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Type IIB matrix model (IKKT: Ishibashi, Kawai, Kitazawa, Tsuchiya, 1996)

● Proposed as a nonperturbative definition of superstring theory in the large-N limit

● Spacetime emerges from the Bosonic matrix degrees of freedom: the eigenvalues of the can be 

thought of as spacetime coordinates
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Type IIB matrix model (IKKT: Ishibashi, Kawai, Kitazawa, Tsuchiya, 1996)

● This identification is consistent with the supersymmetries of the model
● This identification allows us to study questions like:

○ The dynamical emergence of time
○ The dynamical emergence of space
○ The dynamical compactification of extra dimensions
○ The time evolution of the large dimensions of the universe

● Nontrivial dynamical properties of the model:
○ Time must be homogeneous and of infinite extent in the large-N limit

○ The number of large dimensions of space must be 3, and expand in a way consistent 
with cosmological models at late times

○ Time and space must be real, and the signature of the spacetime geometry Lorentzian, at least at 
macroscopic times

These are the questions that we will try to address in this talk!

Nonperturbative effects, will resort to numerical computations...



Lattice String Theory

● Using "Lattice string theory", those questions have been studied since 1999 (Hotta-Nishimura-Tsuchiya, 

Ambjorn-Anagnostopoulos-Bietenholz-Hotta-Nishimura)

● Studied related Euclidean 4D, 6D and 10D simplified matrix models, attempting to understand the 

mechanism of the dynamical compactification of the extra dimensions.

● Extra dimensions are compactified via the SSB of the SO(D) rotational invariance of the model

● The dynamics of the fermions are crucial for the realization of the scenario

● Numerical computations are hard because of the complex action problem
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● The dynamics of the fermions are crucial for the realization of the scenario

● Numerical computations are hard because of the complex action problem

● Using the GEM, Nishimura-Okubo-Sugino (2011) suggested that SO(10) breaks down to SO(3)

● Using the Complex Langevin method (CLM), we were able to produce results consistent with the GEM 

(KNA-Azuma-Ito-Nishimura-Okubo-Papadoudis, 2020)



10D Euclidean IKKT, phase-quenched model

(KNA-Azuma-Nishimura, 2015)

Large-N limit

Consistent with GEM

The fluctuations of the phase of the Pfaffian is crucial for the 

occurrence of the SSB

• No SSB when fermions are quenched ("Bosonic model")

• No SSB in the 4D model where
• No SSB when is quenched

ignored
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10D Euclidean IKKT, phase-quenched model 

(KNA-Azuma-Nishimura, 2015)

10D Euclidean IKKT 

(KNA-Azuma-Ito-Nishimura-Okubo-Papadoudis, 2020)

3-dimensional space emerges in the Euclidean model



The Lorentzian model

● Equivalent to the Euclidean model (Jun Nishimura, previous talk)

Real polynomial in A

Not bounded from below



Adding a Lorentz invariant mass term

● We add the following term to the action (Steinacker 2018, Hatakeyama-Matsumoto-Nishimura-Tsuchiya-

Yosprakob 2020):

● We define the model in the limits:



Simulations

● First, using the gauge symmetry of the model, we diagonalize the matrix

● We use the nontrivial property of typical spatial configurations to have a narrow band diagonal structure 

to define space and time



Simulations

● First, using the gauge symmetry of the model, we diagonalize the matrix

● We use the nontrivial property of typical spatial configurations to have a narrow band diagonal structure 

to define space and time

● We define auxiliary variables that automatically impose the 

condition (Nishimura-Tsuchiya, 2019)
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● Then the model can be rewritten in the form:

● We avoid the complex action problem by employing the Complex Langevin method (CLM)

Holomorphic in A
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● We avoid the wrong convergence problem by monitoring whether the distribution of the drift norm has a 
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Simulations

● We also include a stabilization parameter (Attanasio-Jagger, 2019). Typically, η=0.010, 0.005.

● Most intensive part of the calculation is to compute

● Compute matrix products using
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Some results: 

• Time is complex near the origin

• Becomes real at large times

• Decreasing γ, extends time interval

• Reality of space

• is small for small t, vanishes at large t



Some results: 

• The eigenvalues of the moment of inertia tensor

• Lines are exponential fittings

• Extent of time larger at smaller γ



Some results: 

• This behavior is similar to the Bosonic model, 

we are still in the "Bosonic phase"
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But....

● It seems hard to lower the value of further

● For those values that we simulated, it seems that we remain in the "Bosonic phase"

● The Bosonic phase is characterized by the strong attraction of the eigenvalues, whereas the Pfaffian has 

the effect of making the attraction weaker. As the number of Bosonic matrices is increased, the 

attractive force between the eigenvalues is also increased

● The IKKT Pfaffian is zero when only two out of the D bosonic matrices are nonzero. Therefore, the 

(almost) one-dimensional space configurations must be strongly suppressed

● Furthermore, if the spatial directions are expanding exponentially with time, then time remains "small". 

Therefore, we hope to see a 3-dimensional expanding universe, when the effect of the fermions kicks in



Restrict to lower dimensional configurations

● To avoid the problem of not being able to reduce further, and to enhance the effect of the Pfaffian, 

we have performed simulations that favor lower dimensional configurations

● As is increased, and decreased, we hope to see a transition from a one-dimensional expanding 

universe, to a three dimensional one
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Restrict to lower dimensional configurations

● To avoid the problem of not being able to reduce further, and to enhance the effect of the Pfaffian, 

we have performed simulations that artificially favor lower dimensional configurations

● As is increased, and decreased, we hope to see a transition from a one-dimensional expanding 

universe, to a three dimensional one

● We suppressed the extra dimensions, either by setting them equal to zero at each step, or by 

introducing a (large) parameter λ, so that

● We hope that, if a low dimensional universe emerges, the bias will be small



Restrict to lower dimensional configurations

● We were able to simulate

m_f = 0.5

λ = 20

m_f = 2

m_f = 2
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Restrict to lower dimensional configurations

● We can't see the SUSY effect yet, but we can see a transition from 1d-expanding to -expanding, with 

real spacetime. The transition occurs as we lower γ





Summary

● The Lorentzian IKKT model can be defined by a contour deformation from the Euclidean model. Then the two 

models are equivalent, and the emergent spacetime is complex, Euclidean and three dimensional

● We introduced a Lorentz invariant mass term, using a parameter γ>0. We define the model in the limit

● We simulated the IKKT model, using the CLM to avoid the complex action problem

● To avoid the singular drift problem, we introduced a "fermionic mass term", with the IKKT model obtained 

when

● We performed simulations for , and we obtained one dimensional, exponentially expanding space

● Time is emerging dynamically: It is homogeneous, complex at small times, becoming real at larger times. 

Space is also real at late times

● Signature of spacetime is changing from being Euclidean at small times to being Minkowskian at later times

● In order to simulate the model for smaller , and enhance the effect of the Pfaffian, we simulated the model 

with a constrain. We found a transition from the 1-d expanding behavior to -expanding 

behavior

● Since the Pfaffian is zero for 2d configurations, 1-d expansion must be strongly suppressed in the IKKT model. 

We hope that by further reducing , we can obtain a 3-d expanding universe
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