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0 Background and Motivations

@ Linear equation

e Nonlinear equation

@ singular DDSDE

Rongchan Zhu () Singular kinetic 2021.11.19 2/20



Motivation-(Mean field limit/DDSDE)

@ Consider the following second order interacting particle systems:

dx{ = Viat,
dV{ = b(Z})dt + § 32, K(X{ — X])dt + V2dB,
where i =1,2,.., N,
Z' = (X', V') € R*?: position and velocity of particle number i
;: independent Brownian motions

b: the random enviroment depending on Z'.
K: interaction kernel.
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Motivation-(Mean field limit/DDSDE)

@ Consider the following second order interacting particle systems:

dX] = Viat,
dV{ = b(Z})dt + § 32, K(X{ — X])dt + V2dB,

where i=1,2,...N,

Z' = (X', V') € R®: position and velocity of particle number i
B!: independent Brownian motions

b: the random enviroment depending on Z'.

K: interaction kernel.

@ Letting N — oo, we obtain the following Distribution Dependent SDE(DDSDE, also
called McKean-Vlasov equation):

dX; = Vidt
dVi = b(Z)dt + [0 K(Xi — y)u(dy)dt + v2dB (1)
Zy ~ Updxdv,

where Z; = (X;, V4), 1t is the distribution of X; and B is a standard BM.
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Motivation-(Mean field limit/DDSDE)

@ Consider the following second order interacting particle systems:

dX] = Viat,
dV{ = b(Z})dt + § 32, K(X{ — X])dt + V2dB,

where i=1,2,...N,

Z' = (X', V') € R®: position and velocity of particle number i
B!: independent Brownian motions

b: the random enviroment depending on Z'.

K: interaction kernel.

@ Letting N — oo, we obtain the following Distribution Dependent SDE(DDSDE, also
called McKean-Vlasov equation):

dX; = Vidt
dVi = b(Z)dt + [0 K(Xi — y)u(dy)dt + v2dB (1)
Zy ~ Updxdv,

where Z; = (X;, V4), 1t is the distribution of X; and B is a standard BM.
@ When b, K are smooth, well-posedness of solutions and propagation of chaos hold
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Problem

@ Formally, by It6’s formula, the law of solution to DDSDE = the limit u of the empirical
measure uy := 5 >.r O(xi viy solves the following kinetic equation

ou=Avu—v-Vyu—div,((b+ K=x*{(u))u), u(0)= uo, (2)
with (u) = [ udv.
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@ Formally, by It6’s formula, the law of solution to DDSDE = the limit u of the empirical
measure uy := 5 >.r O(xi viy solves the following kinetic equation

ou=Avu—v-Vyu—div,((b+ K=x*{(u))u), u(0)= uo, (2)
with (u) = [ udv. If divyb = 0 then (2) becomes

ou=Avu—v-Vyu—(b+ K= {u)) -Vyu, u(0)=up. (3)
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Problem

@ Formally, by It6’s formula, the law of solution to DDSDE = the limit u of the empirical
measure uy := 5 >.r O(xi viy solves the following kinetic equation

ou=Avu—v-Vyu—div,((b+ K=x*{(u))u), u(0)= uo, (2)
with (u) = [ udv. If divyb = 0 then (2) becomes

ou=Avu—v-Vyu—(b+ K= {u)) -Vyu, u(0)=up. (3)

@ Aim: For b, K singular, (e.g. b: spatial white noise)
Global well-posedness of kinetic equation (3) or (2)?
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Problem

@ Formally, by It6’s formula, the law of solution to DDSDE = the limit u of the empirical
measure uy := 5 >.r O(xi viy solves the following kinetic equation

ou=Avu—v-Vyu—div,((b+ K=x*{(u))u), u(0)= uo, (2)
with (u) = [ udv. If divyb = 0 then (2) becomes

ou=Avu—v-Vyu—(b+ K= {u)) -Vyu, u(0)=up. (3)

@ Aim: For b, K singular, (e.g. b: spatial white noise)
Global well-posedness of kinetic equation (3) or (2)?
Global well-posedness of DDSDE (1)? Nonlinear martingale problem.
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Kinetic equation

@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.
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Kinetic equation

@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.

@ Scaling transform: for A > 0 and a, b, ¢ > 0, let
us(t, x, v) == A2u(APt, XX, ), A(t, X, v) == (APt A%, Av).
Then Luy =fh<—=a=-2,b=2,c=3.
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Kinetic equation

@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.

@ Scaling transform: for A > 0 and a, b, ¢ > 0, let
us(t, x, v) == A2u(APt, XX, ), A(t, X, v) == (APt A%, Av).

Then Luy =fh<—=a=-2,b=2,c=3.
@ Schauder estimate: gain 2-regularity in v direction.
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@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.

@ Scaling transform: for A > 0 and a, b, ¢ > 0, let
us(t, x, v) == A2u(APt, XX, ), A(t, X, v) == (APt A%, Av).

Then Puy =fL < a=-2,b=2,c=3.
@ Schauder estimate: gain 2-regularity in v direction. Due to transport term v -V, we
gain % regularity in x direction (scaling of x and vis 3 : 1)
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Kinetic equation

@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.

@ Scaling transform: for A > 0 and a, b, ¢ > 0, let
us(t, x, v) == A2u(APt, XX, ), A(t, X, v) == (APt A%, Av).
Then Puy =fL < a=-2,b=2,c=3.

@ Schauder estimate: gain 2-regularity in v direction. Due to transport term v -V, we
gain % regularity in x direction (scaling of x and v is 3 : 1) = study kinetic equation
in anisotropic Besov space

(- +2) = fllo

2 , O<ax<1
a

[fllcg := [Ifl[c> + sup
z#0

1/3

with |z]a = |x| /" 4+ |v|, z=(x,v).
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Kinetic equation

@ Consider the following linear kinetic equation:
LU= (kv -Vy—A)u=Ff on R" xR¥.

@ Scaling transform: for A > 0 and a, b, ¢ > 0, let
us(t, x, v) == A2u(APt, XX, ), A(t, X, v) == (APt A%, Av).

Then Puy =fL < a=-2,b=2,c=3.

@ Schauder estimate: gain 2-regularity in v direction. Due to transport term v -V, we
gain % regularity in x direction (scaling of x and v is 3 : 1) = study kinetic equation
in anisotropic Besov space

(- +2) = fllie

2 , O<ax<1
a

[fllcg := [Ifl[c> + sup
z#0

with [z, := |x|'/?

@ Kinetic semigroup

+1vl, z=(xv).

t
Pif(z) :==Tipt x T:f(2) =Te(pt x f)(2) and Sf:= / Pi_sfds
0

is a solution to the above equation, where I'/f(2) := f(I'12),l1z == (x + tv, V), pr
the density of (\/Efot Weds, \@Wt).
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Difficulty

@ Consider the following nonlinear kinetic equation
u=Au+v-Vyu+b-Vyu+ Kx{(Uu) -Vyu+f, u(0)=uw, (4)

with (u) = [ udv.
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Difficulty

@ Consider the following nonlinear kinetic equation
u=Au+v-Vyu+b-Vyu+ Kx{(Uu) -Vyu+f, u(0)=uw,
with (u) = [ udv.
@ Forsome o € (3, 2), x € (0,1),

b S L?'Oca_a(pﬁ)7 fe L?'Oca_a(pfi)7

where px(x, v) := (1 + [x[%)° + (1 + [V])?)™*/2, €5 % (px) = {f : fpr € C5°}.
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Difficulty

@ Consider the following nonlinear kinetic equation

u=Au+v-Vyu+b-Vyu+ Kx{(Uu) -Vyu+f, u(0)=uw, (4)
with (u) = [ udv.
@ Forsome o € (3, 2), x € (0,1),
be LFC%(px), f€LFCI%(px),
where p.(x, v) = (14 [xP)"/ + (1 + [V)?) ™/, €5 %(px) = {f : fpu € C3°}.

o Difficulty: the best regularity of the solution is in L3°C2~~.
(Ill-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g) — fg e C only if o+ 3 > 0.
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Difficulty

@ Consider the following nonlinear kinetic equation
u=Au+v-Vyu+b-Vyu+ Kx{(Uu) -Vyu+f, u(0)=uw, (4)
with (u) = [ udv.
@ Forsome o € (3, 2), x € (0,1),
be LFC%(px), f€LFCI%(px),

where pi(x, v) == (1 + [x[*)"/° + (1 + [v])?) 7"/, €3 *(px) = {f : fp € C2°}.
o Difficulty: the best regularity of the solution is in L3°C2~~.
(Il-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g) — fg e C only if o+ 3 > 0.

@ Similar difficulty as in singular SPDEs:
Hairer 14 the theory of regularity structures
Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method
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Difficulty

@ Consider the following nonlinear kinetic equation
u=Au+v-Vyu+b-Vyu+ Kx{(Uu) -Vyu+f, u(0)=uw, (4)

with (u) = [ udv.
@ Forsome o € (3, 2), x € (0,1),
b S L?'Oca_a(pfi)7 fe L?'Oca_a(pfi)7
where p.(x, v) = (1 + [x[*)'/® + (1 + [v])?)7/2, €2 *(ps) = {f : fpr € C5°}.
o Difficulty: the best regularity of the solution is in L3°C2~~.
(Ill-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g) — fg e C only if o+ 3 > 0.

@ Similar difficulty as in singular SPDEs:
Hairer 14 the theory of regularity structures
Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method

@ Aim: develop paracontrolled calculus to get global well-posedness of (4)
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Linear equation

Linear equation
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Linear equation

@ Consider the following linear kinetic PDE:
Lu=0r—Ay—v-Vx)u=b-Vyu+f, u(0)=up. (5)

@ Suppose that for some « € (3, %) and px, (b, f) € L¥C;*(px).
@ Aim: develop paracontrolled distribution method in the kinetic setting to obtain
Schauder estimate for (5).
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Linear equation

@ Consider the following linear kinetic PDE:
Lu=0r—Ay—v-Vx)u=b-Vyu+f, u(0)=up. (5)
@ Suppose that for some « € (3, %) and px, (b, f) € L¥C;*(px).

@ Aim: develop paracontrolled distribution method in the kinetic setting to obtain
Schauder estimate for (5).

@ Kinetic Holder space: a € (0,2), T > 0.
Fale) = {7 Wfllep o0 2= Ifligreg oo + Wllgezpoy < 20
where for 3 € (0,1), ['1f(z) := f(['1z), Tz := (x + tv,v).

[[£(t) — Tt—sf(8)l|1o<(p)
fllas ooy = SUP [|f(t)]lLoe(py + SU '
l Hc?;rL (p) OgthH (Ol () 0<|t—E\<1 |t — s|®
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Linear equation

@ Consider the following linear kinetic PDE:
Lu=0r—Ay—v-Vx)u=b-Vyu+f, u(0)=up. (5)
@ Suppose that for some « € (3, %) and px, (b, f) € L¥C;*(px).

@ Aim: develop paracontrolled distribution method in the kinetic setting to obtain
Schauder estimate for (5).

@ Kinetic Holder space: a € (0,2), T > 0.
Fale) = {7 Wfllep o0 2= Ifligreg oo + Wllgezpoy < 20
where for 3 € (0,1), ['1f(z) := f(['1z), Tz := (x + tv,v).

[[£(t) — Tt—sf(8)l|1o<(p)
fllas ooy = SUP [|f(t)]lLoe(py + SU '
l Hc?;rL (p) OgthH (Ol () 0<|t—E\<1 |t — s|®

o Recall P;f = F,(pt * f), Pif —Tf = F,(p, *f— f)
Q Irif —f=1f(x+1tv,v)—f(x,v)
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Linear equation

@ Consider the following linear kinetic PDE:
=0i—Ay—v-V)u=b-Vyu+f, u(0)=up. (5)

@ Suppose that for some « € (3, %) and px, (b, f) € L¥C;*(px).

@ Aim: develop paracontrolled distribution method in the kinetic setting to obtain
Schauder estimate for (5).

@ Kinetic Holder space: a € (0,2), T > 0.
%.a(p) = {f: Fllsg oo 1= WFllegeeg o) + Fllgarz ooy < OO}’
where for 3 € (0,1), ['1f(z) := f(['1z), Tz := (x + tv,v).

[[£(t) — Tt—sf(8)l|1o<(p)
fllas ooy = SUP [|f(t)]lLoe(py + SU
l Hc?;rL (p) OgthH (Ol () O<IT—E\<1 |t — s|®

o Recall P;f = F,(pt * f), Pif —Tf = F,(p, xf— f)
Q Irif —f=1f(x+1tv,v)—f(x,v)

@ Schauder estimates: ||ﬂf\|sz ) S ||f|\Looc 8oy Jfor # = (£)7', B€(0,2).
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Paracontrolled solution to linear PDE

@ Paraproducts: if f € C3,g € C5 fora > 0,3 <0

fg=Ff<g+ fog +f>g,
~—— —~—
bad term well defined only if cv+3>0
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@ Paraproducts: if f € C3,g € C5 fora > 0,3 <0
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~—— —~—
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Lu=b-Vyu+f=Vywu<b+Vu=b+ boVyu +f
—— ——

bad term not well defined
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Paracontrolled solution to linear PDE

@ Paraproducts: if f € C3,g € C5 fora > 0,3 <0

fg=Ff<g+ fog +f>g,
~—— —~—
bad term well defined only if cv+3>0

Lu=b-Vyu+f=Vywu<b+Vu=b+ boVyu +f
—— ——

bad term not well defined

@ Paracontrolled solution: .# = (%)™

u=vw=<b+ U +.7f paracontrolled ansatz
~~

regular term

U= .7(Vyu > b+boV,u)—[7,Vu<]b.
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Paracontrolled solution to linear PDE

@ Paraproducts: if f € C3,g € C5 fora > 0,3 <0

fg=Ff<g+ fog +f>g,
~—— —~—
bad term well defined only if cv+3>0

Lu=b-Vyu+f=Vywu<b+Vu=b+ boVyu +f
—— ——

bad term not well defined

@ Paracontrolled solution: .# = (%)™

u=vw=<b+ U +.7f paracontrolled ansatz
~~

regular term

U= .7(Vyu > b+boV,u)—[7,Vu<]b.

@ Aim: Commutator estimate for [.#, V,u <]b
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Commutator estimate for kinetic operator

Recall P: = I':p: * '+ be the kinetic semigroup.
Lemma 2.1
Foranya € (0,1),3€R,t€(0,T],6>0,j> -1,
8 (a i
IALPAF < @) = (Tef < Peg)lllioe(orpn) S 227 i flleg o lIllgs -

Here A; is the j-th littlewood block.
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Commutator estimate for kinetic operator

Recall P: = I':p: * '+ be the kinetic semigroup.

Lemma 2.1
Foranya € (0,1),3€R,t€(0,T],6>0,j> -1,

b a ;
IALPAF < @) = (Tef < Peg)lllioe(orpn) S 227 i flleg o lIllgs -

Here A; is the j-th littlewood block.

=

Lemma 2.2
Commutator estimate

H[ﬂ)\, f _<]g||L‘7?°C:+B+2(p1p2) s HfI|S‘7)—"a(P1)HgHL;ocg(pz)' (6)

= u € CrC3 “(ps), U* € CTCY 2% (ps)
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Renormalization

@ lfboV,.sb,boV,sfc LFCL2%(p,)

Rongchan Zhu () Singular kinetic 2021.11.19 11/20



Renormalization

0 lfboV,IbboV,7f e LFCL 2% (p.) = boVu € LCL2%(p,.) by commutator
estimate and paracontrolled ansatz
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Linear equation

Renormalization

0 lfboV,IbboV,7f e LFCL 2% (p.) = boVu € LCL2%(p,.) by commutator

estimate and paracontrolled ansatz
@ Let b be a Gaussian field with the following covariance:

E(b(g1)b / 91(¢) G2(—C)pu(dQ).

Assumption: u is symmetric in second variable and for some 8 < a,

w(d¢)
oS / A1 +Ca =%

Probabilistic calculation = b € L¥C;*(px),bo Vy.72b € L¥CL 2 (p,)
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Renormalization

0 lfboV,IbboV,7f e LFCL 2% (p.) = boVu € LCL2%(p,.) by commutator

estimate and paracontrolled ansatz
@ Let b be a Gaussian field with the following covariance:

E(b(g1)b / 91(¢) G2(—C)pu(dQ).

Assumption: u is symmetric in second variable and for some 8 < a,

w(d¢)
oS / A1 +Ca =%

Probabilistic calculation = b € L¥C;*(px),bo Vy.72b € L¥CL 2 (p,)
@ Example: For 8 € (3, 3) and 1,72 € [0, d) with 3v1 + 2 > 4d — 28, let

w(dg, dn) = [§]” 7" [n| " "2dédn.

(e.g. noise white in v and colored in x)
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Renormalization

0 lfboV,IbboV,7f e LFCL 2% (p.) = boVu € LCL2%(p,.) by commutator
estimate and paracontrolled ansatz

@ Let b be a Gaussian field with the following covariance:

E(b(g1)b / 91(¢) G2(—C)pu(dQ).

Assumption: u is symmetric in second variable and for some 8 < a,

p(d¢)
s — BB .
e Lot e <
Probabilistic calculation = b € L¥C;*(px),bo Vy.72b € L¥CL 2 (p,)
@ Example: For 8 € (3, 3) and 1,72 € [0, d) with 3v1 + 2 > 4d — 28, let
p(d€, dn) = [§]7 7" |n| " "2dédn.

(e.g. noise white in v and colored in x)

@ Interesting point: Oth Wiener chaos is not constant but converges after minus a
formally diverging term, which is zero by symmetry
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Renormalization

0 lfboV,IbboV,7f e LFCL 2% (p.) = boVu € LCL2%(p,.) by commutator
estimate and paracontrolled ansatz

@ Let b be a Gaussian field with the following covariance:

E(b(g1)b / 91(€) Ge(—Q)n(dQ).

Assumption: u is symmetric in second variable and for some 8 < a,

w(d¢)
oo /R A 11C + )P

< 00.

Probabilistic calculation = b € L¥C;*(px),bo Vy.72b € L¥CL 2 (p,)
@ Example: For 8 € (3, 3) and 1,72 € [0, d) with 3v1 + 2 > 4d — 28, let
p(dg, dn) = €] [n|”"2d&dn.

(e.g. noise white in v and colored in x)

@ Interesting point: Oth Wiener chaos is not constant but converges after minus a
formally diverging term, which is zero by symmetry = No renormalization
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Well-posedness of linear PDE

Or—ADy—v-V)u=b-Vyu+f, u(0)= .

Theorem 1

Leta € (},%5)and ¥ := 72— and§ := (29+2)x < 1. Forany T > 0, (b, f) as above, 3!

paracontrolled solution (u, u*) to PDE (5) such that ||ul| 62 (ps) T (P G329 (1) S
T T
C(b, f).

Ps
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Well-posedness of linear PDE

Or—ADy—v-V)u=b-Vyu+f, u(0)= .

Theorem 1

Leta € (},%5)and ¥ := 72— and§ := (29+2)x < 1. Forany T > 0, (b, f) as above, 3!
i # #

paracontrolled solution (u, u*) to PDE (5) such that || ul| Cre2 (o) T [lu*]| CrE3 2% (pg5) S

C(b, f).

Idea of proof

@ Existence: based on the paracontrolled caculus developed before
difficulty: Loss of weight from b - V,u
Solution from [Zhang, Zhu, Z. 20]:
Step 1: Schauder estimate for b, f in unweighted Besov space
HuHL?ch_a depending polynomially on the coefficient (b, f) not exponentially as

Gronwall
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Well-posedness of linear PDE

Or—ADy—v-V)u=b-Vyu+f, u(0)= .

Theorem 1

Leta € (},%5)and ¥ := 72— and§ := (29+2)x < 1. Forany T > 0, (b, f) as above, 3!
i # #

paracontrolled solution (u, u*) to PDE (5) such that || ul| Cre2 (o) T [lu*]| CrE3 2% (pg5) S

C(b, f).

Idea of proof

@ Existence: based on the paracontrolled caculus developed before
difficulty: Loss of weight from b - V,u
Solution from [Zhang, Zhu, Z. 20]:
Step 1: Schauder estimate for b, f in unweighted Besov space
HuHL?ch_a depending polynomially on the coefficient (b, f) not exponentially as

Gronwall
Step 2: Schauder estimate for b, f in weighted Besov space
Trick: Localization+New characterization of Besov space
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Well-posedness of linear PDE

Or—ADy—v-V)u=b-Vyu+f, u(0)= .

Theorem 1

Leta € (},%5)and ¥ := 72— and§ := (29+2)x < 1. Forany T > 0, (b, f) as above, 3!
i # #

paracontrolled solution (u, u*) to PDE (5) such that || ul| Cre2 (o) T [lu*]| CrE3 2% (pg5) S

C(b, f).

Idea of proof

@ Existence: based on the paracontrolled caculus developed before
difficulty: Loss of weight from b - V,u
Solution from [Zhang, Zhu, Z. 20]:
Step 1: Schauder estimate for b, f in unweighted Besov space
HuHL?ch_a depending polynomially on the coefficient (b, f) not exponentially as
Gronwall
Step 2: Schauder estimate for b, f in weighted Besov space
Trick: Localization+New characterization of Besov space

@ Uniqueness: Localization
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near equation

Nonlinear equation
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Nonlinear mean field equation

@ Assume that div,b = 0. Consider the following
ZLu=>b-Vyu+Kx(U)-Vyu, u(0)=up. (7)

Here (u)(t, x) := [,q u(t, x, v)dv. Assume that

°
K € Us>a—1C;/%, boV,.7(b) € C3 7% (px)
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Nonlinear mean field equation

@ Assume that div,b = 0. Consider the following

ZLu=b-Vyu+K=x(u) -Vyu, u(0)=up. (7)
Here (u)(t, x) := [,q u(t, x, v)dv. Assume that
o
K € Us>a—1C;/%, boV,.7(b) € C3 7% (px)
Theorem 2
Leta € (%, 2) and k be small enough so that § := 2(5%- + 1)k < 1. po = (1 + |x|"/® +

[v])™ with ko > 0.

o for any probability density uy € L'(ps) N CL, v > 1 + a, 3 at least a probability
density paracontrolled solution u € L (C?~*(ps)) to (7).

@ Ifin addition that K is bounded and H(up) := [ tpIn Uy < oo, the solution is unique.

4
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Idea of proof: Existence

@ A priori estimate from linear equation

<
ey S 1-
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Idea of proof: Existence

@ A priori estimate from linear equation
<
”u”ng*ﬂ(p) ~ 1.

This is not enough to obtain the convergence of the nonlocal term K« (u).
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Nonlinear equation

Idea of proof: Existence

@ A priori estimate from linear equation

<
ey S 1-

This is not enough to obtain the convergence of the nonlocal term K« (u).

@ Solution: [|U(t)ll1 () < Clltollzr gy, 1U(1) 110y = Epo(Z:)
Moment estimate of associated SDE: By Ité’s formula, we have

t ot
Epo(Z)) = po(2) + E/ (Avpo+ V- Vxpo)(Zs)ds + E/ (B- Vupo)(s, Zs)ds,
0 JO

with B = b+ K « (u).
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Idea of proof: Existence

@ A priori estimate from linear equation
<
”u”ng*ﬂ(p) ~ 1.

This is not enough to obtain the convergence of the nonlocal term K« (u).
@ Solution: [|U(t)ll1 () < Clltollzr gy, 1U(1) 110y = Epo(Z:)

Moment estimate of associated SDE: By Ité’s formula, we have
Epo(Z)) = po(2) + E/ot(Avpo V- Vpo)(Ze)ds + E /;(B  Vupo)(s, Ze)ds,
with B = b+ K « (u). By Itd’s formula again, we have
0=Ew'(t,Z')=w'(0,2) + E/Ot(B - Vvpo)(s, Z5)ds.
Here w' is the unique solution of the following backward PDE:

OsW' + (Av + V- Vi + B-V,)W = B-Vypo, w'(t)=0.
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Idea of proof: Uniqueness

@ Uniqueness: Let w = uy — s
Ow=Aw+V-Vxw+b-Vyw+ Ksx(w)- V.

L' estimate and ||V, u1 %,
t
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Idea of proof: Uniqueness

@ Uniqueness: Let w = uy — s
Ow=Aw+V-Vxw+b-Vyw+ Ksx(w)- V.
L' estimate and ||V, uy ||f$L1
@ Entropy estimate: Formally let 3(u) = ulnu
aB(u) = BvBU) — v - Vih(u) = b VuB(u) — 8" (0)|Vvul’.
= H(u(t) + IVvulf < H(wo)
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Idea of proof: Uniqueness

@ Uniqueness: Let w = uy — s
Ow=Aw+V-Vxw+b-Vyw+ Ksx(w)- V.
L' estimate and ||V, uy ||f$L1
@ Entropy estimate: Formally let 3(u) = ulnu
aB(u) = BvBU) — v - Vih(u) = b VuB(u) — 8" (0)|Vvul’.
= H(u(t) + IVvulf < H(wo)

@ 5/(u)V,uis not well defined since 8’(u) € C5~*, Vu € C;'~°.
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Idea of proof: Uniqueness

@ Uniqueness: Let w = uy — s
Ow=Aw+V-Vxw+b-Vyw+ Ksx(w)- V.
L' estimate and ||V, uy ||f$L1
@ Entropy estimate: Formally let 3(u) = ulnu
aB(u) = BvBU) — v - Vih(u) = b VuB(u) — 8" (0)|Vvul’.
= H(u(1) + [V vul%, < H(uo)

@ 5/(u)V,uis not well defined since 8’(u) € C5~*, Vu € C;'~°.
= Linear approximation

2u"=b"- V" + K" x {uy) - Vi
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Singular DDSDE

Singular DDSDE
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Singular DDSDE

@ Consider the following kinetic DDSDE with singular drift: Z = (X, V)
dX; = Vidt, dVi = b(X:, Ve)dt + (K * px,)(Xe)dt + V2dB;, (8)

B:: a d-dimensional Brownian motion,b is singular
px: law of Xi, K x pu(x) := [0 K(X — y)p(dy).
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Singular DDSDE

@ Consider the following kinetic DDSDE with singular drift: Z = (X, V)
dX; = Vidt, dVi = b(X:, Ve)dt + (K * px,)(Xe)dt + V2dB;, (8)

B:: a d-dimensional Brownian motion,b is singular
px: law of Xi, K x pu(x) := [0 K(X — y)p(dy).
@ Problem: How to understand (8)? What is the meaning of £2#f(Xs, V5)? Here

£b'“:(81+AV+V-VX)+b'VVJFK*,UI'VV-
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Singular DDSDE

@ Consider the following kinetic DDSDE with singular drift: Z = (X, V)
dX; = Vidt, dVi = b(X:, Ve)dt + (K * px,)(Xe)dt + V2dB;, (8)

B:: a d-dimensional Brownian motion,b is singular
px: law of Xi, K x pu(x) := [0 K(X — y)p(dy).
@ Problem: How to understand (8)? What is the meaning of £2#f(Xs, V5)? Here

Lo = (O +Av+V-Vx)+b-Vy+ K- V.
@ Solution: Consider the following linear equation for given  : [0, T] — P(R??)
LOFu=F u(T) = 9)
see also [Delarue, Diel 16, Cannizzaro, Chouk 18, Kremp, Perkowski 20]
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Singular DDSDE

@ Consider the following kinetic DDSDE with singular drift: Z = (X, V)
dX; = Vidt, dVi = b(X:, Ve)dt + (K * px,)(Xe)dt + V2dB;, (8)

B:: a d-dimensional Brownian motion,b is singular
px: law of Xi, K x pu(x) := [0 K(X — y)p(dy).
@ Problem: How to understand (8)? What is the meaning of £2#f(Xs, V5)? Here

Lo = (O +Av+V-Vx)+b-Vy+ K- V.
@ Solution: Consider the following linear equation for given  : [0, T] — P(R??)
LOFu=f, u(T) = . 9)
see also [Delarue, Diel 16, Cannizzaro, Chouk 18, Kremp, Perkowski 20]

Definition 4.1

(Martingale problem) Let 6 > 0. A probability measure P € P(Cr) is called a martingale
solution to SDE (8), if for all f € Cp, ¢ € C} with some~y > 1+« and p; :==Po X; ',

t
M= u(t, Z) — u(0, Zo) —/ (s, Zs)ds
0

is @ martingale underP. Here u}' is a solution to (9).

4
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Main results

Theorem 3

Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (8). Moreover, if K is bounded measurable, then the
solution is unique.
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Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (8). Moreover, if K is bounded measurable, then the
solution is unique.

Idea of proof
@ Existence: convolution approximation

Rongchan Zhu () Singular kinetic 2021.11.19 19/20



Main results

Theorem 3

Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (8). Moreover, if K is bounded measurable, then the
solution is unique.

Idea of proof
@ Existence: convolution approximation
@ Uniqueness: First for K = 0 and Girsanov’s tansformation
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DDSDE

Thank you |
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