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Random walks

Let T be a countable group and p o finitely supported measure
on I'. A random walk on I' is a stochastic matriz on I' given by
P(z,y) = u(z~ty) for z,y € T, such that supp p generates I.
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Random walks

Let T be a countable group and p o finitely supported measure
on I'. A random walk on I' is a stochastic matriz on I' given by
P(z,y) = u(z~ty) for z,y € T, such that supp p generates I.

In particular, all groups we consider are finitely generated.
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Random walks

Let T be a countable group and p o finitely supported measure
on I'. A random walk on I' is a stochastic matriz on I' given by
P(z,y) = u(z~ty) for z,y € T, such that supp p generates I.

In particular, all groups we consider are finitely generated. We
say P is symmetric if u(z) = p(z~!) for all x € T.
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Random walks

Let T be a countable group and p o finitely supported measure
on I'. A random walk on I' is a stochastic matriz on I' given by
P(z,y) = u(z~ty) for z,y € T, such that supp p generates I.

In particular, all groups we consider are finitely generated. We
say P is symmetric if u(z) = p(z~!) for all x € T.

Example (Simple RW on Fy)

LetT' =Fy4 = (aq,...,aq), and u(agﬂ) = 2—1d foralli=1,...,d.
This is called the simple random walk on F?.




Random walks Ratio-limits RH groups Main results Operator algebras

@00

[e]e]e} [e]e]e} 0000 [e]e]e}

Random walks

Let T be a countable group and p o finitely supported measure
on I'. A random walk on I' is a stochastic matriz on I' given by
P(z,y) = u(z~ty) for z,y € T, such that supp p generates I.

In particular, all groups we consider are finitely generated. We
say P is symmetric if u(z) = p(z~!) for all x € T.

Example (Simple RW on Fy)

LetT' =Fy4 = (aq,...,aq), and u(agﬂ) = 2—1d foralli=1,...,d.
This is called the simple random walk on F?.

The spectral radius of P is p := limsup,, ¥/ P"(z,y) for some
(all) z,y € I'. In this talk our groups will be non-amenable, so
we will always have p < 1 (Kesten 1959).



Martin boundary

Let R := p~! be the inverse of the spectral radius. For r € [1, R]
we define the Green function for x,y € T by

Grlwyy) = 3 P (a,y)r™,
n=0
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Martin boundary

Let R := p~! be the inverse of the spectral radius. For r € [1, R]
we define the Green function for x,y € T by

Gr(z,y) = Z P"(x,y)r".
n=0

Martin kernel K, : T'x T' — (0,00) at 7 is K, (x,y) = %

End
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Martin boundary

Let R := p~! be the inverse of the spectral radius. For r € [1, R]
we define the Green function for x,y € T by

Gr(z,y) = Z P"(x,y)r".
n=0

Martin kernel K, : T'x T' — (0,00) at 7 is K, (x,y) = %

Let P be a RW on I'. The r-Martin compactification is the
smallest compactification Ay, I' of I' to which the functions
y+— K(z,y) extend continuously.
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Martin boundary

Let R := p~! be the inverse of the spectral radius. For r € [1, R]
we define the Green function for x,y € T by

Gr(z,y) = Z P"(x,y)r".
n=0

Martin kernel K, : T'x T' — (0,00) at 7 is K, (x,y) = %

Let P be a RW on I'. The r-Martin compactification is the
smallest compactification Ay, I' of I' to which the functions
y+— K, (z,y) extend continuously. The r-Martin boundary is
then the closed subset Onr I’ = Apg,, T\ T
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Martin boundary

Let R := p~! be the inverse of the spectral radius. For r € [1, R]
we define the Green function for x,y € T by

Gr(z,y) = Z P"(x,y)r".
n=0

Martin kernel K, : T'x T' — (0,00) at 7 is K, (x,y) = reN e

Let P be a RW on I'. The r-Martin compactification is the
smallest compactification Ay, I' of I' to which the functions
y+— K, (z,y) extend continuously. The r-Martin boundary is
then the closed subset Onr I’ = Apg,, T\ T

The left action of I' on itself induces an action I' ~ djr,.I', and
we have r=! . K,.(x,£) = > yer P2, y) Kr(y, §) for £ € Onr, I
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Harmonic functions

We will say that a function w : I' — (0, 00) is t-harmonic if
t-u(x) =3 er Plz,y)u(y). The set H (P, t) of positive
harmonic functions with u(e) = 1 is a compact convez set with
the topology of pointwise convergence.



Random walks Ratio-limits RH groups Main results Operator algebras End
ooe [e]e]e} [e]e]e} 0000 000 [o]e]

Harmonic functions

We will say that a function w : I' — (0, 00) is t-harmonic if
t-u(x) =3 er Plz,y)u(y). The set H (P, t) of positive
harmonic functions with u(e) = 1 is a compact convez set with
the topology of pointwise convergence.

Theorem (Poisson-Martin integral representation)

Let u be in ’Hf (P,r=Y). Then there is a representing probability
measure v* on Oy, I' such that

u(z) = /6 K@,
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Harmonic functions

We will say that a function w : I' — (0, 00) is t-harmonic if
t-u(x) =3 er Plz,y)u(y). The set H (P, t) of positive
harmonic functions with u(e) = 1 is a compact convez set with
the topology of pointwise convergence.

Theorem (Poisson-Martin integral representation)

Let u be in ’Hf (P,r=Y). Then there is a representing probability
measure v* on Oy, I' such that

u(z) = /a K@,

and v* is unique among representing probability measures v that
have full mass on points & € Oy, I' with x — K, (x,&) extreme.
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Harmonic functions

We will say that a function w : I' — (0, 00) is t-harmonic if
t-u(x) =3 er Plz,y)u(y). The set H (P, t) of positive
harmonic functions with u(e) = 1 is a compact convez set with
the topology of pointwise convergence.

Theorem (Poisson-Martin integral representation)

Let u be in ’Hf (P,r=Y). Then there is a representing probability
measure v* on Oy, I' such that

u(z) = /a K@,

and v* is unique among representing probability measures v that
have full mass on points & € Oy, I' with x — K, (x,&) extreme.

Denote 8}\’4LJT the points £ € Oy, I' with « — K,.(z,§) extreme.



Random walks Ratio-limits RH groups Main results Operator algebras End
[e]e]e} @00 [e]e]e} 0000 [e]e]e} [o]e]

Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, I;:(éz)) exists.




Random walks Ratio-limits RH groups Main results Operator algebras End
[e]e]e} @00 [e]e]e} 0000 [e]e]e} [o]e]

Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, I;:((iz)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, 1;:((9;5)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is

@ nilpotent (Margulis 1966).
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, 1;:((9;5)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is

@ nilpotent (Margulis 1966).
@ amenable, p symmetric, H(z,y) = 1 (Avez 1973).
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, 1;:((9;5)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is

@ nilpotent (Margulis 1966).
@ amenable, p symmetric, H(z,y) = 1 (Avez 1973).
@ hyperbolic, p symmetric (Gouézel 2014).
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, ];:‘((i’fj)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is

@ nilpotent (Margulis 1966).
@ amenable, p symmetric, H(z,y) = 1 (Avez 1973).
@ hyperbolic, p symmetric (Gouézel 2014).

Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on I' with SRLP, and denote by R,
the set R, :=={ g€l | Hz,g) = H(xz,e), Vx €T }.
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on I'. We say it has SRLP if for any x,y € T’

the limit H(z,y) := lim,, ];:‘((i’fj)) exists.

A result of Gerl (1978) shows that x — H(x,y) is p-harmonic
for all y € I', and SRLP was established for instance when I is

@ nilpotent (Margulis 1966).
@ amenable, p symmetric, H(z,y) = 1 (Avez 1973).
@ hyperbolic, p symmetric (Gouézel 2014).

Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on I' with SRLP, and denote by R,
the set R, :=={ g€l | Hz,g) = H(xz,e), Yx €' }. Then R, is
an amenable normal subgroup of I' called the ratio-limit radical.
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Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on I' with SRLP. The (reduced)
ratio-limit compac” is the smallest compac™ ART" of T'/R,, to
which the functions y — H(xz,y) extend continuously.
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Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on I' with SRLP. The (reduced)
ratio-limit compac” is the smallest compac™ ART" of T'/R,, to
which the functions y — H(x,y) extend continuously. The
compactum ORI :== ARI'\ [['/R,,] is the ratio-limit boundary.
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Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on I' with SRLP. The (reduced)
ratio-limit compac” is the smallest compac™ ART" of T'/R,, to
which the functions y — H(x,y) extend continuously. The
compactum ORI :== ARI'\ [['/R,,] is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.
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Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on I' with SRLP. The (reduced)
ratio-limit compac” is the smallest compac™ ART" of T'/R,, to
which the functions y — H(x,y) extend continuously. The
compactum ORI :== ARI'\ [['/R,,] is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Theorem (Woess 2021)

Let P be a symm RW on a hyperbolic group I'. Then OgI’ = OI'.

End



Random walks Ratio-limits RH groups Main results Operator algebras

[e]e]e}

o] 1o} [e]e]e} 0000 [e]e]e}

Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on I' with SRLP. The (reduced)
ratio-limit compac” is the smallest compac™ ART" of T'/R,, to
which the functions y — H(x,y) extend continuously. The
compactum ORI :== ARI'\ [['/R,,] is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Theorem (Woess 2021)

Let P be a symm RW on a hyperbolic group I'. Then OgI’ = OI'.

Used to show that certain canonical equivariant quotient
C*-algebra generally fail to be the unique equivariant quotient,
even when such a quotient exists.

End
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems.

End
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
@ spectrally non-degenerate then P™(x,y) ~ B(xz,y)R™"n~
(Dussaule 2022).

3
2

End
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
@ spectrally non-degenerate then P™(x,y) ~ B(:L‘,y)R_"n_%
(Dussaule 2022). Includes I' hyperbolic (Gouézel 2014).

End
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
@ spectrally non-degenerate then P™(x,y) ~ B(:L‘,y)R_"n_%
(Dussaule 2022). Includes I' hyperbolic (Gouézel 2014).
@ convergent and spectrally degenerate, then
P™(z,y) ~ ﬂ(x,y)R_"n_% with d such that s = [4] — 1 is
the smallest s for which Gg‘;) (z,y) = oo (DPT).
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
@ spectrally non-degenerate then P™(x,y) ~ 5(x, y)R_”n_%
(Dussaule 2022). Includes I' hyperbolic (Gouézel 2014).
@ convergent and spectrally degenerate, then
P™(z,y) ~ ﬂ(ar,y)R_"n_% with d such that s = [4] — 1 is
the smallest s for which Gg;:) (z,y) = oo (DPT).

Example (Dussaule, Peigné & Tapie)

When T' = Z3 x« Z5, there zs a symmetmc RW on I for which
Pz, y) ~ B(z, y)R n~2 log(n) 3.
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Local limit theorems

Denote by R = p~—!, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems. When I is relatively hyperbolic, u is
symmetric and
@ spectrally non-degenerate then P™(x,y) ~ 5(x, y)R_”n_%
(Dussaule 2022). Includes I' hyperbolic (Gouézel 2014).
@ convergent and spectrally degenerate, then
P™(z,y) ~ ﬂ(ar,y)R_"n_% with d such that s = [4] — 1 is
the smallest s for which Gg;:) (z,y) = oo (DPT).

Example (Dussaule, Peigné & Tapie)

When T' = Z3 x« Z5, there 3?5 a symT{Letm'c RW on I for which
P(z,y) ~ Bz, y)R™"n" 2 log(n) 2.

Classifying all LLT behaviors is still open, but we can compute

H(z,y) = g((iz; in the presence of a LLT.

End
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic.
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.

@ Fgy, finite groups, free products of hyperbolic groups.
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.

@ Fgy, finite groups, free products of hyperbolic groups.
@ SLy(Z) = Zy *7, Zg, and any co-compact lattice of SLa(R).
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.

@ Fgy, finite groups, free products of hyperbolic groups.
@ SLy(Z) = Zy *7, Zg, and any co-compact lattice of SLa(R).

@ Fundamental groups of compact Riemannian manifolds
with strictly negative sectional curvature.
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.

@ Fgy, finite groups, free products of hyperbolic groups.
@ SLy(Z) = Zy *7, Zg, and any co-compact lattice of SLa(R).

@ Fundamental groups of compact Riemannian manifolds
with strictly negative sectional curvature.

@ “Most” groups with finite defining relations are hyperbolic.
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Hyperbolic groups

Definition (Gromov 1987)

Let T be a f.g. discrete group. We say that I' is hyperbolic if its
Cayley graph Gr(T') is hyperbolic. That is, there is a 6 > 0 such
that whenever x,y, z is a geodesic triangle in Gr(T'), any
d-neighborhood of two edges contains the third.

@ Fgy, finite groups, free products of hyperbolic groups.

@ SLy(Z) = Zy *7, Zg, and any co-compact lattice of SLa(R).

@ Fundamental groups of compact Riemannian manifolds
with strictly negative sectional curvature.

@ “Most” groups with finite defining relations are hyperbolic.

On the other hand, hyperbolic groups do not allow for arbitrary
subgroups. For instance Z? x Z? is not hyperbolic, even though
it does admits some “global” hyperbolic behaviour.
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

End
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

Definition (Bowditch; Farb; Gromov)

I is hyperbolic relative to Q2 if Gr(I'; ) is a hyperbolic space !
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

Definition (Bowditch; Farb; Gromov)

I is hyperbolic relative to Q2 if Gr(I'; ) is a hyperbolic space !

Gromov boundary of Gr(I';2) may fail to be compact, but its
completion dp(I'; Q) is compact and called Bowditch boundary.
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

Definition (Bowditch; Farb; Gromov)

I is hyperbolic relative to Q2 if Gr(I'; ) is a hyperbolic space !

Gromov boundary of Gr(I';2) may fail to be compact, but its
completion dp(I'; Q) is compact and called Bowditch boundary.

@ conical points are those coming from Gromov boundary.
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

Definition (Bowditch; Farb; Gromov)

I is hyperbolic relative to Q2 if Gr(I'; ) is a hyperbolic space !

Gromov boundary of Gr(I';2) may fail to be compact, but its
completion dp(I'; Q) is compact and called Bowditch boundary.

@ conical points are those coming from Gromov boundary.

@ parabolic points are £ € Og(I"; Q) for which stabilizers T',,
are infinite. These are always conjugate to elements of 2.
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Relatively hyperbolic groups

Let I' be a f.g. group and 2 a finite set of subgroups. The
relative Cayley graph Gr(I'; Q) is obtained from Gr(I") by
adding a vertex gP and an edge from h to gP for any h € gP
and P € Q.

Definition (Bowditch; Farb; Gromov)

I is hyperbolic relative to Q2 if Gr(I'; ) is a hyperbolic space !

Gromov boundary of Gr(I';2) may fail to be compact, but its
completion dp(I'; Q) is compact and called Bowditch boundary.

@ conical points are those coming from Gromov boundary.

@ parabolic points are £ € Og(I"; Q) for which stabilizers T',,
are infinite. These are always conjugate to elements of 2.
Examples include free products A; x As with Ay, As f.g., as well
as fundamental groups of finite volume Riemmanian manifolds
of pinched negative sectional curvature.

End



Bowditch boundary and Martin boundary

The following was needed with r = R to prove Woess’ theorem.
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Bowditch boundary and Martin boundary

The following was needed with r = R to prove Woess’ theorem.

Theorem (Ancona 1988; Gouézel 2014)

Let P be a symmetric RW on a hyperbolic group I'. Then for
any r € [1, R] we have a I'-equivariant homeo O, I" = OT.
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Bowditch boundary and Martin boundary

The following was needed with r = R to prove Woess’ theorem.

Theorem (Ancona 1988; Gouézel 2014)

Let P be a symmetric RW on a hyperbolic group I'. Then for
any r € [1, R] we have a I'-equivariant homeo O, I" = OT.

An analogue of this result for relatively hyperbolic groups was
obtained by Gekhtman, Gerasimov, Potyagailo and Yang.
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Bowditch boundary and Martin boundary

The following was needed with r = R to prove Woess’ theorem.

Theorem (Ancona 1988; Gouézel 2014)

Let P be a symmetric RW on a hyperbolic group I'. Then for
any r € [1, R] we have a I'-equivariant homeo O, I' = OT .

An analogue of this result for relatively hyperbolic groups was
obtained by Gekhtman, Gerasimov, Potyagailo and Yang.
Theorem (GGPY 2021)

Let P be a symm RW on I' hyperbolic relative to 2. For any
r € [1, R] the identity on I induces a continuous I'-surjection

7 Ou, I — 0p(1;Q),

and m=(€) is a singleton for any conical point &€ € Op(I'; Q).
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

End
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group T.
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group T.
Then there is a I'-bi-Lipschitz embedding ¢ : Oy pI' — ORrI.
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group T.
Then there is a I'-bi-Lipschitz embedding ¢ : Oy pI' — ORrI.

This requires proofs of LLTs for RH groups. We take 9} oI’
instead of Oy rI" since we do not know they coincide !
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group T.
Then there is a I'-bi-Lipschitz embedding ¢ : Oy pI' — ORrI.

This requires proofs of LLTs for RH groups. We take 9} oI’
instead of Oy rI" since we do not know they coincide !

Proposition (D., Dussaule & Gekhtman; GGPY 2021)

Let P be a symmetric aperiodic RW on a non-elementary
relatively hyperbolic group I'.

End
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(sn.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group T.
Then there is a I'-bi-Lipschitz embedding ¢ : Oy pI' — ORrI.

This requires proofs of LLTs for RH groups. We take 9} oI’
instead of Oy rI" since we do not know they coincide !

Proposition (D., Dussaule & Gekhtman; GGPY 2021)

Let P be a symmetric aperiodic RW on a non-elementary
relatively hyperbolic group I'. Then the action I' ~ OF} pI' is
mimimal and strongly prorimal.

End



Proof:
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Sketch of proof

Proof:
@ Strong proximality of I' ~ X means that whenever
v € Prob(X) is a Borel probability measure, the closure of
the orbit I'v contains a Dirac measure ¢, for x € X.
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Sketch of proof

Proof:

@ Strong proximality of I' ~ X means that whenever
v € Prob(X) is a Borel probability measure, the closure of
the orbit I'v contains a Dirac measure ¢, for x € X.

@ As T is non-elementary, it has two hyperbolic elements

s,t € I" such that the set of attractors and repellers
{z+,y+} has least three elements in dp(I'; 2).

End
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Sketch of proof

Proof:

@ Strong proximality of I' ~ X means that whenever
v € Prob(X) is a Borel probability measure, the closure of
the orbit I'v contains a Dirac measure ¢, for x € X.

@ As T is non-elementary, it has two hyperbolic elements
s,t € I" such that the set of attractors and repellers
{z+,y+} has least three elements in dp(I'; 2).

@ Using density of minimal points in 8]\"}? gl we use the
I-surjection 7 to show that the lifts {{1,n+} are also
attractors and repellers in 8]\"417 gl
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Sketch of proof

Proof:

@ Strong proximality of I' ~ X means that whenever
v € Prob(X) is a Borel probability measure, the closure of
the orbit I'v contains a Dirac measure ¢, for x € X.

@ As T is non-elementary, it has two hyperbolic elements
s,t € I" such that the set of attractors and repellers
{z+,y+} has least three elements in dp(I'; 2).

@ Using density of minimal points in 8]\"}? gl we use the
I-surjection 7 to show that the lifts {{1,n+} are also
attractors and repellers in 8]\"417 gl

@ Suppose wlog &,& # n_. If v € Prob(d}; pI'), then s™v
converges to v/ := Ad¢_ + (1 — A)d¢, . Then ¢ converges
to 0y, . Thus I' ~ 9y} I is strongly proximal.

End
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group T'.
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group I'. Then 0y} zI' is the unique closed I'-invariant
subspace of OrI.
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group I'. Then 0y} zI' is the unique closed I'-invariant
subspace of OrI.

Proof:
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group I'. Then 0y} zI' is the unique closed I'-invariant
subspace of OrI.

Proof:

© By Poisson-Martin representation theorem we get a
continuous surjection <p : Prob(dy; gl') — H (1, p) given

by integrating ¢(v) faM T KR@ §)dv(§).
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group I'. Then 0y} zI' is the unique closed I'-invariant
subspace of OrI.

Proof:

© By Poisson-Martin representation theorem we get a
continuous surjection <p : Prob(dy; gl') — H (1, p) given

by integrating ¢(v) faM T KR(x &)dv(§).
© Aswu:= H(-,¢) is an R~!-harmonic function for & € OrT,

points in JgrI" are a “I"-subspace” of Hf(u, p), which is
identified as a “I'-subspace” of Prob(d}; zI).
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Minimality in OrI" and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group I'. Then 0y} zI' is the unique closed I'-invariant
subspace of OrI.

Proof:

© By Poisson-Martin representation theorem we get a
continuous surjection <p : Prob(dy; gl') — H (1, p) given

by integrating ¢(v) faM T KR(x &)dv(§).
© Aswu:= H(-,¢) is an R~!-harmonic function for & € OrT,

points in JgrI" are a “I"-subspace” of Hf(u, p), which is
identified as a “T-subspace” of Prob(dy; pI').

@ By strong proximality, [v¥ intersects 8 I, and by
minimality this intersection is all of 8M rl-
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Dependence on random walk

A fundamental question in the boundary theory of random
walks is that of dependence on the random walk.

End
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Dependence on random walk

A fundamental question in the boundary theory of random
walks is that of dependence on the random walk.

Theorem (Woess 1986 ; Dussaule & Gekhtman 2021)

LetT =Z5x7Z and r € [1, R]. Then there are u and y' such that
oI and 04, T are not homeomorphic.
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Dependence on random walk

A fundamental question in the boundary theory of random
walks is that of dependence on the random walk.

Theorem (Woess 1986 ; Dussaule & Gekhtman 2021)

LetT =Z5x7Z and r € [1, R]. Then there are u and y' such that
oI and 04, T are not homeomorphic.

The measure p is s.n.d. RW, while g’ is not. We can prove an
analogue of our I'-equivariant embedding result 9}, ,I' — OrT’
as a unique I'-minimal subspace for I' = Z° * Z and y’ as above.
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Dependence on random walk

A fundamental question in the boundary theory of random
walks is that of dependence on the random walk.

Theorem (Woess 1986 ; Dussaule & Gekhtman 2021)

LetT =Z5x7Z and r € [1, R]. Then there are u and y' such that
oI and 04, T are not homeomorphic.

The measure p is s.n.d. RW, while g’ is not. We can prove an
analogue of our I'-equivariant embedding result 9}, ,I' — OrT’
as a unique I'-minimal subspace for I' = Z° * Z and y’ as above.

Theorem (D., Dussaule & Gektman)

Let T' = 7Z° x Z. Then there exist two random walks p and p' for
which a{{r and a{{ I’ are not I'-equivariantly homeomorphic.

End
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Toeplitz C*-algebras for random walks

Let P be a RW on I' induced by p. We let Hp be the Hilbert
space with o.n.b. {ey(fle)}Pm(y’z)>07m20.
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Toeplitz C*-algebras for random walks

Let P be a RW on I' induced by pu. We let Hp be the Hilbert

space with o.n.b. {6157;)}1377L(y’z)>07m20. Then, for z,y € T" and
n € N with P"(z,y) > 0 we define a bounded linear operator

S;S;ny) on H by setting

n) (m Pz, y) P™(Y,2) (nim
S >):5y7y,\/ ;W)n(x (Z) )e;; ),
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Toeplitz C*-algebras for random walks

Let P be a RW on I' induced by pu. We let Hp be the Hilbert
space with o.n.b. {6157;)}1377L(y’z)>07m20. Then, for z,y € T" and
n € N with P"(z,y) > 0 we define a bounded linear operator
S;S;ny) on H by setting

n), (m Pz, y)P™Y, 2) (nim
S )(e< )):5yyy,\/ ;m;(m (2) )e;; ).

The Toeplitz C*-algebra of P is

T(T,p) = C*( S | P"(z,y) >0, n>0).

End
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Toeplitz C*-algebras for random walks

Let P be a RW on I' induced by pu. We let Hp be the Hilbert

space with o.n.b. {ey(fle)}pm(y’z)>07m20. Then, for z,y € T" and
n € N with P"(z,y) > 0 we define a bounded linear operator

S;S;ny) on H by setting

n) (m Pz, y) P™(Y,2) (nim
S >):5y7y,\/ ;Mgn(x (Z) )e;; ),

The Toeplitz C*-algebra of P is
T(T,p) = C*( S | P"(z,y) >0, n>0).

It arises from a general subproduct system construction of Shalit
and Solel (2009), when applied to P as a positive map on cy(T').
This came about form work of mine with Markiewicz (2017).
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Co-universal Toeplitz quotient

This C*-algebra has a natural action o : T ~ T (T, ) given on
generators by aZ(Sé?y)) = 2”59%), but there is also a group
action 3 :I' ~ T(T', ) given by BQ(S’;@) = Sgﬁ?gy. These

actions commute, and give rise to an action I' x T ~ T (T, u).
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Co-universal Toeplitz quotient

This C*-algebra has a natural action o : T ~ T (T, ) given on
generators by o (S, (n )) = z”Sg(cny), but there is also a group

action 3 :I' ~ T(T', ) given by BQ(S’(n)) ng)gy These
actions commute, and give rise to an action I' x T ~ T (T, u).

Question (D. 2021; Co-universal quotient)

is there a unique smallest T' x T equivariant quotient of T (T, u)?
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Co-universal Toeplitz quotient

This C*-algebra has a natural action o : T ~ T (T, ) given on

generators by o (S, (n )) = z”Sg(cny), but there is also a group

action 3 :I' ~ T(T', ) given by BQ(S’(n)) ng)gy These
actions commute, and give rise to an action I' x T ~ T (T, u).

Question (D. 2021; Co-universal quotient)

is there a unique smallest T' x T equivariant quotient of T (T, u)?

This type of question is natural when a group acts on operator
algebras, and goes back to works of Cuntz and Krieger (1980)
on C*-algebras arising from SFTs (uniqueness theorems).
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Co-universal Toeplitz quotient

This C*-algebra has a natural action o : T ~ T (T, ) given on
generators by aZ(Sé?y)) = 2”59%), but there is also a group
action 3 :I' ~ T(T', ) given by BQ(S’;@) = Sgﬁ?gy. These
actions commute, and give rise to an action I' x T ~ T (T, u).

Question (D. 2021; Co-universal quotient)

is there a unique smallest T' x T equivariant quotient of T (T, u)?

This type of question is natural when a group acts on operator
algebras, and goes back to works of Cuntz and Krieger (1980)
on C*-algebras arising from SFTs (uniqueness theorems).

Theorem (D. 2021)

When T is hyperbolic and p is symmetric, the co-universal
quotient exists, and coincides with C(T x dT) @ K(¢*(T)).

End
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The case of RH groups

When defining Toeplitz C*-algebra for RW, for every z € T’
there is a reducing subspace for 7 (I, 1) which is given by

Hp. = %{ez(/@}Pm(y,z»o, m>0-

End
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The case of RH groups

When defining Toeplitz C*-algebra for RW, for every z € T’
there is a reducing subspace for 7 (I, 1) which is given by

Hp, = %{eé@}pm(y7z)>o7 m>0- We may then define a closed
two-sided ideal J(I', u) := T(T', o) N [,er K(Hpz). Then, the
Cuntz C*-algebra of P is

O, p) :==T(L, 1)/ T (L, ).

End
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The case of RH groups

When defining Toeplitz C*-algebra for RW, for every z € T’
there is a reducing subspace for 7 (I, 1) which is given by

Hp, = %{egz)}pm(y7z)>o7 m>0- We may then define a closed
two-sided ideal J(I', u) := T(T', o) N [,er K(Hpz). Then, the
Cuntz C*-algebra of P is

O, p) :==T(L, 1)/ T (L, ).

Theorem (D. 2021)
If P on T has SRLP, O(T',u) = C(ART x T) @ K(¢3(I)).
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The case of RH groups

When defining Toeplitz C*-algebra for RW, for every z € T’
there is a reducing subspace for 7 (I, 1) which is given by

Hp, = %{egz)}pm(y7z)>o7 m>0- We may then define a closed
two-sided ideal J(I', u) := T(T', o) N [,er K(Hpz). Then, the
Cuntz C*-algebra of P is

O, p) :==T(L, 1)/ T (L, ).

Theorem (D. 2021)
If P on T has SRLP, O(T',u) = C(ART x T) @ K(¢3(I)).

Theorem (D., Dussaule & Gekhtman)

Let P be a symmetric aperiodic (s.n.d.) RW on a RHT. Then
the co-universal quotient is C(9y; gI' x T) ® K(¢2(T)).

End
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Concluding remarks

@ We constructed a I'-equivariant bi-Lipschitz embedding
v: Oy gI' — ORI, Is it automatically surjective? In some
cases it is (beyond hyperbolic).
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Concluding remarks

@ We constructed a I'-equivariant bi-Lipschitz embedding
v: Oy gI' — ORI, Is it automatically surjective? In some
cases it is (beyond hyperbolic).

@ By Avez’s theorem we know that OgI’ = ) if and only if T’
is amenable. What is the relationship between the
ratio-limit radical R, and the amenable radical of I'?
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Concluding remarks

@ We constructed a I'-equivariant bi-Lipschitz embedding
L: (9]\"}[7 gl — OrI'. Is it automatically surjective? In some
cases it is (beyond hyperbolic).

@ By Avez’s theorem we know that OgI’ = ) if and only if T’
is amenable. What is the relationship between the
ratio-limit radical R, and the amenable radical of I'?

@ In Dussaule’s first paper on LLTs, he is able to get a rough
LLT when G’(z,y) = oo. How sensitive are ratio-limit
boundaries up to applying a quasi-isometry?
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Concluding remarks

@ We constructed a I'-equivariant bi-Lipschitz embedding
v: Oy gI' — ORI, Is it automatically surjective? In some
cases it is (beyond hyperbolic).

@ By Avez’s theorem we know that OgI’ = ) if and only if T’
is amenable. What is the relationship between the
ratio-limit radical R, and the amenable radical of I'?

@ In Dussaule’s first paper on LLTs, he is able to get a rough
LLT when G’(z,y) = oo. How sensitive are ratio-limit
boundaries up to applying a quasi-isometry?

@ Viselter’s original quotient C*-algebra is by the ideal
®.ecrK(Hpz), and it seems to be intimately related to the
spacetime Martin boundary of the RW.



Thank you for your attention !
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