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INTRODUCTION

I the classical genus zero (two point) algebras (Witt algebra,
Virasoro algebra, affine Kac-Moody algebras of untwisted
type, ...) are well-established and of relevance e.g. in CFT

I but from the application there is a need for the multi-point
algebras in every genus (of course including genus zero)

I higher genus and still two points this was done by
Krichever and Novikov

I the multi-point theory was done to a large extend by the
speaker

I importance for KZ equations for genus zero in CFT is
nowadays classical

I for higher genus KZ connections in the context of Mg,n see
joint work of the speaker with Oleg Sheinman

I recently revived interest in genus zero multi-point quantum
field theory (N-point Virasoro algebra)



I Goal: show that the recently discussed N-point Virasoro
algebras (Cox, Jurisisch, Martins, and others) are special
examples of the multi-point KN type algebras

I Gain: gives useful structural insights and an easier
approach to calculations

I Something to be learned again: Generalize the
situation and understand the structure better.

I Side-effect was also to remove some misconceptions
about certain observed phenomena



What I will do here:
I recall the geometric setup for KN type algebras
I introduce the algebras
I almost-grading including triangular decomposition
I determine “all” central extensions

Why are central extensions so important??

In the process of quantization we are forced to pass from our
algebras to their central extensions, e.g. by regularisation,
subtraction of infinity, etc.



What will be the outcome for KN type, genus zero:
I all cocycle classes for vector field algebra and the

differential operator algebras are geometric
I give the universal central extensions for them explicitly
I the same for the current algebra, yielding affine algebras
I Heisenberg algebra obtained by cocycles for the function

algebra which are multiplicative
I give access to easy calculations of structure constants and

cocycle values for these algebras
I As illustration: three point genus zero situation.



CLASSICAL ALGEBRAS

I purely algebraic terms the Virasoro algebra
generators {en(n ∈ Z), t} and relations

[en,em] = (m − n)en+m +
1

12
(n3 − n)δ−m

n · t , [t ,en] = 0.

I without central term: Witt algebra
I g a finite-dimensional simple Lie algebra,
β the Cartan–Killing form,

[x̂ ⊗ zn, ŷ ⊗ zm] := ̂[x , y ]⊗ zn+m − β(x , y) · n δ−n
m · t .

ĝ is called affine Lie algebra.



GEOMETRIC SET-UP (KN TYPE ALGEBRAS)

P1

P2

Q1

I Σg be a compact Riemann surface of genus g = g(Σg).
I A be a finite subset of Σg , A = I ∪O, both non-empty,

disjoint, I = (P1, . . . ,PK ) in-points and
O = (Q1, . . . ,QM) out-points

I genus zero: A = {P1,P2, . . . ,PN},
PN can be brought to∞ by fractional linear transformation

I Pi = ai , ai ∈ C, i = 1, . . . ,N − 1, PN =∞
I local coordinates z − ai , i = 1, . . . ,N − 1, w = 1/z
I classical situation: Σ0 = S2, I = {0}, O = {∞}



GEOMETRIC REALIZATIONS OF THE KN TYPE ALGEBRAS

I K is the canonical bundle, i.e. local sections are the
holomorphic differentials

I Kλ := K⊗λ for λ ∈ Z
I the sections are the forms of weight λ, e.g. λ = −1 are

vector fields, λ = 0 are functions,
I for half-integer λ we need to fix a square root L of K (also

called theta characteristics, or spin structure)
I for g = 0 only one square-root, the tautological bundle U
I we ignore in this presentation the half-forms (e.g. the

supercase) (but see the journal article)



I Fλ := Fλ(A) := {f is a global meromorphic section of Kλ
such that f is holomorphic over Σ \ A}.

I infinite dimensional vector spaces
I meromorphic forms of weight λ
I

F :=
⊕
λ∈ 1

2Z

Fλ.



I We define an associative structure

· : Fλ ×Fν → Fλ+ν .

I in local representing meromorphic functions

(s dzλ, t dzν) 7→ s dzλ · t dzν = s · t dzλ+ν .

I F is an associative and commutative graded algebra.
I F0 =: A is a subalgebra and Fλ are modules over A.



I Lie algebra structure:

Fλ ×Fν → Fλ+ν+1, (s, t) 7→ [s, t ],

I in local representatives of the sections

(s dzλ, t dzν) 7→ [s dzλ, t dzν ] :=

(
(−λ)s

dt
dz

+ ν t
ds
dz

)
dzλ+ν+1,

I F with [., .] is a Lie algebra
I F with respect to · and [., .] is a Poisson algebra
I L := F−1 is a Lie subalgebra (the algebra of vector fields),

and the Fλ’s are Lie modules over L.
I F0⊕F−1 = A⊕L =: D1 is also a Lie subalgebra of F , it is

the Lie algebra of differential operators of degree ≤ 1



ALMOST-GRADED STRUCTURE

I The classical algebras are graded, which is important for
defining representations of relevance in the application,
e.g. semi-infinite forms, necessary for quantization

I In general, the KN type algebras will not have a non-trivial
grading.

I But there is a replacement which still allows to construct
these representations.

I Definition: Let L be a (Lie-) algebra such that L = ⊕n∈ZLn
is a vector space direct sum, then L is called an
almost-graded (Lie-) algebra if

(I) dimLn <∞,
(II) There exist constants L1,L2 ∈ Z such that

Ln · Lm ⊆
n+m+L2⊕

h=n+m−L1

Lh, ∀n,m ∈ Z.



I introduce an almost-grading for Fλ by exhibiting certain
elements f λn,p ∈ Fλ, p = 1, . . . ,K which constitute a basis
of the subspace Fλn of homogeneous elements of degree
n.

I the basis element f λn,p of degree n is of order

ordPi (f
λ
n,p) = (n + 1− λ)− δp

i

at the point Pi ∈ I, i = 1, . . . ,K .
I prescription at the points in O is made in such a way that

the element f λn,p is essentially unique
I Warning: The basis elements depend on the splitting of A

into I ∪O.



GENUS ZERO – STANDARD SPLITTING

I standard splitting: I = {P1,P2, . . . ,PN−1} and O = {∞},
we have K = N − 1

I it is enough to construct a basis {An,p} of A
I then Fλn = An−λdzλ, f λn,p = An−λ,pdzλ

I An,p(z) := (z − ap)n ·
∏K

i=1
i 6=p

(z − ai)
n+1 · α(p)n+1,

p = 1, . . . ,K
I α(p) normalization factor such that

An,p(z) = (z − ap)n(1 + O(z − ap))

I the order at∞ is fixed as −(Kn + K − 1)

I en,p = f−1
n,p = An+1,p

d
dz , p = 1, . . . ,K



GENERAL GENUS

I The above algebras are almost-graded algebras.
I the almost-grading depends on the splitting of the set A

into I and O.
I Fλ =

⊕
m∈ZFλm, with dimFλm = K .

I there exist R1,R2 (independent of n and m) such that

An · Am ⊆
n+m+R1⊕
h=n+m

Ah , [Ln,Lm] ⊆
n+m+R2⊕
h=n+m

Lh ,

R1 and R2 depends on the genus and #I,#O
(i.e. on the splitting).



I for genus zero and standard splitting

R1 =

{
0, N = 2,
1, N > 2,

R2 =


0, N = 2,
1, N = 3,
2, N > 3 .

I triangular decomposition U = U[−] ⊕ U[0] ⊕ U[+] with

U[+] :=
⊕
m>0

Um, U[0] =
m=0⊕

m=−Ri

Um, U[−] :=
⊕

m<−Ri

Um.

Here U is any of the above algebras A, L, .....



BEFORE CENTRAL EXTENSIONS

I Ci be positively oriented (deformed) circles around the
points Pi in I, i = 1, . . . ,K

I C∗j positively oriented circles around the points Qj in O,
j = 1, . . . ,M.

I A cycle CS is called a separating cycle if it is smooth,
positively oriented of multiplicity one and if it separates the
in-points from the out-points.

I we will integrate meromorphic differentials on Σg without
poles in Σg \ A over closed curves C.

I hence, C and C′ are equivalent if [C] = [C′] in
H1(Σg \ A,Z).



I [CS] =
∑K

i=1[Ci ] = −
∑M

j=1[C∗j ]

I given such a separating cycle CS (respectively cycle class)
we define F1 → C, ω 7→ 1

2πi

∫
CS
ω

I This integration corresponds to calculating residues

ω 7→ 1
2πi

∫
CS

ω =
K∑

i=1

resPi (ω) = −
M∑

l=1

resQl (ω).

I Krichever-Novikov duality

Fλ ×F1−λ → C, (f ,g) 7→ 〈f ,g〉 :=
1

2πi

∫
CS

f · g .



CENTRAL EXTENSIONS

I the second Lie algebra cohomology H2(U ,C) of U with
values in the trivial module C classifies equivalence
classes of central extensions.

I perfect Lie algebras admit universal central extensions
I A Lie algebra U is called perfect if [U,U ] = U .

I Û = C⊕ U x̂ := (0, x), t := (1, 0)

[x̂, ŷ ] = [̂x, y ] + Φ(x, y) · t, [t, Û] = 0, x, y ∈ U.

I Φ Lie algebra 2-cocycle if it is antisymmetric and

0 = d2Φ(x, y, z) := Φ([x, y ], z) + Φ([y, z], x) + Φ([z, x ], y).

I A 2-cocycles Φ is a coboundary if there exists a φ : U → C such that

Φ(x, y) = d1φ(x, y) = φ([x, y ]).



GEOMETRIC COCYCLES

I A cocycle γ : U × U → C is called a geometric cocycle if

γ = γC :=
1

2πi

∫
C
γ̂,

with C a curve on Σg and γ̂ : U × U → F1 defined in a
universal geometric way.

I Given γ̂ only the class of C in H1(Σg \ A,C) plays a role,
I

dim H1(Σg \ A,C) =

{
2g, #A = 0,1,
2g + (N − 1), #A = N ≥ 2 .



I genus zero and N ≥ 1: dim H1(Σ0 \ A,C) = (N − 1)

I basis e.g. given by circles Ci around the points Pi , where
we leave out one of them.
For example [Ci ], i = 1, . . . ,N − 1.

I better choice: e.g. for the standard splitting take
[CS] = −[C∞] and [Ci ], i = 1, . . . ,N − 2



LOCAL AND BOUNDED COCYCLES

I γ a cocycle for the almost-graded Lie algebra U is called a
local cocycle if ∃T1,T2 such that
γ(Un,Um) 6= 0 =⇒ T2 ≤ n + m ≤ T1

I γ is called bounded (from above) if ∃T1 such that
γ(Un,Um) 6= 0 =⇒ n + m ≤ T1

I for the classes it means that it contains one representing
cocycle of this type.

I Importance: Only local cocycles allow to extend the
almost-grading to the central extension.

I The speaker classified for the above algebras local and
bounded cocycle classes. They are given by geometric
cocycles of certain type (see below).



EXAMPLE OF RESULTS

Take L the vector field algebra on Σg with a fixed but arbitrary
splitting, i.e. an almost-grading, and K = #I then

I Up to equivalence and rescaling there is only one nontrivial
cocycle class which is local.

I Up to equivalence and rescaling the space of bounded
cocycle classes is K−dimensional.

I The cocycles are given by integrating a universal 1-form
over a separating cycle CS, respectively over the circles Ci ,
i = 1, . . . ,K .



MAIN RESULT – PHILOSOPHY - (GENUS ZERO !!)

I we show that in genus zero all cocycles classes are
geometric cocycles classes with respect to certain
explicitely given one-forms

I this is done by showing that all cocycles are bounded
cocycles with respect to the almost-grading induced by the
standard splitting,

I now the classification result of bounded cocycle classes of
the author is used which gives a complete classification
and explicit expressions given by integrals over curves

I note that in genus zero the geometric cocycles can be
obtained via integration over circles around the points in I,
or alternatively around∞

I and they can be calculate via residues
I In case that the Lie algebra is perfect the universal central

extension can directly be given.



FUNCTION ALGEBRA – HEISENBERG ALGEBRA

I γ is L-invariant if γ(e . f ,g) + γ(f ,e .g) = 0, for all f ,g ∈ A,
for all e ∈ L,

I multiplicative if γ(fg,h) + γ(gh, f ) + γ(hf ,g) = 0, for all
f ,g,h ∈ A

I Theorem: If one of the above properties is fulfilled then it is
a geometric cocycle with γ̂(f ,g) = fdg.

I basis

γAi (f ,g) =
1

2πi

∫
Ci

fdg = resai (fdg), i = 1, . . . ,N − 1.

I γ is bounded from above with respect to the
almost-grading given by the standard splitting.



I Every L-invariant cocycle is multiplicative and vice versa.
I Two point situation: γ(An,Am) = α · (−n) · δ−n

m

I Heisenberg algebra is such a central extension (the local
one or the “full” one).

I for the full one the center is (N − 1)-dimensional



VECTOR FIELD ALGEBRA

Results: g = 0
I Every cocycle class is geometric and given by

γLC,R(e, f ) =
1

2πi

∫
C

(
1
2

(ef ′′′ − e′′′f )− R(ef ′ − e′f )dz.

I R is a projective connection, with our coordinates we can
take R = 0.

I after cohomological changes they are bounded
I H2(L,C) is (N − 1)-dimensional
I can be calculate by residues at the points
I these cocycles generate a universal central extension.
I By different techniques Skryabin has shown the existence

of a universal central extension for arbitrary genus.



DIFFERENTIAL OPERATOR ALGEBRA

I Main result also here: all cocycle classes are geometric
I L-invariant coycles for A and arbitrary cocycles for L

define two cocycle types for D1.
I There is a another type: mixing cocycles

γ
(m)
C,T (e,g) :=

1
2πi

∫
C

(eg′′ + Teg′)dz, e ∈ L,g ∈ A,

I T is an affine connection. Can be taken to be zero on the
affine part.

I also D1 is perfect and the universal central extension has
3 · (N − 1) dimensional center



OTHERS

Current algebra:

I g a finite dimensional simple Lie algebra, β Cartan–Killing
form

γgβ,C(x ⊗ f , y ⊗ g) = β(x , y) · γAC (f ,g) = β(x , y) · 1
2πi

∫
C

fdg

I all cocycles are cohomologous to such cocycles,
I ĝ is perfect, universal central extension has again (N − 1)-

dimensional center
I the multiplicativity of

∫
C fdg is crucial

I I have corresponding results for g reductive.

Also results for Lie superalgebras: Each central extension of L
gives a unique central extension of the superalgebra.



SHORT CUT

Every cocycle class is geometric and given by (for A we need
either L-invariance or multiplicativity)

γAC (f ,g) =
1

2πi

∫
C

fdg

γLC,R =
1

2πi

∫
C

(
1
2

(ef ′′′ − e′′′f )− R(ef ′ − e′f )dz.

γ
(m)
C,T (e,g) :=

1
2πi

∫
C

(eg′′ + Teg′)dz, e ∈ L,g ∈ A,

γgβ,C(x ⊗ f , y ⊗ g) = β(x , y) · γAC (f ,g) = β(x , y) · 1
2πi

∫
C

fdg

Next use that Ci , i = 1, . . . ,N − 1 is a basis of H1(Σ0 \A,C) and
that the integration over Ci can be done by calculating residues.



THREE-POINT ALGEBRAS

I A = I ∪O, I := {0,1}, and O := {∞}
I basis elements (“symmetrized” and “anti-symmetrized”)

An(z) = zn(z − 1)n, Bn(z) = zn(z − 1)n(2z − 1),

I structure equations:

An · Am = An+m,

An · Bm = Bn+m,

Bn · Bm = An+m + 4An+m+1.

I space of (multiplicative) cocycles is two-dimensional, e.g.
we take the residues around∞ and around 0



I

γA∞(An,Am) = 2n δ−n
m ,

γA∞(An,Bm) = 0,

γA∞(Bn,Bm) = 2nδ−n
m + 4(2n + 1) δ−n−1

m .

I

γA0 (An,Am) = −n δ−n
m ,

γA0 (An,Bm) = n δ−n
m + 2n δ−n−1

m

+
∞∑

k=2

n (−1)k−12k (2k − 3)!!

k !
δ−n−k

m ,

γA0 (Bn,Bm) = −nδ−n
m − 2(2n + 1) δ−n−1

m .



I vector field algebra
I basis: en := An+1

d
dz , fn := Bn+1

d
dz , n ∈ Z

I structure equation

[en,em] = (m − n) fm+n,

[en, fm] = (m − n) em+n + (4(m − n) + 2) en+m+1,

[fn, fm] = (m − n) fm+n + 4(m − n) fn+m+1.

I the universal central extension is two -dimensional, as
above obtained by calculating residues at∞ and 0.

I

γL0 (e, f ) = 1/2 res0(e · f ′′′ − f · e′′′)dz

γL∞(e, f ) = 1/2 res∞(e · f ′′′ − f · e′′′)



γL∞(en,em) = 2(n3 − n) δ−n
m + 4n(n + 1)(2n + 1)δ−n−1

m

γL∞(en, fm) = 0,

γL∞(fn, fm) = 2(n3 − n) δ−n
m + 8n(n + 1)(2n + 1)δ−n−1

m

+ 8(n + 1)(2n + 1)(2n + 3)δ−n−2
m

γL0 (en,em) = −(n3 − n) δ−m
n − 2n(n + 1)(2n + 1)δ−n−1

m

γL0 (en, fm) = (n3 − n) δ−n
m + 6n2(n + 1)δ−n−1

m + 6n(n + 1)2δ−n−2
m

+
∑
k≥3

n(n + 1)(n + k − 1)(−1)k2k · 3 · (2k − 5)!!

k !
δ−n−k

m

γL0 (fn, fm) = −(n3 − n) δ−n
m − 4n(n + 1)(2n + 1)δ−n−1

m

− 4(n + 1)(2n + 1)(2n + 3)δ−n−2
m .
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