Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00

Ratio-limit boundaries for random walks on relatively hyperbolic groups.

Adam Dor-On

Haifa University

July 18^{th} , 2023 University of Vienna, Erwin Schödinger Institute GAGTA 2023

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
●00	000	000	0000	000	00
Random	walks				

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
•00	000	000	0000	000	00
Random v	valks				

Let Γ be a countable group and μ a finitely supported measure on Γ . A random walk on Γ is a stochastic matrix on Γ given by $P(x, y) = \mu(x^{-1}y)$ for $x, y \in \Gamma$, such that supp μ generates Γ .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
•00	000	000	0000	000	00
Random w	valks				

Let Γ be a countable group and μ a finitely supported measure on Γ . A random walk on Γ is a stochastic matrix on Γ given by $P(x, y) = \mu(x^{-1}y)$ for $x, y \in \Gamma$, such that supp μ generates Γ .

In particular, all groups we consider are finitely generated.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
●00	000	000	0000	000	00
Random w	valks				

Let Γ be a countable group and μ a finitely supported measure on Γ . A random walk on Γ is a stochastic matrix on Γ given by $P(x, y) = \mu(x^{-1}y)$ for $x, y \in \Gamma$, such that supp μ generates Γ .

In particular, all groups we consider are finitely generated. We say P is *symmetric* if $\mu(x) = \mu(x^{-1})$ for all $x \in \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
●00	000	000	0000	000	00
Random w	valks				

Let Γ be a countable group and μ a finitely supported measure on Γ . A random walk on Γ is a stochastic matrix on Γ given by $P(x, y) = \mu(x^{-1}y)$ for $x, y \in \Gamma$, such that supp μ generates Γ .

In particular, all groups we consider are finitely generated. We say P is symmetric if $\mu(x) = \mu(x^{-1})$ for all $x \in \Gamma$.

Example (Simple RW on \mathbb{F}_d)

Let $\Gamma = \mathbb{F}_d = \langle a_1, ..., a_d \rangle$, and $\mu(a_i^{\pm 1}) = \frac{1}{2d}$ for all i = 1, ..., d. This is called the simple random walk on \mathbb{F}^d .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
●00	000	000	0000	000	00
Random w	valks				

Let Γ be a countable group and μ a finitely supported measure on Γ . A random walk on Γ is a stochastic matrix on Γ given by $P(x, y) = \mu(x^{-1}y)$ for $x, y \in \Gamma$, such that supp μ generates Γ .

In particular, all groups we consider are finitely generated. We say P is symmetric if $\mu(x) = \mu(x^{-1})$ for all $x \in \Gamma$.

Example (Simple RW on \mathbb{F}_d)

Let $\Gamma = \mathbb{F}_d = \langle a_1, ..., a_d \rangle$, and $\mu(a_i^{\pm 1}) = \frac{1}{2d}$ for all i = 1, ..., d. This is called the simple random walk on \mathbb{F}^d .

The *spectral radius* of P is $\rho := \limsup_n \sqrt[n]{P^n(x, y)}$ for some (all) $x, y \in \Gamma$. In this talk our groups will be non-amenable, so we will always have $\rho < 1$ (Kesten 1959).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
0●0	000	000	0000	000	00
Martin bo	oundary				

$$G_r(x,y) = \sum_{n=0}^{\infty} P^n(x,y)r^n.$$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
0●0	000	000	0000	000	00
Martin bo	oundary				

$$G_r(x,y) = \sum_{n=0}^{\infty} P^n(x,y)r^n.$$

Martin kernel $K_r: \Gamma \times \Gamma \to (0,\infty)$ at r is $K_r(x,y) = \frac{G_r(x,y)}{G_r(e,y)}$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
0●0	000	000	0000	000	00
Martin bo	oundary				

$$G_r(x,y) = \sum_{n=0}^{\infty} P^n(x,y)r^n.$$

Martin kernel $K_r: \Gamma \times \Gamma \to (0,\infty)$ at r is $K_r(x,y) = \frac{G_r(x,y)}{G_r(e,y)}$

Definition

Let P be a RW on Γ . The r-Martin compactification is the smallest compactification $\Delta_{M,r}\Gamma$ of Γ to which the functions $y \mapsto K_r(x,y)$ extend continuously.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
0●0	000	000	0000	000	00
Martin bo	oundary				

$$G_r(x,y) = \sum_{n=0}^{\infty} P^n(x,y)r^n.$$

Martin kernel $K_r: \Gamma \times \Gamma \to (0,\infty)$ at r is $K_r(x,y) = \frac{G_r(x,y)}{G_r(e,y)}$

Definition

Let P be a RW on Γ . The r-Martin compactification is the smallest compactification $\Delta_{M,r}\Gamma$ of Γ to which the functions $y \mapsto K_r(x, y)$ extend continuously. The r-Martin boundary is then the closed subset $\partial_{M,r}\Gamma = \Delta_{M,r}\Gamma \setminus \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
0●0	000	000	0000	000	00
Martin bo	oundary				

$$G_r(x,y) = \sum_{n=0}^{\infty} P^n(x,y)r^n.$$

Martin kernel $K_r : \Gamma \times \Gamma \to (0,\infty)$ at r is $K_r(x,y) = \frac{G_r(x,y)}{G_r(e,y)}$

Definition

Let P be a RW on Γ . The r-Martin compactification is the smallest compactification $\Delta_{M,r}\Gamma$ of Γ to which the functions $y \mapsto K_r(x, y)$ extend continuously. The r-Martin boundary is then the closed subset $\partial_{M,r}\Gamma = \Delta_{M,r}\Gamma \setminus \Gamma$.

The left action of Γ on itself induces an action $\Gamma \curvearrowright \partial_{M,r}\Gamma$, and we have $r^{-1} \cdot K_r(x,\xi) = \sum_{y \in \Gamma} P(x,y) K_r(y,\xi)$ for $\xi \in \partial_{M,r}\Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
00●	000	000	0000	000	00
Harmonic	functions				

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
00●	000	000	0000	000	00
Harmonic	functions				

Theorem (Poisson–Martin integral representation)

Let u be in $\mathcal{H}_1^+(P, r^{-1})$. Then there is a representing probability measure ν^u on $\partial_{M,r}\Gamma$ such that

$$u(x) = \int_{\partial_{M,r}\Gamma} K_r(x,\xi) d\nu^u(\xi),$$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
00●	000	000	0000	000	00
Harmonic	functions				

Theorem (Poisson–Martin integral representation)

Let u be in $\mathcal{H}_1^+(P, r^{-1})$. Then there is a representing probability measure ν^u on $\partial_{M,r}\Gamma$ such that

$$u(x) = \int_{\partial_{M,r}\Gamma} K_r(x,\xi) d\nu^u(\xi),$$

and ν^u is unique among representing probability measures ν that have full mass on points $\xi \in \partial_{M,r} \Gamma$ with $x \mapsto K_r(x,\xi)$ extreme.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
00●	000	000	0000	000	00
Harmonic	functions				

Theorem (Poisson–Martin integral representation)

Let u be in $\mathcal{H}_1^+(P, r^{-1})$. Then there is a representing probability measure ν^u on $\partial_{M,r}\Gamma$ such that

$$u(x) = \int_{\partial_{M,r}\Gamma} K_r(x,\xi) d\nu^u(\xi),$$

and ν^u is unique among representing probability measures ν that have full mass on points $\xi \in \partial_{M,r}\Gamma$ with $x \mapsto K_r(x,\xi)$ extreme.

Denote $\partial_{M,r}^m \Gamma$ the points $\xi \in \partial_{M,r} \Gamma$ with $x \mapsto K_r(x,\xi)$ extreme.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-lim	its				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-limi	ts				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-limi	ts				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

nilpotent (Margulis 1966).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-limi	its				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

- nilpotent (Margulis 1966).
- 2 amenable, μ symmetric, H(x, y) = 1 (Avez 1973).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-limi	ts				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

- nilpotent (Margulis 1966).
- 2 amenable, μ symmetric, H(x, y) = 1 (Avez 1973).
- 0 hyperbolic, μ symmetric (Gouëzel 2014).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-lim	its				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

- nilpotent (Margulis 1966).
- 2 amenable, μ symmetric, H(x, y) = 1 (Avez 1973).
- \bullet hyperbolic, μ symmetric (Gouëzel 2014).

Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on Γ with SRLP, and denote by R_{μ} the set $R_{\mu} := \{ g \in \Gamma \mid H(x,g) = H(x,e), \forall x \in \Gamma \}.$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	●00	000	0000	000	00
Ratio-lim	its				

Let P be a RW on Γ . We say it has SRLP if for any $x, y \in \Gamma$ the limit $H(x, y) := \lim_{n \to \infty} \frac{P^n(x, y)}{P^n(e, y)}$ exists.

A result of Gerl (1978) shows that $x \mapsto H(x, y)$ is ρ -harmonic for all $y \in \Gamma$, and SRLP was established for instance when Γ is

- nilpotent (Margulis 1966).
- 2 amenable, μ symmetric, H(x, y) = 1 (Avez 1973).
- \bullet hyperbolic, μ symmetric (Gouëzel 2014).

Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on Γ with SRLP, and denote by R_{μ} the set $R_{\mu} := \{ g \in \Gamma \mid H(x,g) = H(x,e), \forall x \in \Gamma \}$. Then R_{μ} is an amenable normal subgroup of Γ called the ratio-limit radical.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	0●0	000	0000	000	00
Ratio-limi	t compact	ta			

Let P be a symmetric RW on Γ with SRLP. The (reduced) ratio-limit compacⁿ is the smallest compacⁿ $\Delta_{\rm R}\Gamma$ of Γ/R_{μ} to which the functions $y \mapsto H(x, y)$ extend continuously.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	0●0	000	0000	000	00
Ratio-limi	it compact	ta			

Let P be a symmetric RW on Γ with SRLP. The (reduced) ratio-limit compacⁿ is the smallest compacⁿ $\Delta_{\rm R}\Gamma$ of Γ/R_{μ} to which the functions $y \mapsto H(x, y)$ extend continuously. The compactum $\partial_{\rm R}\Gamma := \Delta_{\rm R}\Gamma \setminus [\Gamma/R_{\mu}]$ is the ratio-limit boundary.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	0●0	000	0000	000	00
Ratio-limi	t compact	ta			

Let P be a symmetric RW on Γ with SRLP. The (reduced) ratio-limit compacⁿ is the smallest compacⁿ $\Delta_{\rm R}\Gamma$ of Γ/R_{μ} to which the functions $y \mapsto H(x, y)$ extend continuously. The compactum $\partial_{\rm R}\Gamma := \Delta_{\rm R}\Gamma \setminus [\Gamma/R_{\mu}]$ is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	0●0	000	0000	000	00
Ratio-limi	it compact	ta			

Let P be a symmetric RW on Γ with SRLP. The (reduced) ratio-limit compacⁿ is the smallest compacⁿ $\Delta_{\rm R}\Gamma$ of Γ/R_{μ} to which the functions $y \mapsto H(x, y)$ extend continuously. The compactum $\partial_{\rm R}\Gamma := \Delta_{\rm R}\Gamma \setminus [\Gamma/R_{\mu}]$ is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Theorem (Woess 2021)

Let P be a symm RW on a hyperbolic group Γ . Then $\partial_R \Gamma \cong \partial \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	0●0	000	0000	000	00
Ratio-limi	it compact	ta			

Let P be a symmetric RW on Γ with SRLP. The (reduced) ratio-limit compacⁿ is the smallest compacⁿ $\Delta_{\rm R}\Gamma$ of Γ/R_{μ} to which the functions $y \mapsto H(x, y)$ extend continuously. The compactum $\partial_{\rm R}\Gamma := \Delta_{\rm R}\Gamma \setminus [\Gamma/R_{\mu}]$ is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Theorem (Woess 2021)

Let P be a symm RW on a hyperbolic group Γ . Then $\partial_R \Gamma \cong \partial \Gamma$.

Used to show that certain canonical equivariant quotient C*-algebra generally fail to be the unique equivariant quotient, even when such a quotient exists.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local limi	t theorem	S			

Denote by $R = \rho^{-1}$, the inverse of the spectral radius. Modern techniques for establishing SRLP for non-amenable groups rely on local limit theorems.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local limi	it theorem	s			

Random walks	Ratio-limits $00 \bullet$	RH groups	Main results	Operator algebras	End
000		000	0000	000	00
Local lim	it theorem	S			

• spectrally non-degenerate then $P^n(x,y) \sim \beta(x,y) R^{-n} n^{-\frac{3}{2}}$ (Dussaule 2022).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local lim	it theorem	IS			

• spectrally non-degenerate then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{3}{2}}$ (Dussaule 2022). Includes Γ hyperbolic (Gouëzel 2014).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local limi	t theorem	S			

- spectrally non-degenerate then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{3}{2}}$ (Dussaule 2022). Includes Γ hyperbolic (Gouëzel 2014).
- ② convergent and spectrally degenerate, then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{d}{2}}$ with d such that $s = \lceil \frac{d}{2} \rceil - 1$ is the smallest s for which $G_R^{(s)}(x,y) = \infty$ (DPT).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local limi	it theorem	S			

- spectrally non-degenerate then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{3}{2}}$ (Dussaule 2022). Includes Γ hyperbolic (Gouëzel 2014).
- convergent and spectrally degenerate, then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{d}{2}}$ with d such that $s = \lceil \frac{d}{2} \rceil - 1$ is the smallest s for which $G_R^{(s)}(x,y) = \infty$ (DPT).

Example (Dussaule, Peigné & Tapie)

When $\Gamma = \mathbb{Z}^3 * \mathbb{Z}^6$, there is a symmetric RW on Γ for which $P^n(x, y) \sim \beta(x, y) R^{-n} n^{-\frac{3}{2}} \log(n)^{-\frac{1}{2}}$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	00●	000	0000	000	00
Local limi	it theorem	S			

- spectrally non-degenerate then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{3}{2}}$ (Dussaule 2022). Includes Γ hyperbolic (Gouëzel 2014).
- convergent and spectrally degenerate, then $P^n(x,y) \sim \beta(x,y)R^{-n}n^{-\frac{d}{2}}$ with d such that $s = \lceil \frac{d}{2} \rceil - 1$ is the smallest s for which $G_R^{(s)}(x,y) = \infty$ (DPT).

Example (Dussaule, Peigné & Tapie)

When $\Gamma = \mathbb{Z}^3 * \mathbb{Z}^6$, there is a symmetric RW on Γ for which $P^n(x, y) \sim \beta(x, y) R^{-n} n^{-\frac{3}{2}} \log(n)^{-\frac{1}{2}}$.

Classifying all LLT behaviors is still open, but we can compute $H(x,y) = \frac{\beta(x,y)}{\beta(e,y)}$ in the presence of a LLT.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperboli	c groups				

Definition (Gromov 1987)

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $Gr(\Gamma)$ is hyperbolic.
Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperboli	c groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperboli	c groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

() \mathbb{F}_d , finite groups, free products of hyperbolic groups.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperbolic	e groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

() \mathbb{F}_d , finite groups, free products of hyperbolic groups.

 \mathfrak{O} SL₂(\mathbb{Z}) = $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$, and any co-compact lattice of SL₂(\mathbb{R}).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperbolic	groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

- **(**) \mathbb{F}_d , finite groups, free products of hyperbolic groups.
- \mathfrak{O} SL₂(\mathbb{Z}) = $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$, and any co-compact lattice of SL₂(\mathbb{R}).
- Fundamental groups of *compact* Riemannian manifolds with strictly negative sectional curvature.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperbolic	groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

- **(**) \mathbb{F}_d , finite groups, free products of hyperbolic groups.
- \mathfrak{O} SL₂(\mathbb{Z}) = $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$, and any co-compact lattice of SL₂(\mathbb{R}).
- Fundamental groups of *compact* Riemannian manifolds with strictly negative sectional curvature.
- "Most" groups with finite defining relations are hyperbolic.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	●00	0000	000	00
Hyperbolic	e groups				

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its Cayley graph $\operatorname{Gr}(\Gamma)$ is hyperbolic. That is, there is a $\delta > 0$ such that whenever x, y, z is a geodesic triangle in $\operatorname{Gr}(\Gamma)$, any δ -neighborhood of two edges contains the third.

- **(**) \mathbb{F}_d , finite groups, free products of hyperbolic groups.
- \mathfrak{O} SL₂(\mathbb{Z}) = $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$, and any co-compact lattice of SL₂(\mathbb{R}).
- Fundamental groups of *compact* Riemannian manifolds with strictly negative sectional curvature.

• "Most" groups with finite defining relations are hyperbolic. On the other hand, hyperbolic groups do not allow for arbitrary subgroups. For instance $\mathbb{Z}^2 * \mathbb{Z}^3$ is not hyperbolic, even though it does admits some "global" hyperbolic behaviour.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperbolic	c groups			

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperbolic	c groups			

Definition (Bowditch; Farb; Gromov)

 Γ is hyperbolic relative to Ω if $Gr(\Gamma; \Omega)$ is a hyperbolic space !

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperbolic	c groups			

Definition (Bowditch; Farb; Gromov)

 Γ is hyperbolic relative to Ω if $Gr(\Gamma; \Omega)$ is a hyperbolic space !

Gromov boundary of $Gr(\Gamma; \Omega)$ may fail to be compact, but its completion $\partial_B(\Gamma; \Omega)$ is compact and called *Bowditch boundary*.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperbolic	c groups			

Definition (Bowditch; Farb; Gromov)

 Γ is hyperbolic relative to Ω if $Gr(\Gamma; \Omega)$ is a hyperbolic space !

Gromov boundary of $Gr(\Gamma; \Omega)$ may fail to be compact, but its completion $\partial_B(\Gamma; \Omega)$ is compact and called *Bowditch boundary*.

• *conical points* are those coming from Gromov boundary.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperbolic	c groups			

Definition (Bowditch; Farb; Gromov)

 Γ is hyperbolic relative to Ω if $Gr(\Gamma; \Omega)$ is a hyperbolic space !

Gromov boundary of $Gr(\Gamma; \Omega)$ may fail to be compact, but its completion $\partial_B(\Gamma; \Omega)$ is compact and called *Bowditch boundary*.

- *conical points* are those coming from Gromov boundary.
- **2** parabolic points are $\xi \in \partial_B(\Gamma; \Omega)$ for which stabilizers Γ_x are infinite. These are always conjugate to elements of Ω .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	0●0	0000	000	00
Relatively	hyperboli	c groups			

Definition (Bowditch; Farb; Gromov)

 Γ is hyperbolic relative to Ω if $Gr(\Gamma; \Omega)$ is a hyperbolic space !

Gromov boundary of $Gr(\Gamma; \Omega)$ may fail to be compact, but its completion $\partial_B(\Gamma; \Omega)$ is compact and called *Bowditch boundary*.

- *conical points* are those coming from Gromov boundary.
- parabolic points are $\xi \in \partial_B(\Gamma; \Omega)$ for which stabilizers Γ_x are infinite. These are always conjugate to elements of Ω .

Examples include free products $A_1 * A_2$ with A_1, A_2 f.g., as well as fundamental groups of *finite volume* Riemmanian manifolds of pinched negative sectional curvature.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	00●	0000	000	00
Bowditch	boundary	and Mart	in bounda	ary	

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	00●	0000	000	00
Bowditch	boundary	and Mart	in bounda	arv	

Theorem (Ancona 1988; Gouëzel 2014)

Let P be a symmetric RW on a hyperbolic group Γ . Then for any $r \in [1, R]$ we have a Γ -equivariant homeo $\partial_{M,r} \Gamma \cong \partial \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	00●	0000		00
Bowditch	boundary	and Mart	in bounda	rv	

Theorem (Ancona 1988; Gouëzel 2014)

Let P be a symmetric RW on a hyperbolic group Γ . Then for any $r \in [1, R]$ we have a Γ -equivariant homeo $\partial_{M,r} \Gamma \cong \partial \Gamma$.

An analogue of this result for *relatively hyperbolic* groups was obtained by Gekhtman, Gerasimov, Potyagailo and Yang.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	00●	0000	000	00
Bowditch	boundary	and Mart	in bounda	arv	

Theorem (Ancona 1988; Gouëzel 2014)

Let P be a symmetric RW on a hyperbolic group Γ . Then for any $r \in [1, R]$ we have a Γ -equivariant homeo $\partial_{M,r}\Gamma \cong \partial\Gamma$.

An analogue of this result for *relatively hyperbolic* groups was obtained by Gekhtman, Gerasimov, Potyagailo and Yang.

Theorem (GGPY 2021)

Let P be a symm RW on Γ hyperbolic relative to Ω . For any $r \in [1, R]$ the identity on Γ induces a continuous Γ -surjection

 $\pi: \partial_{M,r}\Gamma \to \partial_B(\Gamma; \Omega),$

and $\pi^{-1}(\xi)$ is a singleton for any conical point $\xi \in \partial_B(\Gamma; \Omega)$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	●000	000	00
Embedding	g, minima	lity, stror	ng proxima	ality	

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	●000	000	00
Embedding	g, minima	lity, stron	g proxima	ality	

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	●000	000	00
Embedding	g, minimal	lity, stron	g proxima	lity	

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ . Then there is a Γ -bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m \Gamma} \to \partial_R \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	•000		00
Embedding	g, minimal	ity, strong	g proximal	ity	

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ . Then there is a Γ -bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m \Gamma} \to \partial_R \Gamma$.

This requires proofs of LLTs for RH groups. We take $\overline{\partial_{M,R}^m \Gamma}$ instead of $\partial_{M,R} \Gamma$ since we do not know they coincide !

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	•000		00
Embedding	g, minimal	ity, strong	g proximal	ity	

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ . Then there is a Γ -bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m \Gamma} \to \partial_R \Gamma$.

This requires proofs of LLTs for RH groups. We take $\overline{\partial_{M,R}^m \Gamma}$ instead of $\partial_{M,R} \Gamma$ since we do not know they coincide !

Proposition (D., Dussaule & Gekhtman; GGPY 2021)

Let P be a symmetric aperiodic RW on a non-elementary relatively hyperbolic group Γ .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	•000		00
Embedding	g, minimal	ity, strong	g proximal	ity	

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ . Then there is a Γ -bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m \Gamma} \to \partial_R \Gamma$.

This requires proofs of LLTs for RH groups. We take $\overline{\partial_{M,R}^m \Gamma}$ instead of $\partial_{M,R} \Gamma$ since we do not know they coincide !

Proposition (D., Dussaule & Gekhtman; GGPY 2021)

Let P be a symmetric aperiodic RW on a non-elementary relatively hyperbolic group Γ . Then the action $\Gamma \curvearrowright \overline{\partial_{M,R}^m \Gamma}$ is minimal and strongly proximal.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0●00	000	00
Sketch of	proof				

Random walks	Ratio-limits	RH groups	$\begin{array}{c} \text{Main results} \\ 0 \bullet 0 0 \end{array}$	Operator algebras	End
000	000	000		000	00
Sketch of J	proof				

• Strong proximality of $\Gamma \curvearrowright X$ means that whenever $\nu \in \operatorname{Prob}(X)$ is a Borel probability measure, the closure of the orbit $\Gamma \nu$ contains a Dirac measure δ_x for $x \in X$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0●00	000	00
Sketch of p	proof				

- Strong proximality of Γ ¬ X means that whenever ν ∈ Prob(X) is a Borel probability measure, the closure of the orbit Γν contains a Dirac measure δ_x for x ∈ X.
- As Γ is non-elementary, it has two hyperbolic elements s, t ∈ Γ such that the set of attractors and repellers {x_±, y_±} has least three elements in ∂_B(Γ; Ω).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0●00	000	00
Sketch of p	proof				

- Strong proximality of $\Gamma \curvearrowright X$ means that whenever $\nu \in \operatorname{Prob}(X)$ is a Borel probability measure, the closure of the orbit $\Gamma \nu$ contains a Dirac measure δ_x for $x \in X$.
- ② As Γ is non-elementary, it has two hyperbolic elements s, t ∈ Γ such that the set of attractors and repellers {x_±, y_±} has least three elements in ∂_B(Γ; Ω).
- Using density of minimal points in $\overline{\partial_{M,R}^m \Gamma}$, we use the Γ -surjection π to show that the lifts $\{\xi_{\pm}, \eta_{\pm}\}$ are also attractors and repellers in $\overline{\partial_{M,R}^m \Gamma}$!

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0●00	000	00
Sketch of p	proof				

- Strong proximality of $\Gamma \curvearrowright X$ means that whenever $\nu \in \operatorname{Prob}(X)$ is a Borel probability measure, the closure of the orbit $\Gamma \nu$ contains a Dirac measure δ_x for $x \in X$.
- ② As Γ is non-elementary, it has two hyperbolic elements s, t ∈ Γ such that the set of attractors and repellers {x_±, y_±} has least three elements in ∂_B(Γ; Ω).
- **3** Using density of minimal points in $\overline{\partial_{M,R}^m \Gamma}$, we use the Γ -surjection π to show that the lifts $\{\xi_{\pm}, \eta_{\pm}\}$ are also attractors and repellers in $\overline{\partial_{M,R}^m \Gamma}$!
- Suppose wlog $\xi_+, \xi_- \neq \eta_-$. If $\nu \in \operatorname{Prob}(\overline{\partial_{M,R}^m \Gamma})$, then $s^n \nu$ converges to $\nu' := \lambda \delta_{\xi_-} + (1 \lambda) \delta_{\xi_+}$. Then $t^m \nu'$ converges to δ_{η_+} . Thus $\Gamma \curvearrowright \overline{\partial_{M,R}^m \Gamma}$ is strongly proximal.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in $\partial_{\mathbf{R}}\Gamma$ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ .

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in ∂ _B Γ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ . Then $\overline{\partial_{M,R}^m \Gamma}$ is the unique closed Γ -invariant subspace of $\partial_R \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in ∂ _B Γ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ . Then $\overline{\partial_{M,R}^m \Gamma}$ is the unique closed Γ -invariant subspace of $\partial_R \Gamma$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in ∂ _B Γ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ . Then $\overline{\partial_{M,R}^m\Gamma}$ is the unique closed Γ -invariant subspace of $\partial_R\Gamma$.

Proof:

• By Poisson-Martin representation theorem we get a continuous surjection φ : Prob $(\overline{\partial_{M,R}^m\Gamma}) \to \mathcal{H}_1^+(\mu,\rho)$ given by integrating $\varphi(\nu)(x) = \int_{\partial_{M,R}\Gamma} K_R(x,\xi) d\nu(\xi)$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in ∂ _B Γ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ . Then $\overline{\partial_{M,R}^m\Gamma}$ is the unique closed Γ -invariant subspace of $\partial_R\Gamma$.

- By Poisson-Martin representation theorem we get a continuous surjection φ : Prob $(\overline{\partial_{M,R}^m\Gamma}) \to \mathcal{H}_1^+(\mu,\rho)$ given by integrating $\varphi(\nu)(x) = \int_{\partial_{M,R}\Gamma} K_R(x,\xi) d\nu(\xi)$.
- As $u := H(\cdot, \xi)$ is an R^{-1} -harmonic function for $\xi \in \partial_{\mathbf{R}} \Gamma$, points in $\partial_{\mathbf{R}} \Gamma$ are a " Γ -subspace" of $\mathcal{H}_{1}^{+}(\mu, \rho)$, which is identified as a " Γ -subspace" of $\operatorname{Prob}(\overline{\partial_{M,R}^m}\Gamma)$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Minimality	in ∂ _B Γ ar	nd sketch			

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary RH group Γ . Then $\overline{\partial_{M,R}^m\Gamma}$ is the unique closed Γ -invariant subspace of $\partial_R\Gamma$.

- By Poisson-Martin representation theorem we get a continuous surjection φ : Prob $(\overline{\partial_{M,R}^m\Gamma}) \to \mathcal{H}_1^+(\mu,\rho)$ given by integrating $\varphi(\nu)(x) = \int_{\partial_{M,R}\Gamma} K_R(x,\xi) d\nu(\xi)$.
- As $u := H(\cdot, \xi)$ is an R^{-1} -harmonic function for $\xi \in \partial_{\mathbf{R}} \Gamma$, points in $\partial_{\mathbf{R}} \Gamma$ are a " Γ -subspace" of $\mathcal{H}_{1}^{+}(\mu, \rho)$, which is identified as a " Γ -subspace" of $\operatorname{Prob}(\overline{\partial_{M,\mathbf{R}}^m}\Gamma)$.
- **③** By strong proximality, $\overline{\Gamma\nu^{u}}$ intersects $\overline{\partial_{M,R}^{m}\Gamma}$, and by minimality this intersection is all of $\overline{\partial_{M,R}^{m}\Gamma}$.

Random walks	Ratio-limits	RH groups	$\begin{array}{c} \text{Main results} \\ \text{000} \bullet \end{array}$	Operator algebras	End
000	000	000		000	00
Dependence	ce on rand	om walk			

A fundamental question in the boundary theory of random walks is that of dependence on the random walk.

Random walks	Ratio-limits	RH groups	$\begin{array}{c} \text{Main results} \\ \text{000} \bullet \end{array}$	Operator algebras	End
000	000	000		000	00
Dependen	ce on rand	lom walk			

A fundamental question in the boundary theory of random walks is that of dependence on the random walk.

Theorem (Woess 1986; Dussaule & Gekhtman 2021)

Let $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$ and $r \in [1, R]$. Then there are μ and μ' such that $\partial^{\mu}_{M,r}\Gamma$ and $\partial^{\mu'}_{M,r}\Gamma$ are not homeomorphic.

Random walks	Ratio-limits	RH groups	$\begin{array}{c} \text{Main results} \\ \text{000} \bullet \end{array}$	Operator algebras	End
000	000	000		000	00
Dependence	ce on rand	lom walk			

A fundamental question in the boundary theory of random walks is that of dependence on the random walk.

Theorem (Woess 1986; Dussaule & Gekhtman 2021)

Let $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$ and $r \in [1, R]$. Then there are μ and μ' such that $\partial^{\mu}_{M,r}\Gamma$ and $\partial^{\mu'}_{M,r}\Gamma$ are not homeomorphic.

The measure μ is s.n.d. RW, while μ' is not. We can prove an analogue of our Γ -equivariant embedding result $\partial_{M,R}^{\mu'}\Gamma \to \partial_{\mathrm{R}}\Gamma$ as a unique Γ -minimal subspace for $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$ and μ' as above.
Random walks	Ratio-limits	RH groups	$\begin{array}{c} \text{Main results} \\ \text{000} \bullet \end{array}$	Operator algebras	End
000	000	000		000	00
Dependence	ce on rand	lom walk			

A fundamental question in the boundary theory of random walks is that of dependence on the random walk.

Theorem (Woess 1986; Dussaule & Gekhtman 2021)

Let $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$ and $r \in [1, R]$. Then there are μ and μ' such that $\partial^{\mu}_{M,r}\Gamma$ and $\partial^{\mu'}_{M,r}\Gamma$ are not homeomorphic.

The measure μ is s.n.d. RW, while μ' is not. We can prove an analogue of our Γ -equivariant embedding result $\partial_{M,R}^{\mu'}\Gamma \to \partial_{\mathrm{R}}\Gamma$ as a unique Γ -minimal subspace for $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$ and μ' as above.

Theorem (D., Dussaule & Gektman)

Let $\Gamma = \mathbb{Z}^5 * \mathbb{Z}$. Then there exist two random walks μ and μ' for which $\partial_R^{\mu}\Gamma$ and $\partial_R^{\mu'}\Gamma$ are not Γ -equivariantly homeomorphic.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	●00	00
Toeplitz	C*-algebras	for rand	lom walks		

Let P be a RW on Γ induced by μ . We let \mathcal{H}_P be the Hilbert space with o.n.b. $\{e_{y,z}^{(m)}\}_{P^m(y,z)>0,m\geq 0}$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	●00	00
Toeplitz	C*-algebras	for rand	dom walks		

Let P be a RW on Γ induced by μ . We let \mathcal{H}_P be the Hilbert space with o.n.b. $\{e_{y,z}^{(m)}\}_{P^m(y,z)>0,m\geq 0}$. Then, for $x, y \in \Gamma$ and $n \in \mathbb{N}$ with $P^n(x,y) > 0$ we define a bounded linear operator $S_{x,y}^{(n)}$ on \mathcal{H} by setting

$$S_{x,y}^{(n)}(e_{y',z}^{(m)}) = \delta_{y,y'} \sqrt{\frac{P^n(x,y)P^m(y,z)}{P^{n+m}(x,z)}} e_{x,z}^{(n+m)}.$$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	●00	00
Toeplitz	C*-algebras	for rand	dom walks		

Let P be a RW on Γ induced by μ . We let \mathcal{H}_P be the Hilbert space with o.n.b. $\{e_{y,z}^{(m)}\}_{P^m(y,z)>0,m\geq 0}$. Then, for $x, y \in \Gamma$ and $n \in \mathbb{N}$ with $P^n(x, y) > 0$ we define a bounded linear operator $S_{x,y}^{(n)}$ on \mathcal{H} by setting

$$S_{x,y}^{(n)}(e_{y',z}^{(m)}) = \delta_{y,y'} \sqrt{\frac{P^n(x,y)P^m(y,z)}{P^{n+m}(x,z)}} e_{x,z}^{(n+m)}.$$

The *Toeplitz C*-algebra* of P is

$$\mathcal{T}(\Gamma,\mu) := C^*(S_{x,y}^{(n)} \mid P^n(x,y) > 0, \ n \ge 0).$$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	●00	00
Toeplitz	C*-algebras	for rand	lom walks		

Let P be a RW on Γ induced by μ . We let \mathcal{H}_P be the Hilbert space with o.n.b. $\{e_{y,z}^{(m)}\}_{P^m(y,z)>0,m\geq 0}$. Then, for $x, y \in \Gamma$ and $n \in \mathbb{N}$ with $P^n(x,y) > 0$ we define a bounded linear operator $S_{x,y}^{(n)}$ on \mathcal{H} by setting

$$S_{x,y}^{(n)}(e_{y',z}^{(m)}) = \delta_{y,y'} \sqrt{\frac{P^n(x,y)P^m(y,z)}{P^{n+m}(x,z)}} e_{x,z}^{(n+m)}.$$

The *Toeplitz C*-algebra* of P is

$$\mathcal{T}(\Gamma,\mu) := C^*(S_{x,y}^{(n)} \mid P^n(x,y) > 0, \ n \ge 0).$$

It arises from a general *subproduct system* construction of Shalit and Solel (2009), when applied to P as a positive map on $c_0(\Gamma)$. This came about form work of mine with Markiewicz (2017).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Co-univer	sal Toepli	tz quotier	nt		

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	0●0	00
Co-univers	al Toeplitz	z quotient			

Question (D. 2021; Co-universal quotient)

is there a unique smallest $\Gamma \times \mathbb{T}$ equivariant quotient of $\mathcal{T}(\Gamma, \mu)$?

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Co-univers	al Toepli	tz quotier	nt		

Question (D. 2021; Co-universal quotient)

is there a unique smallest $\Gamma \times \mathbb{T}$ equivariant quotient of $\mathcal{T}(\Gamma, \mu)$?

This type of question is natural when a group acts on operator algebras, and goes back to works of Cuntz and Krieger (1980) on C^* -algebras arising from SFTs (uniqueness theorems).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	00
Co-univers	al Toepli	tz quotier	nt		

Question (D. 2021; Co-universal quotient)

is there a unique smallest $\Gamma \times \mathbb{T}$ equivariant quotient of $\mathcal{T}(\Gamma, \mu)$?

This type of question is natural when a group acts on operator algebras, and goes back to works of Cuntz and Krieger (1980) on C*-algebras arising from SFTs (uniqueness theorems).

Theorem (D. 2021)

When Γ is hyperbolic and μ is symmetric, the co-universal quotient exists, and coincides with $C(\mathbb{T} \times \partial \Gamma) \otimes \mathbb{K}(\ell^2(\Gamma))$.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	00●	00
The case of	of RH gro	ups			

When defining Toeplitz C*-algebra for RW, for every $z \in \Gamma$ there is a reducing subspace for $\mathcal{T}(\Gamma, \mu)$ which is given by $\mathcal{H}_{P,z} := \overline{\mathrm{Sp}} \{ e_{y,z}^{(m)} \}_{P^m(y,z)>0, m \geq 0}.$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	00●	00
The case of	of RH gro	ups			

When defining Toeplitz C*-algebra for RW, for every $z \in \Gamma$ there is a reducing subspace for $\mathcal{T}(\Gamma, \mu)$ which is given by $\mathcal{H}_{P,z} := \overline{\mathrm{Sp}}\{e_{y,z}^{(m)}\}_{P^m(y,z)>0, m\geq 0}$. We may then define a closed two-sided ideal $\mathcal{J}(\Gamma, \mu) := \mathcal{T}(\Gamma, \mu) \cap \prod_{z \in \Gamma} \mathbb{K}(\mathcal{H}_{P,z})$. Then, the *Cuntz C*-algebra of P* is

 $\mathcal{O}(\Gamma,\mu) := \mathcal{T}(\Gamma,\mu)/\mathcal{J}(\Gamma,\mu).$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras $00 \bullet$	End
000	000	000	0000		00
The case of	of RH gro	ups			

When defining Toeplitz C*-algebra for RW, for every $z \in \Gamma$ there is a reducing subspace for $\mathcal{T}(\Gamma, \mu)$ which is given by $\mathcal{H}_{P,z} := \overline{\mathrm{Sp}}\{e_{y,z}^{(m)}\}_{P^m(y,z)>0, m\geq 0}$. We may then define a closed two-sided ideal $\mathcal{J}(\Gamma, \mu) := \mathcal{T}(\Gamma, \mu) \cap \prod_{z \in \Gamma} \mathbb{K}(\mathcal{H}_{P,z})$. Then, the *Cuntz C*-algebra of P* is

$$\mathcal{O}(\Gamma,\mu) := \mathcal{T}(\Gamma,\mu)/\mathcal{J}(\Gamma,\mu).$$

Theorem (D. 2021)

If P on Γ has SRLP, $\mathcal{O}(\Gamma, \mu) \cong C(\Delta_{\mathrm{R}}\Gamma \times \mathbb{T}) \otimes \mathbb{K}(\ell^{2}(\Gamma)).$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras $00 \bullet$	End
000	000	000	0000		00
The case of	of RH gro	ups			

When defining Toeplitz C*-algebra for RW, for every $z \in \Gamma$ there is a reducing subspace for $\mathcal{T}(\Gamma, \mu)$ which is given by $\mathcal{H}_{P,z} := \overline{\mathrm{Sp}}\{e_{y,z}^{(m)}\}_{P^m(y,z)>0, m\geq 0}$. We may then define a closed two-sided ideal $\mathcal{J}(\Gamma, \mu) := \mathcal{T}(\Gamma, \mu) \cap \prod_{z \in \Gamma} \mathbb{K}(\mathcal{H}_{P,z})$. Then, the *Cuntz C*-algebra of P* is

$$\mathcal{O}(\Gamma,\mu) := \mathcal{T}(\Gamma,\mu)/\mathcal{J}(\Gamma,\mu).$$

Theorem (D. 2021)

If P on Γ has SRLP, $\mathcal{O}(\Gamma, \mu) \cong C(\Delta_{\mathrm{R}}\Gamma \times \mathbb{T}) \otimes \mathbb{K}(\ell^{2}(\Gamma)).$

Theorem (D., Dussaule & Gekhtman)

Let P be a symmetric aperiodic (s.n.d.) RW on a RH Γ . Then the co-universal quotient is $C(\overline{\partial_{M,R}^m\Gamma} \times \mathbb{T}) \otimes \mathbb{K}(\ell^2(\Gamma)).$

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	●0
Concluding	g remarks				

• We constructed a Γ -equivariant bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m \Gamma} \to \partial_R \Gamma$. Is it automatically surjective? In some cases it is (beyond hyperbolic).

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	●0
Concludin	g remarks	3			

- We constructed a Γ -equivariant bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m} \overline{\Gamma} \to \partial_R \Gamma$. Is it automatically surjective? In some cases it is (beyond hyperbolic).
- By Avez's theorem we know that $\partial_{\mathbf{R}}\Gamma = \emptyset$ if and only if Γ is amenable. What is the relationship between the ratio-limit radical R_{μ} and the amenable radical of Γ ?

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	●0
Concludin	g remarks	}			

- We constructed a Γ -equivariant bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m} \overline{\Gamma} \to \partial_R \Gamma$. Is it automatically surjective? In some cases it is (beyond hyperbolic).
- Observe and a state of the state of the
- ◎ In Dussaule's first paper on LLTs, he is able to get a rough LLT when $G'_R(x, y) = \infty$. How sensitive are ratio-limit boundaries up to applying a quasi-isometry?

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	●0
Concludin	g remarks	}			

- We constructed a Γ -equivariant bi-Lipschitz embedding $\iota: \overline{\partial_{M,R}^m} \overline{\Gamma} \to \partial_R \Gamma$. Is it automatically surjective? In some cases it is (beyond hyperbolic).
- Observe and a state of the state of the
- In Dussaule's first paper on LLTs, he is able to get a rough LLT when G'_R(x, y) = ∞. How sensitive are ratio-limit boundaries up to applying a quasi-isometry?
- Viselter's original quotient C*-algebra is by the ideal ⊕_{z∈Γ}𝔅(ℋ_{P,z}), and it seems to be intimately related to the spacetime Martin boundary of the RW.

Random walks	Ratio-limits	RH groups	Main results	Operator algebras	End
000	000	000	0000	000	0●
Thank you	u				

Thank you for your attention !