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Geometric features in Computational Anatomy

Noisy geometric features
 Curves, sets of curves (fiber tracts)
 Surfaces, SPD matrices
 Transformations

Statistical modeling at the population level
 Simple Statistics on non-linear manifolds?

 Mean, covariance of its estimation, PCA, PLS, ICA
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Expx / Logx and Fréchet mean are the basis of 
algorithms to compute on Riemannian/affine manifolds

Minimal # of non-linear charts  one chart per point!
 Normal coordinate system = most linear chart at each point

Simple statistics
 Mean through an exponential barycenter iteration 
 Covariance matrices and higher order moments 
 Tangent PCA or more complex PGA / BSA

Manifold-valued image processing [XP, IJCV 2006]
 Interpolation / filtering / convolution: weighted means
 Diffusion, extrapolation: 

Discrete Laplacian in tangent space = Laplace-Beltrami 



Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Template / atlas shape plays the role of the mean
 Observation = “random” deformation of a reference template 
 Lift differences to transformation group for statistical analyses

 Statistical framework compatible with group operations?
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Natural Riemannian Metrics on Transformations

Transformation are Lie groups: Smooth manifold G 
compatible with group structure
 Composition g o h and inversion g-1 are smooth
 Left and Right translation Lg(f) = g ○ f    Rg (f) = f ○ g
 Conjugation   Conjg(f) = g ○ f ○ g-1

 Symmetry: Sg(f) = g o f-1 o g

Natural Riemannian metric choices
 Chose a metric at Id: <x,y>Id

 Propagate at each point g using left (or right) translation
<x,y>g = < DLg

(-1) .x , DLg
(-1) .y >Id

Implementation 
 Practical computations using left (or right) translations
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General Non-Compact and Non-Commutative case

No Bi-invariant  Mean for 2D Rigid Body Transformations

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 𝑇𝑇1 = 𝜋𝜋
4

; − 2
2

; 2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −𝜋𝜋
4

; − 2
2

;− 2
2

 Left-invariant Fréchet mean: 0; 0; 0

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)

 Incompatibility of the Fréchet mean with the group structure

Questions for this talk:
 Can we design a mean compatible with the group operations?
 Is there a more convenient structure for statistics on Lie groups?
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Special curves on Lie groups

Flow of a left invariant vector field �𝑋𝑋 = 𝐷𝐷𝐷𝐷. 𝑥𝑥 from identity
 𝛾𝛾𝑥𝑥 𝑡𝑡 exists for all time
 One parameter subgroup: 𝛾𝛾𝑥𝑥 𝑠𝑠 + 𝑡𝑡 = 𝛾𝛾𝑥𝑥 𝑠𝑠 . 𝛾𝛾𝑥𝑥 𝑡𝑡

Lie group exponential
 Definition: 𝑥𝑥 ∈ 𝔤𝔤 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝛾𝛾𝑥𝑥 1 𝜖𝜖 𝐺𝐺
 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)
 Acceleration = derivative of the tangent vector along a curve
 Projection of a tangent space on 

a neighboring tangent space 

Geodesics = straight lines
 Null acceleration: 𝛻𝛻𝛾̇𝛾𝛾̇𝛾 = 0
 2nd order differential equation:

Normal coordinate system
 Local exp and log maps
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Adapted from Lê Nguyên Hoang, science4all.org

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]

[XP & Arsigny, 2012, XP & Lorenzi, Beyond Riemannian Geometry, 2019]



Canonical connections on Lie groups

Left invariant connections 𝛁𝛁𝑫𝑫𝑫𝑫.𝑿𝑿𝑫𝑫𝑫𝑫.𝒀𝒀 = 𝑫𝑫𝑫𝑫.𝛁𝛁𝑿𝑿𝒀𝒀
 Characterized by bilinear form on the Lie algebra 𝑎𝑎 𝑥𝑥, 𝑦𝑦 = 𝛻𝛻�𝑋𝑋 �𝑌𝑌|𝑒𝑒 ∈ g

for left-invariant vector fields, use linearity + Leibnitz rule for other vf

 Symmetric part 1
2

(𝑎𝑎 𝑥𝑥,𝑦𝑦 + 𝑎𝑎 𝑦𝑦, 𝑥𝑥 ) specifies geodesics

 Skew symmetric part 1
2

(𝑎𝑎 𝑥𝑥,𝑦𝑦 − 𝑎𝑎 𝑦𝑦, 𝑥𝑥 ) specifies torsion along them

Bi-invariant connections
 𝑎𝑎 𝐴𝐴𝐴𝐴 𝑔𝑔 . 𝑥𝑥,𝐴𝐴𝐴𝐴 𝑔𝑔 .𝑦𝑦 = 𝐴𝐴𝐴𝐴 𝑔𝑔 .𝑎𝑎 𝑥𝑥, 𝑦𝑦
 𝑎𝑎 [𝑧𝑧, 𝑥𝑥],𝑦𝑦 + 𝑎𝑎 𝑥𝑥, [𝑧𝑧,𝑦𝑦] = 𝑧𝑧,𝑎𝑎 𝑥𝑥,𝑦𝑦 , x, y, z in g

Cartan Schouten connections (def. of Postnikov)
 Left-Inv connections for which one-parameter subgroups are geodesics
 Uniquely determined by 𝑎𝑎 𝑥𝑥, 𝑥𝑥 = 0 (skew symmetry)
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Canonical Cartan connections on Lie groups
Bi-invariant Cartan Schouten connections

 Family 𝑎𝑎 𝑥𝑥,𝑦𝑦 = 𝜆𝜆 𝑥𝑥,𝑦𝑦 (-,0, + connections for λ=0,1/2,1)
 Turner Laquer 1992: all of them for compact simple Lie groups except SU(n) (2-d family)

 Same group geodesics (𝑎𝑎 𝑥𝑥,𝑦𝑦 + 𝑎𝑎 𝑦𝑦, 𝑥𝑥 = 0): 
one-parameter subgroups and their left and right translations

 Curvature: R 𝑥𝑥,𝑦𝑦 = λ 𝜆𝜆 − 1 [ 𝑥𝑥,𝑦𝑦 , 𝑧𝑧]
 Torsion: 𝑇𝑇 𝑥𝑥,𝑦𝑦 = 2𝑎𝑎 𝑥𝑥, 𝑦𝑦 − 𝑥𝑥,𝑦𝑦

Left/Right Cartan-Schouten Connection (λ=0/λ=1)
 Flat space with torsion (absolute parallelism)
 Left (resp. Right)-invariant vector fields are covariantly constant
 Parallel transport is left (resp. right) translation

Unique symmetric bi-invariant Cartan connection (λ=1/2)
 𝑎𝑎 𝑥𝑥,𝑦𝑦 = 1

2
𝑥𝑥,𝑦𝑦

 Curvature 𝑅𝑅 𝑥𝑥,𝑦𝑦 𝑧𝑧 = −1
4

𝑥𝑥,𝑦𝑦 , 𝑧𝑧
 Parallel transport along geodesics: Πexp(𝑦𝑦)𝑥𝑥 = 𝐷𝐷𝐷𝐷exp(𝑦𝑦2). 𝐷𝐷𝐷𝐷exp(𝑦𝑦2).x
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Cartan Connections are generally not metric

Levi-Civita Connection of a left-invariant (pseudo) metric is 
left-invariant
 Metric dual of the bracket < 𝑎𝑎𝑎𝑎∗ 𝑥𝑥, 𝑦𝑦 , 𝑧𝑧 > = < 𝑥𝑥, 𝑧𝑧 ,𝑦𝑦 >

 𝑎𝑎 𝑥𝑥,𝑦𝑦 = 1
2
𝑥𝑥,𝑦𝑦 − 1

2
𝑎𝑎𝑎𝑎∗ 𝑥𝑥,𝑦𝑦 + 𝑎𝑎𝑎𝑎∗ 𝑦𝑦, 𝑥𝑥

Bi-invariant (pseudo) metric => Symmetric Cartan connection
 A left-invariant (pseudo) metric is right-invariant if it is Ad-invariant

< 𝑥𝑥, 𝑦𝑦 > = < 𝐴𝐴𝐴𝐴𝑔𝑔 𝑥𝑥 ,𝐴𝐴𝐴𝐴𝑔𝑔 𝑦𝑦 >

 Infinitesimally: < 𝑥𝑥, 𝑧𝑧 ,𝑦𝑦 > + < 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 > = 0 or   𝑎𝑎𝑎𝑎∗ 𝑥𝑥,𝑦𝑦 + 𝑎𝑎𝑎𝑎∗ 𝑦𝑦, 𝑥𝑥 = 0
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Existence of bi-invariant (pseudo) metrics

[Miolane, XP, Computing Bi-Invariant Pseudo-Metrics on Lie Groups for 
Consistent Statistics. Entropy, 17(4):1850-1881, April 2015.]
 Algorithm: decompose the Lie algebra and find a bi-inv. pseudo-metric
 Test on rigid transformations SE(n): bi-inv. ps-metric for n=1 or 3 only
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1-dim. compact

[Cartan 50’s]:
Bi-invariant metric on 𝐺𝐺

𝐺𝐺

or

Lie groups with 
bi-invariant metric

All 
Lie groups

[Medina, Revoy 80’s]:
Bi-invariant pseudo-metric on 𝐺𝐺

Dual structure Recursivity1-dim. simple

𝐺𝐺

Lie groups with 
bi-invariant 
pseudo-metric



Canonical Affine Connections on Lie Groups
A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 
 Geodesics through Id are one-parameter subgroups (group exp)
 Other geodesics by left or right translation

 Matrices : M(t) = A exp(t.V)
 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)
 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝑺𝝍𝝍 𝝓𝝓 = 𝝍𝝍𝝓𝝓−𝟏𝟏𝝍𝝍
 Matrix geodesic symmetry: 𝑆𝑆𝐴𝐴 𝑀𝑀 𝑡𝑡 = 𝐴𝐴 exp −𝑡𝑡𝑡𝑡 𝐴𝐴−1𝐴𝐴 = 𝑀𝑀(−𝑡𝑡)
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Statistics on an affine connection space

Fréchet mean: exponential barycenters
 ∑𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦𝑖𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence local uniqueness if local convexity [Arnaudon & Li, 2005]

Covariance matrix & higher order moments
 Defined as tensors in tangent space

Σ = ∫𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 ⊗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 𝜇𝜇(𝑑𝑑𝑑𝑑)

 Matrix expression changes with basis

Other statistical tools
 Mahalanobis distance, chi2 test
 Tangent Principal Component Analysis (t-PCA)
 Independent Component Analysis (ICA)?
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Statistics on an affine connection space
For Cartan-Schouten connections  [Pennec & Arsigny, 2012]

 Locus of points x such that ∑𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥−1.𝑦𝑦𝑖𝑖 = 0
 Algorithm: fixed point iteration (local convergence)

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 ∘ 𝐸𝐸𝐸𝐸𝐸𝐸
1
𝑛𝑛
�𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝑡𝑡−1.𝑦𝑦𝑖𝑖

 Mean stable by left / right composition and inversion 
𝑚𝑚 = mean 𝑔𝑔 =⇒ ℎ ∘ 𝑚𝑚 = mean ℎ ∘ 𝑔𝑔𝑖𝑖 , 𝑚𝑚 ∘ ℎ = mean 𝑔𝑔𝑖𝑖 ∘ ℎ and 𝑚𝑚(−1) = mean 𝑔𝑔𝑖𝑖

(−1)

Matrix groups with no bi-invariant metric
 Heisenberg group: bi-invariant mean is unique (conj. ok for solvable) 
 Rigid-body transformations: uniqueness if unique mean rotation 
 SU(n) and GL(n): log does not always exist (need 2 exp to cover)
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[XP and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and 
Invariant Means on Lie Groups. In Matrix Information Geometry. 2012 ]
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Example mean of 2D rigid-body transformation

𝑇𝑇1 =
𝜋𝜋
4

; −
2

2
;

2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −
𝜋𝜋
4

; −
2

2
;−

2
2

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 Left-invariant Fréchet mean: 0; 0; 0

 Log-Euclidean mean: 0; 2−𝜋𝜋/4
3

; 0 ≃ (0; 0.2096; 0)

 Bi-invariant mean: 0; 2−𝜋𝜋/4
1+𝜋𝜋/4( 2+1)

; 0 ≃ (0; 0.2171; 0)

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)
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Cartan Connections vs Riemannian

What is similar
 Standard differentiable geometric structure [curved space without torsion] 
 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework
 No metric (but no choice of metric to justify)
 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension
 In practice, similar limitations for the discrete Riemannian framework

What we gain with Cartan-Schouten connection 
 A globally invariant structure invariant by composition & inversion 
 Simple geodesics, efficient computations (stationarity, group exponential)
 Consistency with any bi-invariant (pseudo)-metric
 The simplest linearization of transformations for statistics on Lie groups? 

X. Pennec - Shape Analysis & Med. App. 13/02/2025
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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Exponential of a smooth vector field is a diffeomorphism
 Parameterize deformation by time-varying Stationary Velocity Fields

Efficient numerical algorithms 
 Recursive Scaling and squaring algorithm [Arsigny MICCAI 2006]

 Deformation: exp(v)=exp(v/2) o exp(v/2)
 Jacobian: Dexp(v) = Dexp(v/2) o exp(v/2) . Dexp(v/2)

 Optimize deformation parameters:  BCH formula [Bossa MICCAI 2007]
 exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) where [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec - Shape Analysis & Med. App. 13/02/2025
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Fast registration with deformation parameterized by SVF

- 22

Measuring Temporal Evolution with deformations:
Deformation-based morphometry

https://team.inria.fr/asclepios/software/lcclogdemons/
[LCC log-demons for longitudinal brain imaging. 
Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]
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The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.

Registration algorithms using log-demons:
 Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)

http://hdl.handle.net/10380/3060 [MICCAI 2013 Young Scientist award]
 Tensor (DTI) Log-demons (Sweet WBIR 2010): 

https://gforge.inria.fr/projects/ttk 
 LCC log-demons for AD (Lorenzi, Neuroimage. 2013)

https://team.inria.fr/asclepios/software/lcclogdemons/
 3D myocardium strain / incompressible deformations (Mansi MICCAI’10)
 Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)

http://www.stanford.edu/~cseiler/software.html
[MICCAI 2011 Young Scientist award] 
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A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

 One affine transformation per region (polyaffines transformations)
 Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions
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expp

Stationary velocity fields Diffeomorphism with 204 parameters 
[McLeod, Miccai 2013]

AHA regions
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A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

 One affine transformation per region (polyaffines transformations)
 Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

 Group analysis using tensor reduction : reduced model 
8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)
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Analysis of longitudinal datasets

27

Single-subject, two time points

Single-subject, multiple time points

Multiple subjects, multiple time points

Log-Demons (LCC criteria)

4D registration of time series within 
the Log-Demons registration: 
geodesic regression

Population trend with parallel transport 
of SVF along inter-subject trajectories 

[Lorenzi et al, IPMI 2011, JMIV 2013]
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Pole ladder: [Lorenzi, XP, JMIV 50 (1-2), 2013]

 Simpler method with piecewise geodesics
 Closed form expression for Cartan connection on Lie groups

𝑣𝑣
𝑥𝑥

Discrete approximations of Parallel transport
Schild’s Ladder [Lecture at Princeton 60ies, Elhers et al 1972]

 Build geodesic parallelogram
 Iterate along the curve 
 One step is a 1st order approximation [Kheyfets et al 2000]
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𝑣𝑣
𝑥𝑥1 𝑥𝑥2𝑤𝑤 𝑥𝑥3 𝑥𝑥4

𝑥𝑥𝑣𝑣

 No approximation formula beyond 1st order for SL
 No results for the iterated SL and PL schemes
 No results for approximate geodesics

𝑥𝑥



Taylor expansion of geodesic triangles
Key idea: use parallel transport rather that normal chart to relate 𝑇𝑇𝑥𝑥𝑀𝑀 to 𝑇𝑇𝑥𝑥𝑣𝑣𝑀𝑀

Gavrilov’s double exponential is a tensorial series (2006):

Neighboring log expansion [XP arXiv:1906.07418, 2019]
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𝑙𝑙𝑥𝑥 𝑣𝑣,𝑤𝑤 = Π𝑥𝑥𝑣𝑣
𝑥𝑥 log𝑥𝑥𝑣𝑣 exp𝑥𝑥(𝑤𝑤)

= 𝑤𝑤 − 𝑣𝑣 +
1
6
𝑅𝑅 𝑤𝑤, 𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 +

1
24

𝛻𝛻𝑣𝑣𝑅𝑅 𝑤𝑤,𝑣𝑣 2𝑣𝑣 − 3𝑤𝑤

+
1

24
𝛻𝛻𝑤𝑤𝑅𝑅 𝑤𝑤,𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 + 𝑂𝑂 5

ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(expexpx v (Π𝑥𝑥
exp𝑥𝑥(𝑣𝑣) 𝑢𝑢))

= 𝑣𝑣 + 𝑢𝑢 +
1
6
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 +

1
3
𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑢𝑢

+
1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢 +

1
24

𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂 5

Torsion free affine manifolds



Convergence of Schild’s Ladder
Gavrilov’s Taylor expansion of one Schild’s ladder step

 A new Taylor series for mid-point rule 

Convergence of the iterated Schild’s ladder
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𝑤𝑤

𝑣𝑣
𝑢𝑢𝑤𝑤

𝑥𝑥

𝑎𝑎

𝑥𝑥𝑣𝑣

𝑢𝑢

Theorem: the scheme converge at speed
[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 

Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of Schild’s Ladder

Numerical experiments in controlled spaces
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Simulations on the sphere: 
constant curvature

Simulations on the space of SPD 
matrices: negative curvature

State of the art

Our result

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of pole Ladder
Taylor expansion of one pole ladder step

 One step is of order 4 in affine manifolds [XP, Arxiv 1805.11436, 2018]

 Exact in symmetric spaces (transvection)!

Convergence of the iterated pole ladder
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pole(u) = Π(𝑢𝑢) + 1
12
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢,𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣 + 1

12
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢,𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

Theorem: the scheme converge at speed

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Convergence of pole Ladder

Numerical experiments in controlled spaces
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Anisotropic metric on the Lie group SE(3)

Euler

Schild’s α=1

Pole ladder

Kendall shape space Σ33

[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



Approximated geodesics
 Integration using Runge-Kutta
 Compute the log by gradient descent

 Convergence results remain valid with 
sufficiently accurate numerical scheme

Fanning Scheme [Louis et al 2018]
 Can be analyzed similarly
 Cannot ne made 2nd order

Approximate geodesics & other schemes
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[ N. Guigui, XP, Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. 
Foundations of Computational Mathematics, 22:757-790, 06-2022. Arxiv 2007.07585. ]



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years
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[Lorenzi, XP. IJCV, 2013 ]

Patient A

Patient B

? ?Template



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years
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[Lorenzi, XP. IJCV, 2013 ]
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Modeling Normal and AD progression

Normal aging

Addition specific 
component for AD

mm/year

Triangulus
(Alzheimer) 

Quadratus 
(control) 

Mean geodesic 
trajectory for AD

Mean geodesic trajectory 
for normal aging 

Rutundus

(Reference)

SVF parametrizing the 
deformation trajectory 
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Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction

X. Pennec - Shape Analysis & Med. App. 13/02/2025 39

0*))(~()( TtvExptT =

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Mean deformation / atrophy per group 
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M Lorenzi, N Ayache, X Pennec G B. Frisoni, for ADNI. Disentangling the normal aging from the pathological Alzheimer's disease 
progression on structural MR images. 5th Clinical Trials in Alzheimer's Disease (CTAD'12), Monte Carlo, October 2012. (see also 
MICCAI 2012)
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