Direct connections on jet groupoids

Alessandra Frabetti

Institut Camille Jordan – Université Lyon 1

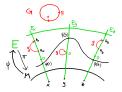
Higher Structures Emerging from Renormalisation November 15–19, 2021 ESI Wien

Based on a joint work with

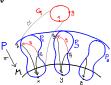
Sara Azzali (Hamburg), Youness Boutaïb (Aachen) and Sylvie Paycha (Potsdam)

Geometric model underlying field and gauge theories

- space-time manifold M
- vector/spinor bundle $E \rightarrow M$ with fibres V
- (matter) field $\psi: M \to E$ section of E
- dynamics via action $S[\psi]$ need covariant derivative $D_X \psi$ i.e. linear connection on E



- symmetries by Lie group $G \subset GL(V)$ acting on fibres of E
- principal G-bundle $P \rightarrow M$ with associated bundle $E = P \times_G V$
- gauge bosons (force carriers) $A \in \Omega^1_{loc}(M, \mathfrak{g})$ local form of principal connection on P
- gauge group $\widehat{G} = \operatorname{Aut}_{M}(P) \cong \Gamma(M, G) \cong \operatorname{Aut}_{M}(E)$ \Rightarrow acts on ψ and A
- dynamics via \hat{G} -inv. action $S[\psi, A]$ (minimal coupling) \Rightarrow new covariant derivative $D_x^A \psi$



1) Lie algebra g

Lie algebroids (Weinstein, Cattaneo, Strobl,...) gauge groupoid of P (Forger recently) direct connection (new) jet groupoids

1) Infinitesimal gauge transformations with values in Lie algebroids

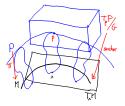
• Lie algebroid: vector bundle $A \rightarrow M$ with Lie bracket $[,]_A$ and

anchor map $a: A \to TM$ s.t. $[X, fY]_A = f[X, Y]_A + a(X)(f)Y$

Ex. Lie algebra bundle: $A = M \times \mathfrak{g} \xrightarrow{0} TM$

Generalized gauge theories and sigma models: Lie algebroids used for infinitesimal actions or as target of gauge transformations giving new degrees of freedom e.g. Algebroid Gauge theory, Curved Yang-Mills Gauge theory [Kotov, Strobl et al.] etc

• Atiyah Lie algebroid of a principal *G*-bundle $\pi : P \to M$: $A(P) = TP/G \to M$ with fibres $A_x(P) \cong T_{P_x}P$, anchor $A(P) \to TM$ induced by $d\pi : TP \to TM$ via quotient map $\natural : TP \to TP/G$ and Lie bracket of *G*-invariant vector fields on *P*.



Ex. Trivial *G*-bundle: $A(M \times G) = TM \oplus (M \times \mathfrak{g}) \xrightarrow{id+0} TM$

 $A(F(E)) = \operatorname{Der}(E) \to TM$

Ex. Frame bundle of a vector bundle $E \to M$ of rank r: $F(E) = \bigcup_{x \in M} \operatorname{Iso}(\mathbb{R}^r, E_x) \to M$

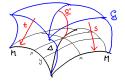
bundle of derivative endomorphisms s.t. $\Gamma(\text{Der}(E)) = \text{derivations of } \Gamma(E)$.

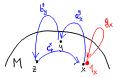
2) Gauge transformations by Lie groupoid actions

• Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{M}$: bi-fibred manifold $\mathcal{G} = \bigcup_{v \in \mathcal{G}_{v}} \mathcal{G}_{v}^{x}$ $(\mathbf{v},\mathbf{x}) \in M \times M$

- contains arrows $a_{yx} \in \mathcal{G}_y^x$ with $\begin{cases} \text{ source } s(a_{yx}) = x \\ \text{ target } t(a_{vx}) = v \end{cases}$

- <u>some</u> arrows can be **composed**: $b_{zy}a_{yx} \in \mathcal{G}_z^{\times}$ (composition is associative),
- there are units $u(x) = 1_x \in \mathcal{G}_x^x$ and $M \equiv u(M) \subset \mathcal{G}$,
- each arrow $a_{yx} \in \mathcal{G}_{y}^{x}$ has an **inverse** $a_{yx}^{-1} \in \mathcal{G}_{x}^{y}$.
- Induced **anchor** map $(t, s) : \mathcal{G} \to M \times M$.
- Each $\mathcal{G}_x^{\mathsf{x}}$ is a Lie group, called the **vertex group** or **isotropy**. But vertex groups may not be isomorphic one to each other!
- Ex. Trivial Lie groupoid with vertex group G: $M \times G \times M \rightrightarrows M$
 - Infinitesimal structure of Lie groupoid = Lie algebroid:
 - Lie groupoids naturally act on vector bundles with action $\int \mathcal{G}_v^{\mathbf{X}} \times E_{\mathbf{X}} \to E_v$





$$A(\mathcal{G}) = \bigcup_{\mathsf{x} \in M} T_{\mathsf{l}_{\mathsf{x}}} \mathcal{G}^{\mathsf{x}} \to TM$$

Gauge groupoids: single vertex group!

- Gauge groupoid of principal *G*-bundle $P \rightarrow M$: contains equivalence classes [p,q] under $(p,q) \sim (pg,qg)$ for $g \in G$.
- $A(\mathcal{G}(P)) = A(P) \rightarrow TM$

Ex. Pair groupoid: $Pair(M) = M \times M \rightrightarrows M$ for $P = M \times \{1\} \to M$ $A(Pair(M)) = TM \xrightarrow{id} TM$ Ex. Frame groupoid of $E \to M$: $Iso(E) = \bigcup_{x,y} Iso(E_x, E_y)$ for $P = F(E) \to M$ A(Iso(E)) = Der(E) $A(Iso(E)) = Der(E) \to TM$ If structure gp $GL_r(\mathbb{R})$ reduces to G and $P \subset F(E)$ then $\mathcal{G}(P) \to Iso(E)$

- G(P) acts on P $G(P)_y^{\mathsf{x}} \times P_{\mathsf{x}} \to P_y$, $[p_y, q_x] \cdot r_{\mathsf{x}} = p_y g$ if $g \in G$ s.t. r = qg(principal action) $G(P) \text{ acts on } E = P \times_G V$ $G(P)_y^{\mathsf{x}} \times E_{\mathsf{x}} \to E_y$, $[p_y, q_x] \cdot [r_{\mathsf{x}}, \mathsf{v}] = [p_y, g\mathsf{v}]$
- Gauge groupoids contain gauge transformations:

$$\widehat{G} = \operatorname{Aut}_{\mathcal{M}}(P) \subset \mathcal{G}(P) = \operatorname{Aut}(P)$$
 given by $\Phi \mapsto [\Phi(p), p]$ for any $p \in P$.

Generalized gauge theories: gauge transformations replaced by Lie groupoids action. M. Forger et al. proved Noether's theorem (arXiv:1508.04632), Minimal Coupling and Utiyama's theorem (arXiv:1806.01329).

3) Principal connections, gauge fields and covariant derivative

- Principal connection on P: five equivalent presentations
- 1) *G*-equivariant horizontal subbundle $[HP \subset TP \rightarrow P]$ s.t. $TP = HP \oplus VP$, where the vertical bundle *VP* (spaces tangent to the fibres) is canonical.
- 2) G-equivariant connection 1-form $\omega: TP \to P \times \mathfrak{g}$ s.t. $\omega|_{VP}$ is an isomorphism onto \mathfrak{g} .
- 3) Infinitesimal connection $\delta: TM \to A(P)$ section of the anchor, then $HP = \natural^{-1}\delta(TM)$.

4) Parallel transport $\tau_{\gamma}(y, x) : P_x \xrightarrow{\simeq} P_y$ horizontal lift of a curve γ of M from x to y.

5) (Local) gauge fields $| \{A : T_U M \to U \times \mathfrak{g} \} |$ pull back of ω along local sections of P.

• Covariant derivative on sections of E: bundle map $D^A : TM \to Der(E)$ equivalent to $C^{\infty}(M)$ -derivation $D^A_X : \Gamma(E) \to \Gamma(E)$ given locally by

$$D_X^{\mathbf{A}}(\psi)_{|U} = \sum_{\mu,i,j} \left(X^{\mu} \partial_{\mu} \psi^i + X^{\mu} \mathbf{A}^i_{\mu j} \psi^j \right) \mathbf{e}_i$$

if $X = X^{\mu}\partial_{\mu}$ in coordinates x^{μ} on $U \subset M$ $\psi = \psi^{i}e_{i}$ on a local basis (e_{i}) of E_{U} and $A_{j}^{i} = A_{\mu j}^{i}dx^{\mu}$ are the components of the gauge field A in terms of generators of \mathfrak{g} .

Direct connections on Lie groupoids

• Direct connection on $\mathcal{G} \rightrightarrows M$: local right inverse of the anchor which preserves units,

i.e. $\left| \Gamma : \operatorname{Pair}(M) \ast \rightarrow \mathcal{G} \right|$ defined on an open n. \mathcal{U}_{Δ} of the diagonal $\Delta \subset \operatorname{Pair}(M)$ s.t.

$$\left| \begin{array}{c} \Gamma(y, \mathbf{x}) \in \mathcal{G}_y^{\mathbf{x}} \end{array} \right| \text{ for all } (y, \mathbf{x}) \in \mathcal{U}_\Delta \quad \text{and} \quad \left| \begin{array}{c} \Gamma(\mathbf{x}, \mathbf{x}) = \mathbf{1}_x \in \mathcal{G}_x^{\mathbf{x}} \end{array} \right| \text{ for all } \mathbf{x} \in \mathcal{M}.$$

[Teleman 2004 in the linear case, Kock 2007 similar, ABFP general]

- A Lie groupoid with a direct connection is a gauge groupoid.
- If $\mathcal{G} \times_M E \to E$ is a linear action, then a direct connection Γ on \mathcal{G} induces a transport on fibres $E_x \to E_y$ which is not necessarily a parallel displacement!
- Ex. By the Inverse Function Theorem, a smooth parallelism on E [Dahlqvist-Diehl-Driver 2019] is a direct connection on Iso(E).
 - Groupoid invariants:
 - Γ natural if $\Gamma(x, y)\Gamma(y, x) = 1_x$ for all $x \in M$ and nearby y.
 - Curvature of Γ at x: $\mathcal{K}_x^{\Gamma}(z, y) = \Gamma(z, x)^{-1}\Gamma(z, y) \Gamma(y, x) \in \mathcal{G}_x^{\times}$ for nearby y, z.
 - Γ is flat if $K_x^{\Gamma}(.,.) = 1_x$ for any x, i.e. Γ is a groupoid morphism.

Relationship to usual connections

Assume affine connection ∇^M and local geodesics on M.

Parallel displacement τ on P along small geodesic x(t) from x to y defines a (natural) direct connection Γ on $\mathcal{G}(P)$ by $\Gamma(y, x) = [\tau(y, x)(p), p] \text{ for any choice of } p \in P_x$

Same for Iso(E) and a parallel transport on $E \rightarrow M$ [Teleman 2004].

Direct connection Γ on $\mathcal{G}(P)$ induces an infinitesimal connection δ on A(P) by $\delta(\dot{x}(0)) = D\Gamma_{|M}(\dot{x}(0)) = \frac{d}{dt}\Gamma(x(t),x)|_{t=0}.$ If $\mathcal{G}(P)$ acts on E, Γ induces a linear connection ∇ on E by $\nabla_{\dot{x}(0)}\psi = \frac{d}{dt}\Gamma(x(t),x)^{-1}\psi(x(t))|_{t=0}.$

Derivative of Γ -curvature \mathcal{K}^{Γ} give usual curvature tensors \mathcal{R}^{δ} .

• There are many more direct connections on $\mathcal{G}(P)$ then parallel displacements on P!

Ex. $\nabla_{\partial_x}^E \psi(x) = \psi'(x) + f(x)\psi(x)$ then $\tau(y, x) = e^{F(y) - F(x)}$ with $F = -\int f dx$ Instead, the following direct connections are not parallel transports: $\Gamma(y, x) = e^{y - x + (y - x)^2}$ non natural $(\Gamma(x, y)\Gamma(y, x) = e^{2(y - x)^2} \neq 1_x)$, $\Gamma(y, x) = e^{y - x + (y - x)^3}$ natural, non-flat.

4) Jet groupoids

Consider (local) sections $\psi: M \to E$ with partial derivatives $\partial^{\alpha} \psi(x)$ in local coordinates.

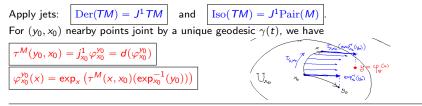
- Jets are coordinate-free equiv. classes of ∂^αψ(x)'s w.r.t. "contact of given order at x".
 ⇒ They form a tower of affine bundles JⁿE → Jⁿ⁻¹E, ultimatly "projective" over M.
- Taylor polynomials are the coordinate-dependent "difference" steps from $J^{n-1}E$ to J^nE \Rightarrow They form a graded vector bundle $T_{\leq n}E = \bigoplus_{k=0}^n S^k(T^*M) \otimes VE$ over M.
- They contain the same informations but only jets build up a functor and are prolonged.
 E.g. need J¹E = TE → E → M to fix a full configuration space E = Γ(M, J¹E) but TE ≅ T*M ⊗ VE only w.r.t. connections on M and E.
- [Kolář-Michor-Slovak 1993] The jet prolongation of P is not just $J^n P$ (not principal!) but

$$\begin{array}{c} \hline W^n P = F^n M \times_M J^n P \\ \hline W^n_d G = GL^n_d \ltimes T^n_d G \\ \hline M^n_d G = GL^n_d \ltimes T^n_d G \\ \hline \\ Jet \ groupoid \ \hline J^n \mathcal{G} \rightrightarrows M \\ \hline \\ \end{bmatrix}: \ jet \ set \ of \ local \ bisections \ \sigma : U \to \mathcal{G} \ s.t. \ \sigma(x) \in \mathcal{G}^x_{\varphi\sigma(x)} \\ \hline \\ where \ \hline x \mapsto \varphi_{\sigma}(x) \ is \ a \ diffeomorphism \ on \ U \\ \hline \\ \end{bmatrix}.$$

$$\begin{bmatrix} \operatorname{Kola\ i} 2008 \end{bmatrix} \ \hline \int^n \mathcal{G}(P)) \cong \mathcal{G}(W^n P) \\ \hline \\ but \ \hline \\ \end{bmatrix} but \ \hline \int^n \operatorname{Iso}(E)) \subsetneq \operatorname{Iso}(J^n E) \\ \end{bmatrix}$$

Jet prolongations of direct connections

- An affine connection ∇^M on M can be given as
- infinitesimal connection δ_M : $TM \rightarrow \text{Der}(TM) = A(\text{Iso}(TM))$
- parallel transport $\tau^M(y, x) : T_x M \to T_y M$ along unique small geodesic.



- [Mikulski 2007, Kolář 2009] If ∇^M is torsion-free, δ_M can be prolonged $\delta_M^{(n)}: TM \to J^n TM$.
- [ABFP 2020] 1) The map $x \mapsto \sigma_{x_0}^{y_0}(x) = (\varphi_{x_0}^{y_0}(x), x)$ is a local bisection of $\operatorname{Pair}(M)$.

2) Its jet $\Delta_{M}^{(n)}(y_{0}, x_{0}) = j_{x_{0}}^{n} \sigma_{x_{0}}^{y_{0}}$ gives a direct connection $\Delta_{M}^{(n)} : \operatorname{Pair}(M) * J^{n}\operatorname{Pair}(M)$ which integrates $\delta_{M}^{(n)}$.

3) Any direct connection $\Gamma : \operatorname{Pair}(M) * \mathcal{G}$ can be prolonged to $\Gamma^{(n)} : \operatorname{Pair}(M) * \mathcal{J}^n \mathcal{G}$ by setting

$$\Gamma^{(n)}(y_0, x_0) = j_{x_0}^n \left(\Gamma \circ \sigma_{x_0}^{y_0} \right) = J^n \Gamma \circ \Delta^{(n)}(y_0, x_0)$$

Direct connections on jet groupoids which are not jet prolongations

• [ABFP 2021] Geometric polynomial structure on $E \to M$: with $P \subset F(E)$ and $J^n \mathcal{G}(P) \subset J^n \operatorname{Iso}(E) \subset \operatorname{Iso}(J^n E)$ acting on $J^n E$.

Model from any given Γ : Pair(M) $\ast \rightarrow \mathcal{G}(P)$: $\left| \left(\prod^{n}, \widehat{\Gamma}^{n} \right) \right|$ with

 $\Pi_{x_0}^n: J_{x_0}^n E \to \mathcal{D}'(U_{x_0}, E) \qquad U_{x_0} \text{ normal open n. of } x_0, \quad \gamma(t) \text{ geodesic } x_0 \rightsquigarrow x$

$$\left(\prod_{x_0}^n j_{x_0}^n f\right)(x) = \Gamma(x, x_0) \sum_{k=0}^n \frac{1}{k!} \frac{d^k}{dt^k} \Gamma(\gamma(t), x_0)^{-1} f(\gamma(t)) \Big|_{t=0}$$

 $\boxed{\widehat{\Gamma}^n : \operatorname{Pair}(M) * J^n \mathcal{G}(P)} \quad \text{given by} \quad \boxed{\widehat{\Gamma}^n(y_0, x_0) \ j_{x_0}^n f} = j_{y_0}^n \left(x \mapsto \left(\prod_{x_0}^n j_{x_0}^n f \right)(x) \right)$

• $\hat{\Gamma}^n$ is not a jet prolongation, the action is not prounipotent and Hairer's equality $\prod_{y_0}^n \hat{\Gamma}^n(y_0, x_0) = \prod_{x_0}^n$ does not hold if ∇^M and Γ have curvature.

Ex.
$$d=1,~n=1,$$
 call $g(x)=\Bigl(\Pi^1_{x_0}j^1_{x_0}f\Bigr)(x)$ and $h=y_0-x_0,$ then

$$\begin{pmatrix} g(y_0) \\ g'(y_0) \end{pmatrix} = \begin{pmatrix} \Gamma(y_0, x_0) (1 + a(x_0)h) & \Gamma(y_0, x_0)h \\ b(y_0) (1 + a(x_0)h) + \Gamma(y_0, x_0)a(x_0) & b(y_0)h + \Gamma(y_0, x_0) \end{pmatrix} \begin{pmatrix} f(x_0) \\ f'(x_0) \end{pmatrix}$$

hence $g(y_0)$ is not the value $f(x_0)$ transported above y_0 !

Conclusion:

- There is a surjective functor

Gauge groupoids	\longrightarrow	Principal bundles
with direct connections		with connections

which admits an inverse, but it is not an equivalence of categories.

- Direct connections allow generalized local symmetries (gauge fields).
- Direct connections allow displacement along fibres which is not the solution of a 1st order PDE.

Next:

- Find equations solved by direct connections which are not parallel displacements.
- Adapt to α -Hölder sections of bundles i.e. define distributional direct connections and compare to usual propagators.
- Study the whole geometry of groupoids with direct connections and compare with usual gauge theory.
- Integrate Algebroid/Curved YM theories to groupoid symmetries (with Simon-Raphael Fischer).