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The Chain Polynomial

Let L be a finite Partially Ordered Set (poset) and c(L) be the number of
k-element chains of L.
We consider the chain polynomial of L

pr(x) = F(A(L),x) = cr(L)x*

k>0

which is the f-polynomial of the order complex A(L) of L.

@ A(L) is the set of all chains of L (it is a simplicial complex)
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The h-polynomial

For some purposes we may focus on the corresponding h-polynomial of the
poset.

1—x

_ch )nk

k>0

hu(x) = h(A(L).X) = (1 - x)"pL ( x ) -

where n is the largest size of a chain in L.
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The h-polynomial

hL(X) = ho —+ h1X+ cee 4 h,,Xn
where the coefficients add to the number of n-chains of L.

o If L is Cohen-Macaulay the h-polynomial has nonnegative coefficients

o If L has an R-labeling the coefficients of h;(x) are given a
combinatorial interpretation
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R-labelings

e Let A: C(L) — (A, <) be an edge labeling of the Hasse diagram of L.

o We say that A is an R-labeling of L if in each closed interval [x, y] of
L there exists a unique increasing maximal chain.

If X is an R-labeling of L we get that h;(x) = 3 xdes(w)
C

where ¢ runs in the maximal chains of L
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The Boolean Algebra

Example: Let L, be the lattice of subsets of [n]
(Boolean algebra of rank n)
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The Eulerian Polynomial

hL,,(X) = An(x) = Z Xdes(w)

weS,

which is the classical n-th Eulerian Polynomial
that counts in the Symmetric Group

;

1

1+ x

An(x) =< 14 4x + x?

1+ 11x + 11x% 4 x3

[ 14 26x + 66x% + 26x> + x*

n=1
n=2
n=
n=
n=
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The Eulerian Polynomial

The Eulerian polynomial A,(x) = ag + aix + -+ +a, 1x" ! is

@ unimodal
ag<a<--<axZagy1 = 2 an-1

@ palindromic
dk = dn—-1—k

@ log-concave
2
aj > Ak—13k+1
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The Eulerian Polynomial

® gamma-positive

An(x) = Z fykxk(l + x)”71*2k
k>0

Yk > 0 for every k

e real-rooted
every root of A,(x) is real
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Real-rootedness

These are properties we often encounter in algebraic and geometric
combinatorics.

We focus on the property of real-rootedness
which has strong implications for a polynomial.

Let f(x) = fo + fix + - - - + f,x" be a polynomial with nonnegative integer
coefficients.

If it is real-rooted, then:
@ it is unimodal
@ it is log-concave

o if it is also palindromic, it is gamma-positive
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Question: For which finite posets does the chain
polynomial (equivalently the h-polynomial) have only real
roots?

o Is it true for all geometric lattices?
o Is it true for the face lattices of all convex polytopes?

o Is it true for all double Cohen-Macaulay posets?
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Theorem

We will prove the following:

For every finite Coxeter Group W, the h-polynomial of the noncrossing
partition lattice NC(W) is real-rooted.
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The Absolute Order

Let W be a finite Coxeter group and T the set of all reflections.

Definition (absolute order)
We define a partial order < on W, called the absolute order, by letting
a<rbif /T(b) = IT(a) aF /T(a_lb)

the subword property:
a <7 b < a occurs as an arbitrary subword of some reduced T-word for b.

v

We set NC(W) = [e, ] where e is the identity and ~ is a Coxeter element
of W.

It is called the The Noncrossing Partition Lattice.
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The Noncrossing Partition Lattice

We will now describe the h-polynomials of NC(W) for every finite,
irreducible Coxeter group W.
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Noncrossing Partitions for type A

W = A,_1 (symmetric group of degree n),y = (12---n)

@ The elements of NC(A,_1) can be viewed as the set partitions of [n]
that "do not cross”

m={{1,4},{2,3},{5,6,7}}
w = (1,4)(2,3)(5,6,7)

@ The ardmallty of NC(A,-1) is given by the nth Catalan number
C” n+1 (2”)
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Hasse diagram of NC(A3)

(1234)

(123)(4) (124)(3) (134)(2) (1)(234) (12)(34) (14)(23)

(12)(3)(4) (13)24) (14)(2)3) (1)(23)4) (1)(24)(3) (1)(2)(34)

(1(2)(3)(4)
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Noncrossing Partition Lattice for type A

o NC(A,_1) has n"~2 maximal chains

@ hyc(a,_,)(x) counts chains on the set of parking functions of length
n-1 (Pnfl)

hNC(An—l)(X) = Z Xdes(w) = 1 Z Xdes(w)

n
weP,_1 WE[n]"_l

P3

123,13|2, 213, 23|1, 3|12, 3|2/1 1|12, 12|1, 2|1[1,
1]13,13]1,3[1]1,12]2,2/12,2[2|1,1]1]1
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Noncrossing Partition Lattice for type B

W = B, (the hyperoctahedral group of degree n), v =[12---

Set partitions of {1,2,--- ,n,—1,—2,--- ,—n} such that:
e Ben=-Benr
@ there is at most one zero part
@ they don't cross

m={{1,-6,5},{—1,6,5},{2,—4},{-2,4} {3,-3}}
w = ((5,6,—1))((2, —4))[3]

ANC(B,) = <2n">

18/34



Hasse diagram of NC(Bs)

[123]

2 2

1 3

2l me23) (@z3) (23 [2003) @-2-3) [3] [gqg) ©@2-3)

(az)y (@30 [2]

(-2) B -
B L)
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e NC(B,) has n" maximal chains

hNC(B,, Z Xdes

we€[n]"

n=3

123,132, 2|13, 23|1, 3|12, 3|2|1
1]12,12|1,2[1|1, 1|13, 13|1, 3|1|1, 2|23, 232, 3]2|2
1/1]1,2/2J2,3/3|3
12)2,2(12,2|2|1,23|3, 3|23, 3/3|2, 133, 3/13, 3|3|1
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Noncrossing Partition Lattice for type D

W = Dp,v =1[12---n—1][n]

Set partitions of {1,2,--- ,n,—1,—2,--- ,—n} such that:
e Ben=-Benr
@ the zero block, if there, contains more than two elements
@ they don't cross (on their interior)

1
6 0—2 9?2
-5 d// 7 \\b 3
-4 o——eo—o0 4
-3 ____:z__j;’ 5
2——6
-1

m=1{{2,3,-5-6},{2,3,5,6}, {1}, {1}, {4, —4,7,-7}}
w=((2.3,-5.-6))((1))4I[7]

ANC(D,) = <2nn> - (2:_-12)
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Hasse diagram of NC(Ds)

[1 2][3]

(12 3) 2 -3) @3 -2 (1 -3 -2) Ml p2is)

13

({1 2)) @w-2r sy (1 -3) (2 3) @ -3)
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Noncrossing Partition Lattice for type D

e NC(Dp,) has 2(n— 1)" maximal chains

hNC Dn Z Xdes w)
WEDn
Dn:{(iW1,W2,“' 7Wn) W, Wo, Wy € [n_l]}
and k is considered a if |wi| > [wii1] or wx = wiy1 >0
n=3

112 12]1 21 122 2112 221 111 222
—112 —12]1 =211 —122 —2[12 —22]1 —11]1 —222
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Sketch of Proof

We define a total ordering < of the set of reflections T, " compatible” with
the coxeter element ~.

Theorem (Athanasiadis, Brady, Watt)

Let A\ be the natural edge labeling of NC,,(y) = NC(W).
A C(NC(W)) = (T, <)

Mu,v) = vt

Then X is an EL-labeling of NC(W).

hnew)y(x) = Z xdes(r)
TeM(W)

M(W)=set of minimal factorizations of  in reflections
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Sketch of Proof

In Ds:

((1,2)) < ((1,3)) < ((1,4)) < ((1,5)) < ((1,-5)) <

((2,3)) <((2,4)) < ((1,-2)) <((2,5)) < ((2,-5)) <

((3,4)) <((1,-3)) <((2,-3)) <((8,5)) < ((3,-5)) <

((1,=4)) <((2,-4)) <((3,-4)) < ((4,5)) < ((4,-5))
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Sketch of Proof

We now define, in each case, a map / : T — Z, such that
t1 < tp = I(t1) < I(t2), which induces:

@ a 1-1 correspondence M(A,_1) — P,_1, for type A
@ a 1-1 correspondence M(B,) — [n]", for type B
@ a 2-1 correspondence M(D,) — [n — 1] for type D

In types A and B, the correspondence preserves the descents, so the result
follows.
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Sketch of Proof

In case D:
for every w € [n — 1]" there is a pair of chains ci, ¢ with
/(Cl) = /(Cg) = w

e for some: des(c1) = des(cp) = des(w) — f1(x)

o for the rest: des(c1) = des(cp) + 1 = des(w) — fo(x)

S X = £i(x) + f(x)

we€[n—1]"

cion () = 2600 + (14 1) A

f2(x) = x - hye(s,_1)(x) = x Z xdes(w)

we[n—1]n—1
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Noncrossing Partition Lattices for the Dihedral and the Exceptional Groups

1+ (n—1)x if W=1,
1+ 28x + 21x? if W=H;
1+ 275x + 842x2 + 232x3 if W =H,
1 + 100x + 265x2 + 66x3 if W=F,
14 826x + 10778x% + 21308x3 + 8141x* + 418x>
hyew)(x) = TW=b
1+ 4152x 4 110958x? + 446776x3 + 412764x*
+85800x> + 2431x5 if W=E
1+ 25071x + 1295238x2 + 9523785x> + 17304775x*
+8733249x5 4 1069289x° + 17342x”  if W = Eg
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Real-rootedness

For every finite irreducible Coxeter Group W the h-polynomial of the
noncrossing partition lattice NC(W) is real-rooted.

A,B,D: we use the method of interlacing polynomials. J

Let 7(x), g(x) be real-rooted polynomials.
e f(x) interlaces g(x) (f(x) = g(x)) :
their roots are interpolating with g(x) having the largest root

f’

Al ar W
7R & N N A

e if f(x) < g(x) then f(x)+g(x) is real-rooted
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Real-rootedness

Cases A and B:

Ml = 2 x4es(W) s real-rooted for nr>1 J
welr]?

for j € [r] we set h, pj(x) = > sdes(w)
WGA,V,,J

where A, ,; is the set of words (w1, wo,- -, w,) € [r]” with w, =

1
hrn(x) =D hrni(x) = “hrni1a(x)

hf’n+1,_/( ) Zhrnl -I'thrnl

i=1
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Real-rootedness

by induction on n we prove that:

(hr,n,r(x)a hr,n,r—l(X)a ) hr,n,l(X))

is an interlacing sequence of polynomials

r
SO hnr(X) = > hnrj(x) is real-rooted
j=1
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Real-rootedness

For every finite Coxeter Group W the h-polynomial of the noncrossing
partition lattice NC(W) is real-rooted.

NC(W) = NC(W4) x - x NC(W))

where Wy, --- | W, are the irreducible components of W

Let P, Q be finite posets. If hp(x) and hg(x) have nonnegative
coefficients and only real-roots, then so does hpy @(x).
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Symmetric Decomposition

For every finite irreducible Coxeter Group W the h-polynomial of the
noncrossing partition lattice NC(W) has a nonnegative, real-rooted
symmetric decomposition, with respect to r,, — 1, where ryy is the rank of

W. In particular, it is unimodal, with a peak at position |4 ].

hnc(ps) = 1 + 665x + 8330x> + 16010x> + 5950x* + 294x° =
= (x° 4+ 372x* + 2752x> + 2752x% + 372x + 1)+
x - (293x* + 5578x3 + 13258x2 + 5578x + 293)
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Thank you for your attention!

Vielen dank fir ihre aufmerksamkeit!
Y 0lc EVYAPLOT® YLOL TNV TpoooXT ooc!
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