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From Models to Decisions .

e Huge explosion of ‘data-driven’ methods!

e Huge explosion of High Performance
Simulations!
e What do ‘industry’ really want / care
about?
e The perfect model? — Nol!
e A high dimensional output — Often Not!
e Understanding of what happens on
average — Often not!

e | want models and data to sing together!

e | want predictions to revert to our scientific
knowledge of physics in the absense of data
- with an appropriate level uncertainty.




Adaptive Multilevel Delayed Acceptance - a team sport!

e Mikkel Lykeggaard (Exeter)
e Colin Fox (Otago)
e Rob Scheichl (Heidelberg)



Bayesian Inverse Problems

e We have (limited) observations of a system

deRM

A (mathematical) model F(6) : R — RM
which predicts our data given parameters 6.

e We connect our model and data
e=d— F(0) ~ N(0,020)

e We have some prior of parameters - 7(6).

e We wish to find the distribution of
parameters given our observations - 7(6|d)
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e Quantity of Interest is functional Q(9)
which to compute statistics, e.g.

Er01a)[Q(0)]



Markov Chain Monte Carlo - Metropolis-Hastings

Algorithm 1. Metropolis-Hastings (MH)
e Given 0U), generate a proposal ¢ distributed as g(|0%)),

e Accept proposal 1) as the next state, i.e. set 00T = ¢, with
probability

[ m()ae9)
a(u1o) = min {1’ m(mﬂ)q(www)}

otherwise reject 1 and set §U+1) = g0).

Likelihood




Markov Chain Monte Carlo - Metropolis-Hastings

The Good Things Metropolis-Hastings

Simple!

Alg. 1 simulates a fixed (stationary) transition kernel K (y|x)

Repeated iterations generate a (homogeneous) Markov chain.
MH (Alg. 1) is in detailed balance with , i.e.

7 (x) K (yx) = e (y) K (x]y),

e Mild conditions on g(|) and start point, © := {#°,6,... 0N} ~ 7,

The Big Challenges with Metropolis-Hastings
1. Evaluating ¢ - can be computationally expensive!

2. Markov Chain is strongly correlated © := {6° 6, ... 6N}

3. Difficult to Parallelise - fundamental challenge since by their
nature Markov processes are sequential.



Exploiting Hierarchies of Models

Lemma 1. If the proposal transition kernel g(-|-) in Alg. 1 is in detailed
balance with some distribution 7¢, then the acceptance probability (1)
may be written
. o)
a(]0Y)) = min {1 m(¥)rc(07) ;} (2)

(09) (v
Proof Sub. the detailed balance statement mc(¥)q(89]) = wc(69)q(v|09)

into (1) to get (2), almost everywhere.
e Idea is to exploit a hierarchy of P —
approximate models F, a4

. . g/
e Grid resolution (norm for us) / ===
Parameters 0, / Data d,.

e Consider just two levels and no level
dependence on 6 or d.

e Therefore have

° i =
Fine / Target 7 = ¢ eDatapoints

e Coarse / Approximate m¢



Multilevel Markov Chain Monte Carlo - Bottom Up Approach

Dodwell, Ketelsen, Scheichl, and Teckentrup, Multilevel Markov Chain Monte Carlo,
SIAM Rev., 61:509-545, 2019.

Two key motivating points

1. Use subchains generated 7¢ to cheaply build ‘good’ proposals.
2. Exploit multilevel variance reduction mechanism - Giles (Oxford)

Ere(QF) = Exc(Qc) + [Exe (QF) — Exc(Qc)]

Make correlated!

Algorithm in a picture
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Multilevel Markov Chain Monte Carlo - The problem

e MLMCMC is not a Markov Process!
e If we reject on the fine, coarse is not reset
e Theoretically only works if subsampling rate J = co
e Works well in practise if J > 7 (autocorr. length of subchain).

e Struggles if difference between 7r and 7¢ is big.

ﬁl,(duhs |6)

L,(dobs|0)

Adaptive Multilevel Delayed Acceptance (this work) addresses these
problems!



Multilevel Delayed Acceptance - Top Down

e Run finite length subchain of random length J ~ p(-) (why??) on

approximate level.

0 A (1’ L)L)

@

Coarse subchain ©. = {(%,ég, ....0,} generates proposal

e ldea cheaply generate (more) independent proposal from
approximate posterior m¢ ~ Tf

e Cost saving is approx. different in cost between F and F¢ times
acceptance rate (typically high).

e Generates a Markov Chain and can prove detailed balance.



Multilevel Delayed Acceptance - Step 1

Alg. 2. Randomised-Length-Subchain Surrogate Transition (RST)

Input: Fine density mg(-), Coarse density 7c(-), proposal kernel g(:|-),
probability mass function over subchain length p(-), start state 6°
e Draw the subchain length n ~ p(+).

e Starting at U), generate a subchain of length n using the
Metropolis—Hastings Alg. 1 targeting the coarse target

% = MH (7c(), a(-), 09, n) (3)
e Accept the proposal ¢ as the next sample, i.e. set U1 = ¢, with
probability
. 9(/’))
a(|09)) = min {1, 77TF(¢).7TC( } . 4
(o 7 (0 mc(0) “

otherwise reject and set 9UTY) = 90,

10



Multilevel Delayed Acceptance - Detailed Balance

Lemma 2 If transition kernels Ki(x|y) and K(x|y) are each in detailed
balance with a distribution 7, and K7 and K> commute, then the
composition of the kernels (K7 o K3) is in detailed balance with 7.

Lemma 3 Alg. 2 simulates a Markov chain that is in detailed balance
with g (+).

e gc computes with itself

By induction g¢ (application n times) is in detailed balance with
Wc(J.
Random subchain length gives an effective mixture kernel

> p(mat(l)

neZ*

Apply Lemma 1 — in detailed balance with 7f.
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Multilevel Delayed Acceptance - Variance Reduction

@ o0 000600
e Coarse subchain ~ ¢ - Like mini burn ins from 7g

e Samples from “hybrid” mixture distributions
1,
fic =+ > KLxr (5)
j=1

where J is max subchain length and K. = KcoKco...oKc¢

j times
e Variance Reduction then

Err (QF) = Ezc(Qc) + [Ex (QF) — Ec (Qc)]
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Adaptive Correction - Wrong models can be made less wrong!

e Significant issue if big difference between fine and coarse posterior!

Li(dobs|0)
Q/ L,(dobs|6)

e Every time we do accept / reject we can evaluate Fr — F¢

e Multilevel trick on our statistical model

d—Fc= Fr—Fc + _e
——
Be~N(psrTer)  N(0Xe)

13



Adaptive Correction - Learning on-the-fly

e Likelihood on ¢ — 1 now addition of two Gaussians

1 _
Lo =exp (~5(Fe0) + unr - AT (B + Ee) Fe®) + e )
e Repeat over all levels - by summing all biases
between levels
e These corrections can be built recursively - little

overhead

1 )
KFi+1 = 1 (IMF,,' + B(f +1))

1/, _ ,- ,-
Lrit (wF,qu,-*(I+1)uF,,~+1ul,,~+1+BF(9 Be(6 +1)T)

and

i—1
i
Open Question: Can you prove adaptive version gives

convergence algorithm - without using diminishing

YFiv1=

adaptivity? 14



Implementation in pymc3 - version >3.10

https://docs.pymc.io

https://docs.pymc.io/notebooks/MLDAintroduction.html

Lightweight code called tinyDA by Mikkel

https://github.com/mikkelbue/tinyDA


https://docs.pymc.io
https://docs.pymc.io/notebooks/MLDA_introduction.html
https://github.com/mikkelbue/tinyDA

Subsurface flow in Heterogeneous Rock

e Spatially uncertainty in rock permeability o Coarse liode)
o Parameterised by 8 € R?, Z large > 1, 000.
e Sparse measurements of ‘real’” pressure head
e Evaluated at ) € D for j = 1... M points
e Store in vector d € RM.
e Forward Model 7(0) : R? — RM predicts
pressure at xU) given 6.

Fine Model

e Quantity of Interest Q(0) Could be 0 it's
self, full pressure field, flow over boundary

e Introduce a Gaussian Model connecting
model and data

d=F(6)+e¢ where e~ N(0,071)

o Likelihood £(d|6) ~ N (d — F(6), 52D
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Subsurface flow in Heterogeneous Rock

e Our model is Darcy’s equation.

e u(x) pressure head, k(x,0) permeability,
source/pumping f(x)

e Classical FEM approximation of Darcy equations
u(x) = vazl uidi(x) on T, for all v € Vp

/k(x,O)Vu-Vvdx+/fvdx:O
D D

e Large sparse (linear) system of equation

A(@)u=b, ucR"

Coarse Model

Fine Model
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UQ: More independent samples is better!

We sampled the same model, with and without the AEM.

e Without AEM:

e Acceptance rate: 0.02

e Effective Sample Size, 61: 4/20000
e With AEM:

e Acceptance rate: 0.66

e Effective Sample Size, 61: 3319,/20000
e 300 fold increase in efficiency.
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UQ: More independent samples is better!
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e Leads to factor ~ 2.5 additional speed up in estimating Qol
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Concluding Remarks

e Addressed Issues with MLMCMC
e Adaptive Error Model has large gains

e Adaptive Multilevel Delayed
Acceptance embedded in pymc3

e Model hierarchy can be general!
e Parallelisation a new challenge

e New applications Crystal Plasticity,
Fusion Reactor, Trajectory Prediction

and Reinforcement Learning . .

MB Lykkegaard, G Mingas, R Scheichl, C Fox, TJ Dodwell, Multilevel
Delayed Acceptance MCMC with an Adaptive Error Model in
PyMC3, NeurlPS, 2020.

MB Lykkegaard, TJ Dodwell, C Fox, R ScheichIMultilevel Delayed
Acceptance MCMC, submitted to SIAM JUQ, Feb 2022.
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Thoughts on Parallelisation.
Hedge or Bet?

Formulate as a multi-armed bandit problem
using on the fly expected costs and
acceptance rates.

Could be more complex — state dependent
acceptance rates - probably means RL -
overkill in my opinion.

Potential if you can use 'transfer’ learning
from similar problems.



