . .

MB Lykkegaard, G Mingas, R Scheichl, C Fox, TJ Dodwell, Multilevel

Delayed Acceptance MCMC with an Adaptive Error Model in

PyMC3, NeurIPS, 2020.

MB Lykkegaard, TJ Dodwell, C Fox, R ScheichlMultilevel Delayed

Acceptance MCMC, submitted to SIAM JUQ, Feb 2022.
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Thoughts on Parallelisation.

Hedge or Bet?

Formulate as a multi-armed bandit problem

using on the fly expected costs and

acceptance rates.

Could be more complex → state dependent

acceptance rates - probably means RL -

overkill in my opinion.

Potential if you can use ’transfer’ learning

from similar problems.
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