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Figure: B. Khesin, G. Misiolek, Euler equations on homogeneous spaces and
Virasoro orbits, Advances in Mathematics 176 (2003) 116–144.
Caution: inverse convention to Bourbaki, Topologie Générale, TGIII.12
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Example of the Hunter-Saxton equation

The Hunter-Saxton equation

−vxxt = 2vxvxx + vvxxx

is the Euler equation describing the geodesic flow on the homogeneous
space Diff+(S1)/Rot(S1) of the group of orientation-preserving
diffeomorphisms modulo the group of rotations, with respect to the
right-invariant homogeneous Ḣ1-metric [KM03]:

〈〈v(x)∂x ,w(x)∂x〉〉Ḣ1 =

∫
S1
vx(x)wx(x)dx . (1)

Remark: The Ḣ1-metric is degenerated: any constant vector field c∂x is
in the kernel of the Ḣ1-metric:
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Example of the Hunter-Saxton equation

Note that the constant vector fields are generated by the action of the
rotation group Rot(S1) ' S1 ⊂ Diff+(S1). Consider the quotient space

Rot(S1)\Diff
+(S1)

on which Diff+(S1) acts from the right and Rot(S1) ' S1 acts from the
left, i.e. Rot(S1)\Diff

+(S1) is the space of cosets of the form Rot(S1) ◦ g ,
g ∈ Diff+(S1) (we use here the Bourbaki convention).

Proposition

Since the Ḣ1-bilinear form (1) is Ad
(
Rot(S1)

)
-invariant, with kernel

equal to the space generated by the infinitesimal action of the rotation
group Rot(S1), it defines a Riemannian metric on the quotient space
Rot(S1)\Diff

+(S1).
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Proof

Ad
(
Rot(S1)

)
-invariance of the Ḣ1 bilinear pairing. Identify the circle

S1 with R/Z and consider the Adjoint action by a rotation by angle θ on
the space of vector fields:

Ad(Rot(θ))(v(x)∂x) : x 7→ x + θ 7→ v(x + θ)∂x 7→
(
v(x + θ)− θ

)
∂x .

We have

〈〈(v(x + θ)− θ)∂x , (w(x + θ)− θ)∂x〉〉Ḣ1

=

∫
S1
vx(x + θ)wx(x + θ)dx

=

∫
S1
vx(x)wx(x)dx ,

hence Ad
(
Rot(S1)

)
preserves the Ḣ1-bilinear form (1).

A. Barbara Tumpach Gauge invariant structures



Example of the Hunter-Saxton equation
Gauge Invariant metrics

Open questions

Degeneracy of the Ḣ1 bilinear pairing. Since the kernel of this bilinear
pairing is exactly the space of constant vector fields, it defines a scalar
product on the tangent space to the quotient at the coset [Id] which can
be translated by the right action of Diff+(S1) to any other tangent space
to Rot(S1)\Diff

+(S1). The fact that the resulting Riemannian metric is
well-defined is a direct consequence of the Ad

(
Rot(S1)

)
-invariance. �

Remark: Gauge invariance
A curve [γ] : [a, b]→Rot(S1) \Diff

+(S1) on the quotient space has the same
length as any lift γ : [a, b]→ Diff+(S1) of [γ]. In other words, the length
functional

Length(γ) =

∫ b

a

〈〈γ̇, γ̇〉〉
1
2
Ḣ1dt

is invariant by the action of the gauge group consisting of group-valued
curves: Rθ : [a, b]→ Rot(S1), t 7→ Rθ(t) where

Rθ · γ : [a, b]→ Rθ(t) ◦ γ(t).
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Definition
Gauge invariant metrics consist of degenerate metrics
g̃ : TM × TM → R on a fiber bundle π : M →M /K , whose kernel at
m ∈M coincides with the vertical space kerTmπ and which descend to
a Riemannian metric on M /K .

Construction from a K -invariant metric
Suppose that we have a vector bundle T over M which is a K -invariant
subbundle of TM transverse to the vertical bundle Ver := ker(Tπ) (i.e.
a connexion). Using any K -invariant metric gM on M , one can define a
K -invariant metric gGI on M that is degenerate along the fiber of the
projection π : M → Q = M /K .
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Figure: A.B. Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge Invariant
Framework for Shape Analysis of Surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, January 2016, Volume 38, Number 1.
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Theorem
Let gM be a K -invariant metric on M and suppose that there exists a
K -invariant subbundle T of TM such that

TmM = ker(Tmπ)⊕ Tm,∀m ∈M . (2)

Then there exists a unique gauge invariant metric gGI on TM which
coincides with gM on T and is degenerate exactly along the fibers of
π : M →M /K .
It induces a Riemannian metric g on the quotient space Q = M /K
such that Tmπ : Tm → Tπ(m)Q is an isometry. One has

g (Tmπ(Xm),Tmπ(Ym)) = gM (pT(Xm), pT(Ym))

where m ∈M and Xm,Ym ∈ TmM , and pT : TmM → Tm is the
projection onto Tm parallel to VerM = kerTmπ.
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Theorem (Riemannian immersion Theorem)

Consider a quotient manifold M /K and suppose that π : M →M /K
admits a globally defined smooth section s : M /K →M . Denote by S
the smooth submanifold S = s(M /K ) ⊂M . Suppose that M is
endowed with a Riemannian metric gM . Then the Riemannian metric
gM naturally induces a unique Riemannian metric gimm on Q such that
the projection π restricted to S is an isometry. One has:

gimm

(
X̄ , Ȳ

)
= gM

(
Tm̄s(X̄ ),Tm̄s(Ȳ )

)
(3)

where X̄ , Ȳ ∈ Tm̄(M /K ) and m̄ := π(m) ∈M /K . Equivalently, one has

gM

(
Xs(π(m)),Ys(π(m))

)
= gimm

(
Ts(π(m))π(Xs(π(m))),Ts(π(m))π(Ys(π(m))

)
,

(4)
where Xs(π(m)),Ys(π(m)) ∈ Ts(π(m))S , and m ∈M .
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Riemannian submersion Thm in the non-complemented case

Theorem (Preston-T)

Let M be a manifold endowed with a Riemannian metric gM , and
suppose that a Banach Lie group K acts on M in such a way that the
quotient Q = M /K is a smooth manifold. Then
(i) the normal bundle Nor = TM / kerTπ over M is canonical

endowed with a inner product, i.e. a positive definite symmetric
bilinear form,

(ii) If moreover gM is K -invariant, then there exists a unique
Riemannian metric gsub on the quotient space Q = M /K such that
the canonical projection p : Nor→ Nor /K ' T (M /K ) is an
isometry.
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Recall:

Proposition

Let G be a topological group and K a subgroup of G . The quotient
space G/K is Hausdorff if and only if K is a closed subgroup of G .
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Conjecture (An-Neeb)

Consider a closed subgroup K of a Banach–Lie group G . The following
are equivalent:

1 K is a Banach–Lie subgroup, i.e it has the structure of a Banach–Lie
group with Lie algebra k ⊂ g endowed with the subspace topology

2 G/K carries the structure of a Banach manifold for which the
quotient map π : G → G/K , g 7→ gK has a surjective differential at
each point and G acts smoothly on G/K .

It was shown by An and Neeb that 2⇒ 1, but the implication 1⇒ 2 is,
as far as we know, still an open problem. It is for instance know to be
true when K is a split Banach–Lie subgroup, i.e the Lie algebra k is
closed in g and has a closed complement (see for instance Bourbaki), or
when K is a closed normal subgroup (see Glockner-Neeb).
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