Adaptive Multilevel Delayed Acceptance

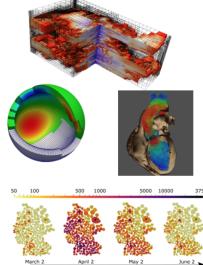
Computational Uncertainty Quantification: Mathematical Foundations, Methodology Data (Thematic Programme)

Prof. Tim Dodwell (Exeter/Turing/digiLab) Spring 2022

work funded by Turing AI Fellowship

From Models to Decisions . . .

- Huge explosion of 'data-driven' methods!
- Huge explosion of High Performance Simulations!
- What do 'industry' really want / care about?
 - The perfect model? \rightarrow No!
 - A high dimensional output \rightarrow Often Not!
 - Understanding of what happens on average \rightarrow Often not!
- I want models and data to sing together!
- I want predictions to revert to our scientific knowledge of physics in the absense of data
 with an appropriate level uncertainty.



Adaptive Multilevel Delayed Acceptance - a team sport!

- Mikkel Lykeggaard (Exeter)
- Colin Fox (Otago)
- Rob Scheichl (Heidelberg)

Bayesian Inverse Problems

• We have (limited) observations of a system

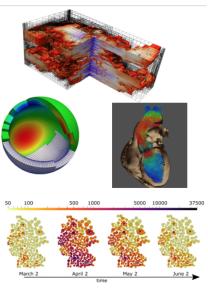
 $\mathbf{d} \in \mathbb{R}^{M}$

- A (mathematical) model *F*(θ) : ℝ^Z → ℝ^M which predicts our data given parameters θ.
- We connect our model and data

 $\epsilon = \mathbf{d} - \mathcal{F}(\theta) \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon}^2 \mathbb{I})$

- We have some *prior* of parameters $\pi(\theta)$.
- We wish to find the distribution of parameters given our observations $\pi(\theta|\mathbf{d})$
- Quantity of Interest is functional Q(θ) which to compute statistics, e.g.

 $\mathbb{E}_{\pi(heta|\mathbf{d})}[Q(heta)]$



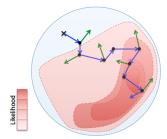
Markov Chain Monte Carlo - Metropolis-Hastings

Algorithm 1. Metropolis-Hastings (MH)

- Given $\theta^{(j)}$, generate a proposal ψ distributed as $q(\psi|\theta^{(j)})$,
- Accept proposal ψ as the next state, i.e. set $\theta^{(j+1)}=\psi,$ with probability

$$\alpha(\psi|\theta^{(j)}) = \min\left\{1, \frac{\pi_t(\psi)q(\theta^{(j)}|\psi)}{\pi_t(\theta^{(j)})q(\psi|\theta^{(j)})}\right\}$$
(1)

otherwise reject ψ and set $\theta^{(j+1)} = \theta^{(j)}$.



The Good Things Metropolis-Hastings

- Simple!
- Alg. 1 simulates a fixed (stationary) transition kernel K(y|x)
- Repeated iterations generate a (homogeneous) Markov chain.
- MH (Alg. 1) is in detailed balance with π_t , i.e.

$$\pi_{t}(x) K(y|x) = \pi_{t}(y) K(x|y),$$

• Mild conditions on $q(\cdot|\cdot)$ and start point, $\Theta := \{\theta^0, \theta^1, \dots, \theta^N\} \sim \pi_t$

The Big Challenges with Metropolis-Hastings

- 1. Evaluating π_t can be **computationally expensive**!
- 2. Markov Chain is strongly correlated $\Theta := \{\theta^0, \theta^1, \dots, \theta^N\}.$
- 3. **Difficult to Parallelise** fundamental challenge since by their nature Markov processes are **sequential**.

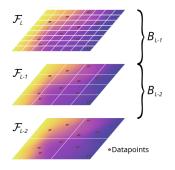
Exploiting Hierarchies of Models

Lemma 1. If the proposal transition kernel $q(\cdot|\cdot)$ in Alg. 1 is in detailed balance with some distribution π_C , then the acceptance probability (1) may be written

$$\alpha(\psi|\theta^{(j)}) = \min\left\{1, \frac{\pi_{\mathsf{t}}(\psi)\pi_{\mathcal{C}}(\theta^{(j)})}{\pi_{\mathsf{t}}(\theta^{(j)})\pi_{\mathcal{C}}(\psi)}\right\}$$
(2)

Proof Sub. the detailed balance statement $\pi_{C}(\psi)q(\theta^{(j)}|\psi) = \pi_{C}(\theta^{(j)})q(\psi|\theta^{(j)})$ into (1) to get (2), almost everywhere.

- Idea is to exploit a hierarchy of approximate models \mathcal{F}_ℓ
 - Grid resolution (norm for us) / Parameters θ_{ℓ} / Data \mathbf{d}_{ℓ} .
- Consider just **two levels** and no level dependence on *θ* or **d**.
- Therefore have
 - Fine / Target $\pi_F \equiv \pi_t$
 - Coarse / Approximate π_C



Multilevel Markov Chain Monte Carlo - Bottom Up Approach

Dodwell, Ketelsen, Scheichl, and Teckentrup, Multilevel Markov Chain Monte Carlo, SIAM Rev., 61:509-545, 2019.

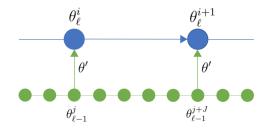
Two key motivating points

- 1. Use subchains generated π_C to cheaply build 'good' proposals.
- 2. Exploit multilevel variance reduction mechanism Giles (Oxford)

$$\mathbb{E}_{\pi_F}(Q_F) = \mathbb{E}_{\pi_C}(Q_C) + \underbrace{\left[\mathbb{E}_{\pi_F}(Q_F) - \mathbb{E}_{\pi_C}(Q_C)\right]}_{\text{Make considered}}$$

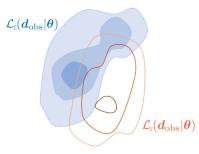
Make correlated!

Algorithm in a picture



Multilevel Markov Chain Monte Carlo - The problem

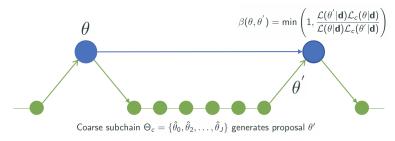
- MLMCMC is not a Markov Process!
 - If we reject on the fine, coarse is not reset
 - Theoretically only works if subsampling rate $J = \infty$
 - Works well in practise if $J > \tau$ (autocorr. length of subchain).
- **Struggles** if difference between π_F and π_C is **big**.



Adaptive Multilevel Delayed Acceptance (this work) addresses these problems!

Multilevel Delayed Acceptance - Top Down

 Run finite length subchain of random length J ~ p(·) (why??) on approximate level.



- Idea cheaply generate (more) independent proposal from approximate posterior π_C ~ π_F
- Cost saving is approx. different in cost between *F* and *F_C* times acceptance rate (typically high).
- Generates a Markov Chain and can prove detailed balance.

Alg. 2. Randomised-Length-Subchain Surrogate Transition (RST)

Input: Fine density $\pi_{\mathsf{F}}(\cdot)$, Coarse density $\pi_{\mathsf{C}}(\cdot)$, proposal kernel $q(\cdot|\cdot)$, probability mass function over subchain length $p(\cdot)$, start state θ^0

- Draw the subchain length $n \sim p(\cdot)$.
- Starting at θ^(j), generate a subchain of length n using the Metropolis–Hastings Alg. 1 targeting the coarse target

$$\psi = \mathbf{MH}\left(\pi_{\mathsf{C}}(\cdot), q(\cdot|\cdot), \theta^{(j)}, n\right)$$
(3)

• Accept the proposal ψ as the next sample, i.e. set $\theta^{(j+1)}=\psi,$ with probability

$$\alpha(\psi|\theta^{(j)}) = \min\left\{1, \frac{\pi_{\mathsf{F}}(\psi)\pi_{\mathsf{C}}(\theta^{(j)})}{\pi_{\mathsf{F}}(\theta^{(j)})\pi_{\mathsf{C}}(\psi)}\right\}.$$
(4)

otherwise reject and set $\theta^{(j+1)} = \theta^{(j)}$.

Lemma 2 If transition kernels $K_1(x|y)$ and $K_2(x|y)$ are each in detailed balance with a distribution π , and K_1 and K_2 commute, then the composition of the kernels ($K_1 \circ K_2$) is in detailed balance with π .

Lemma 3 Alg. 2 simulates a Markov chain that is in detailed balance with $\pi_F(\cdot)$.

- *q_C* computes with itself
- By induction q_C^n (application *n* times) is in detailed balance with $\pi_C(\cdot)$.
- Random subchain length gives an effective mixture kernel

$$\sum_{n\in\mathbb{Z}^+}p(n)q_C^n(\cdot|\cdot)$$

• Apply Lemma $\mathbf{1}
ightarrow$ in detailed balance with $\pi_F.$

Multilevel Delayed Acceptance - Variance Reduction

- Coarse subchain $\sim \pi_C$ Like mini burn ins from π_F
- Samples from "hybrid" mixture distributions

$$\tilde{\pi}_C = \frac{1}{J} \sum_{j=1}^J K_C^j \, \pi_F \tag{5}$$

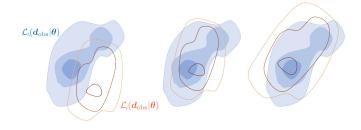
where J is max subchain length and $K_C^j = \underbrace{K_C \circ K_C \circ \ldots \circ K_C}_{j \text{ times}}$

• Variance Reduction then

$$\mathbb{E}_{\pi_F}(Q_F) = \mathbb{E}_{\tilde{\pi}_C}(Q_C) + [\mathbb{E}_{\pi_F}(Q_F) - \mathbb{E}_{\tilde{\pi}_C}(Q_C)]$$

Adaptive Correction - Wrong models can be made less wrong!

• Significant issue if big difference between fine and coarse posterior!



- Every time we do accept / reject we can evaluate $\mathcal{F}_F \mathcal{F}_C$
- Multilevel trick on our statistical model

$$\mathbf{d} - \mathcal{F}_{C} = \underbrace{\mathcal{F}_{F} - \mathcal{F}_{C}}_{\mathcal{B}_{F} \sim \mathcal{N}(\mu_{B,F}, \Sigma_{B,F})} + \underbrace{\mathbf{e}}_{\mathcal{N}(0, \Sigma_{e})}$$

Adaptive Correction - Learning on-the-fly

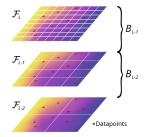
• Likelihood on
$$\ell - 1$$
 now addition of two Gaussians

$$\mathcal{L}_{C} = \exp\left(-\frac{1}{2}(\mathcal{F}_{C}(\theta) + \mu_{\mathcal{B},F} - \mathbf{d})^{\mathsf{T}}(\boldsymbol{\Sigma}_{\mathcal{B},F} + \boldsymbol{\Sigma}_{e})^{-1}(\mathcal{F}_{\mathsf{C}}(\theta) + \mu_{\mathcal{B},F} - \mathbf{d})\right)$$

- Repeat over all levels by summing all biases between levels
- These corrections can be built recursively little overhead

$$\mu_{F,i+1} = \frac{1}{i+1} \left(i\mu_{F,i} + \mathcal{B}(\theta^{i+1}) \right)$$

and



$$\Sigma_{F,i+1} = \frac{i-1}{i} \Sigma_{F,i} + \frac{1}{i} \left(i \mu_{F,i} \mu_{F,i}^{T} - (i+1) \mu_{F,i+1} \mu_{F,i+1}^{T} + \mathcal{B}_{F}(\theta^{i+1}) \mathcal{B}_{F}(\theta^{i+1})^{T} \right)$$

Open Question: Can you prove adaptive version gives convergence algorithm - without using diminishing adaptivity?

Implementation in pymc3 - version >3.10

https://docs.pymc.io

https://docs.pymc.io/notebooks/MLDAintroduction.html

Lightweight code called tinyDA by Mikkel

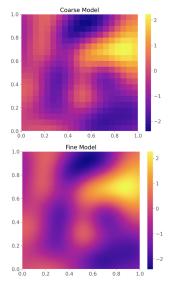
https://github.com/mikkelbue/tinyDA

Subsurface flow in Heterogeneous Rock

- Spatially uncertainty in rock permeability
 - Parameterised by $\boldsymbol{\theta} \in \mathbb{R}^{Z}$, Z large > 1,000.
- Sparse measurements of 'real' pressure head
 - Evaluated at $\mathbf{x}^{(j)} \in D$ for $j = 1 \dots M$ points
 - Store in vector $\mathbf{d} \in \mathbb{R}^{M}$.
- Forward Model *F*(θ) : ℝ^Z → ℝ^M predicts pressure at x^(j) given θ.
- Quantity of Interest Q(θ) Could be θ it's self, full pressure field, flow over boundary
- Introduce a Gaussian Model connecting model and data

$$\mathbf{d} = \mathcal{F}(oldsymbol{ heta}) + \epsilon \quad ext{where} \quad \epsilon \sim \mathcal{N}(oldsymbol{0}, \sigma_f^2 \mathbb{I})$$

• Likelihood $\mathcal{L}(\mathbf{d}|\theta) \sim \mathcal{N}(\mathbf{d} - \mathcal{F}(\theta), \sigma_f^2 \mathbb{I})$



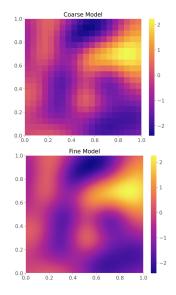
Subsurface flow in Heterogeneous Rock

- Our model is Darcy's equation.
- u(x) pressure head, k(x, θ) permeability, source/pumping f(x)
- Classical FEM approximation of Darcy equations $u(\mathbf{x}) = \sum_{i=1}^{N} u_i \phi_i(\mathbf{x})$ on \mathcal{T}_h , for all $\mathbf{v} \in V_h$

$$\int_D k(\mathbf{x}, \boldsymbol{\theta}) \nabla u \cdot \nabla v \ d\mathbf{x} + \int_D f v \ d\mathbf{x} = 0$$

• Large sparse (linear) system of equation

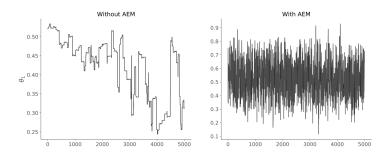
$$\mathbf{A}(\boldsymbol{ heta})\mathbf{u} = \mathbf{b}, \quad \mathbf{u} \in \mathbb{R}^N$$



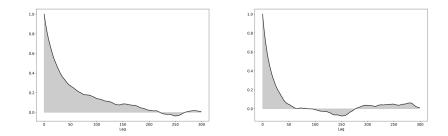
UQ: More independent samples is better!

We sampled the same model, with and without the AEM.

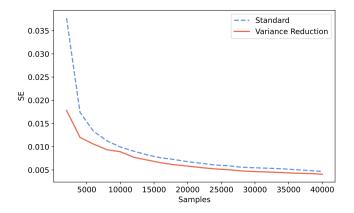
- Without AEM:
 - Acceptance rate: 0.02
 - Effective Sample Size, θ_1 : 4/20000
- With AEM:
 - Acceptance rate: 0.66
 - Effective Sample Size, θ_1 : 3319/20000
- 800 fold increase in efficiency.



UQ: More independent samples is better!



Variance Reduction - nothing to write home about

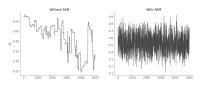


 $\bullet\,$ Leads to factor ~ 2.5 additional speed up in estimating QoI

Concluding Remarks

- Addressed Issues with MLMCMC
- Adaptive Error Model has large gains
- Adaptive Multilevel Delayed Acceptance embedded in pymc3
- Model hierarchy can be general!
- Parallelisation a new challenge
- New applications Crystal Plasticity, Fusion Reactor, Trajectory Prediction and Reinforcement Learning . .

PyMC3



MB Lykkegaard, G Mingas, R Scheichl, C Fox, TJ Dodwell, **Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3**, NeurIPS, 2020.

MB Lykkegaard, TJ Dodwell, C Fox, R Scheichl**Multilevel Delayed Acceptance MCMC**, *submitted to SIAM JUQ*, Feb 2022.

Thoughts on Parallelisation. Hedge or Bet? Formulate as a multi-armed bandit problem using on the fly expected costs and acceptance rates. Could be more complex \rightarrow state dependent acceptance rates - probably means RL overkill in my opinion. Potential if you can use 'transfer' learning from similar problems.