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Random walks

Definition

Let Γ be a countable group and µ a finitely supported measure
on Γ. A random walk on Γ is a stochastic matrix on Γ given by
P (x, y) = µ(x−1y) for x, y ∈ Γ, such that suppµ generates Γ.

In particular, all groups we consider are finitely generated. We
say P is symmetric if µ(x) = µ(x−1) for all x ∈ Γ.

Example (Simple RW on Fd)

Let Γ = Fd = 〈a1, ..., ad〉, and µ(a±1
i ) = 1

2d for all i = 1, ..., d.
This is called the simple random walk on Fd.

The spectral radius of P is ρ := lim supn
n
√
Pn(x, y) for some

(all) x, y ∈ Γ. In this talk our groups will be non-amenable, so
we will always have ρ < 1 (Kesten 1959).
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Martin boundary

Let R := ρ−1 be the inverse of the spectral radius. For r ∈ [1, R]
we define the Green function for x, y ∈ Γ by

Gr(x, y) =

∞∑
n=0

Pn(x, y)rn.

Martin kernel Kr : Γ× Γ→ (0,∞) at r is Kr(x, y) = Gr(x,y)
Gr(e,y)

Definition

Let P be a RW on Γ. The r-Martin compactification is the
smallest compactification ∆M,rΓ of Γ to which the functions
y 7→ Kr(x, y) extend continuously. The r-Martin boundary is
then the closed subset ∂M,rΓ = ∆M,rΓ \ Γ.

The left action of Γ on itself induces an action Γ y ∂M,rΓ, and
we have r−1 ·Kr(x, ξ) =

∑
y∈Γ P (x, y)Kr(y, ξ) for ξ ∈ ∂M,rΓ.
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Harmonic functions

We will say that a function u : Γ→ (0,∞) is t-harmonic if
t · u(x) =

∑
y∈Γ P (x, y)u(y). The set H+

1 (P, t) of positive
harmonic functions with u(e) = 1 is a compact convex set with
the topology of pointwise convergence.

Theorem (Poisson–Martin integral representation)

Let u be in H+
1 (P, r−1). Then there is a representing probability

measure νu on ∂M,rΓ such that

u(x) =

∫
∂M,rΓ

Kr(x, ξ)dν
u(ξ),

and νu is unique among representing probability measures ν that
have full mass on points ξ ∈ ∂M,rΓ with x 7→ Kr(x, ξ) extreme.

Denote ∂mM,rΓ the points ξ ∈ ∂M,rΓ with x 7→ Kr(x, ξ) extreme.
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Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on Γ. We say it has SRLP if for any x, y ∈ Γ
the limit H(x, y) := limn

Pn(x,y)
Pn(e,y) exists.

A result of Gerl (1978) shows that x 7→ H(x, y) is ρ-harmonic
for all y ∈ Γ, and SRLP was established for instance when Γ is

1 nilpotent (Margulis 1966).

2 amenable, µ symmetric, H(x, y) = 1 (Avez 1973).

3 hyperbolic, µ symmetric (Gouëzel 2014).

Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on Γ with SRLP, and denote by Rµ
the set Rµ := { g ∈ Γ | H(x, g) = H(x, e), ∀x ∈ Γ }. Then Rµ is
an amenable normal subgroup of Γ called the ratio-limit radical.
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Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on Γ with SRLP, and denote by Rµ
the set Rµ := { g ∈ Γ | H(x, g) = H(x, e), ∀x ∈ Γ }. Then Rµ is
an amenable normal subgroup of Γ called the ratio-limit radical.



Random walks Ratio-limits RH groups Main results Operator algebras End

Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on Γ. We say it has SRLP if for any x, y ∈ Γ
the limit H(x, y) := limn

Pn(x,y)
Pn(e,y) exists.

A result of Gerl (1978) shows that x 7→ H(x, y) is ρ-harmonic
for all y ∈ Γ, and SRLP was established for instance when Γ is

1 nilpotent (Margulis 1966).

2 amenable, µ symmetric, H(x, y) = 1 (Avez 1973).

3 hyperbolic, µ symmetric (Gouëzel 2014).
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Definition + Proposition (D. 2021 & DDG)

Suppose P is a symm RW on Γ with SRLP, and denote by Rµ
the set Rµ := { g ∈ Γ | H(x, g) = H(x, e), ∀x ∈ Γ }.

Then Rµ is
an amenable normal subgroup of Γ called the ratio-limit radical.



Random walks Ratio-limits RH groups Main results Operator algebras End

Ratio-limits

Definition (Strong ratio-limit property)

Let P be a RW on Γ. We say it has SRLP if for any x, y ∈ Γ
the limit H(x, y) := limn

Pn(x,y)
Pn(e,y) exists.

A result of Gerl (1978) shows that x 7→ H(x, y) is ρ-harmonic
for all y ∈ Γ, and SRLP was established for instance when Γ is

1 nilpotent (Margulis 1966).

2 amenable, µ symmetric, H(x, y) = 1 (Avez 1973).

3 hyperbolic, µ symmetric (Gouëzel 2014).
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Ratio-limit compacta

Definition (D. 2021)

Let P be a symmetric RW on Γ with SRLP. The (reduced)
ratio-limit compacn is the smallest compacn ∆RΓ of Γ/Rµ to
which the functions y 7→ H(x, y) extend continuously.

The
compactum ∂RΓ := ∆RΓ \ [Γ/Rµ] is the ratio-limit boundary.

Used for studying quotients of C*-algebras arising from RW.

Theorem (Woess 2021)

Let P be a symm RW on a hyperbolic group Γ. Then ∂RΓ ∼= ∂Γ.

Used to show that certain canonical equivariant quotient
C*-algebra generally fail to be the unique equivariant quotient,
even when such a quotient exists.
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Local limit theorems

Denote by R = ρ−1, the inverse of the spectral radius. Modern
techniques for establishing SRLP for non-amenable groups rely
on local limit theorems.

When Γ is relatively hyperbolic, µ is
symmetric and

1 spectrally non-degenerate then Pn(x, y) ∼ β(x, y)R−nn−
3
2

(Dussaule 2022). Includes Γ hyperbolic (Gouëzel 2014).
2 convergent and spectrally degenerate, then

Pn(x, y) ∼ β(x, y)R−nn−
d
2 with d such that s = dd2e − 1 is

the smallest s for which G
(s)
R (x, y) =∞ (DPT).

Example (Dussaule, Peigné & Tapie)

When Γ = Z3 ∗ Z6, there is a symmetric RW on Γ for which
Pn(x, y) ∼ β(x, y)R−nn−

3
2 log(n)−

1
2 .

Classifying all LLT behaviors is still open, but we can compute
H(x, y) = β(x,y)

β(e,y) in the presence of a LLT.
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Hyperbolic groups

Definition (Gromov 1987)

Let Γ be a f.g. discrete group. We say that Γ is hyperbolic if its
Cayley graph Gr(Γ) is hyperbolic.

That is, there is a δ > 0 such
that whenever x, y, z is a geodesic triangle in Gr(Γ), any
δ-neighborhood of two edges contains the third.

1 Fd, finite groups, free products of hyperbolic groups.

2 SL2(Z) = Z4 ∗Z2 Z6, and any co-compact lattice of SL2(R).

3 Fundamental groups of compact Riemannian manifolds
with strictly negative sectional curvature.

4 “Most” groups with finite defining relations are hyperbolic.

On the other hand, hyperbolic groups do not allow for arbitrary
subgroups. For instance Z2 ∗ Z3 is not hyperbolic, even though
it does admits some “global” hyperbolic behaviour.
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Relatively hyperbolic groups

Let Γ be a f.g. group and Ω a finite set of subgroups. The
relative Cayley graph Gr(Γ; Ω) is obtained from Gr(Γ) by
adding a vertex gP and an edge from h to gP for any h ∈ gP
and P ∈ Ω.

Definition (Bowditch; Farb; Gromov)

Γ is hyperbolic relative to Ω if Gr(Γ; Ω) is a hyperbolic space !

Gromov boundary of Gr(Γ; Ω) may fail to be compact, but its
completion ∂B(Γ; Ω) is compact and called Bowditch boundary.

1 conical points are those coming from Gromov boundary.

2 parabolic points are ξ ∈ ∂B(Γ; Ω) for which stabilizers Γx
are infinite. These are always conjugate to elements of Ω.

Examples include free products A1 ∗A2 with A1, A2 f.g., as well
as fundamental groups of finite volume Riemmanian manifolds
of pinched negative sectional curvature.
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Bowditch boundary and Martin boundary

The following was needed with r = R to prove Woess’ theorem.

Theorem (Ancona 1988; Gouëzel 2014)

Let P be a symmetric RW on a hyperbolic group Γ. Then for
any r ∈ [1, R] we have a Γ-equivariant homeo ∂M,rΓ ∼= ∂Γ.

An analogue of this result for relatively hyperbolic groups was
obtained by Gekhtman, Gerasimov, Potyagailo and Yang.

Theorem (GGPY 2021)

Let P be a symm RW on Γ hyperbolic relative to Ω. For any
r ∈ [1, R] the identity on Γ induces a continuous Γ-surjection

π : ∂M,rΓ→ ∂B(Γ; Ω),

and π−1(ξ) is a singleton for any conical point ξ ∈ ∂B(Γ; Ω).
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Embedding, minimality, strong proximality

We are able to adapt Woess’ strategy to show the following
result when the random walk is spectrally non-degenerate
(s.n.d.). S.n.d. RWs are ubiquitous on RH groups !

Proposition (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a RH group Γ.
Then there is a Γ-bi-Lipschitz embedding ι : ∂mM,RΓ→ ∂RΓ.

This requires proofs of LLTs for RH groups. We take ∂mM,RΓ
instead of ∂M,RΓ since we do not know they coincide !

Proposition (D., Dussaule & Gekhtman; GGPY 2021)

Let P be a symmetric aperiodic RW on a non-elementary
relatively hyperbolic group Γ. Then the action Γ y ∂mM,RΓ is
minimal and strongly proximal.
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Sketch of proof

Proof:

1 Strong proximality of Γ y X means that whenever
ν ∈ Prob(X) is a Borel probability measure, the closure of
the orbit Γν contains a Dirac measure δx for x ∈ X.

2 As Γ is non-elementary, it has two hyperbolic elements
s, t ∈ Γ such that the set of attractors and repellers
{x±, y±} has least three elements in ∂B(Γ; Ω).

3 Using density of minimal points in ∂mM,RΓ, we use the
Γ-surjection π to show that the lifts {ξ±, η±} are also
attractors and repellers in ∂mM,RΓ!

4 Suppose wlog ξ+, ξ− 6= η−. If ν ∈ Prob(∂mM,RΓ), then snν
converges to ν ′ := λδξ− + (1− λ)δξ+ . Then tmν ′ converges
to δη+ . Thus Γ y ∂mM,RΓ is strongly proximal.
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2 As Γ is non-elementary, it has two hyperbolic elements
s, t ∈ Γ such that the set of attractors and repellers
{x±, y±} has least three elements in ∂B(Γ; Ω).

3 Using density of minimal points in ∂mM,RΓ, we use the
Γ-surjection π to show that the lifts {ξ±, η±} are also
attractors and repellers in ∂mM,RΓ!
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Minimality in ∂RΓ and sketch

Theorem (D., Dussaule & Gekhtman)

Let P be a symm (s.n.d.) aperiodic RW on a non-elementary
RH group Γ.

Then ∂mM,RΓ is the unique closed Γ-invariant
subspace of ∂RΓ.

Proof:

1 By Poisson-Martin representation theorem we get a
continuous surjection ϕ : Prob(∂mM,RΓ)→ H+

1 (µ, ρ) given

by integrating ϕ(ν)(x) =
∫
∂M,RΓKR(x, ξ)dν(ξ).

2 As u := H(·, ξ) is an R−1-harmonic function for ξ ∈ ∂RΓ,
points in ∂RΓ are a “Γ-subspace” of H+

1 (µ, ρ), which is
identified as a “Γ-subspace” of Prob(∂mM,RΓ).

3 By strong proximality, Γνu intersects ∂mM,RΓ, and by

minimality this intersection is all of ∂mM,RΓ.
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Dependence on random walk

A fundamental question in the boundary theory of random
walks is that of dependence on the random walk.

Theorem (Woess 1986 ; Dussaule & Gekhtman 2021)

Let Γ = Z5 ∗Z and r ∈ [1, R]. Then there are µ and µ′ such that

∂µM,rΓ and ∂µ
′

M,rΓ are not homeomorphic.

The measure µ is s.n.d. RW, while µ′ is not. We can prove an

analogue of our Γ-equivariant embedding result ∂µ
′

M,RΓ→ ∂RΓ

as a unique Γ-minimal subspace for Γ = Z5 ∗ Z and µ′ as above.

Theorem (D., Dussaule & Gektman)

Let Γ = Z5 ∗ Z. Then there exist two random walks µ and µ′ for

which ∂µRΓ and ∂µ
′

R Γ are not Γ-equivariantly homeomorphic.
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Toeplitz C*-algebras for random walks

Let P be a RW on Γ induced by µ. We let HP be the Hilbert

space with o.n.b. {e(m)
y,z }Pm(y,z)>0,m≥0.

Then, for x, y ∈ Γ and
n ∈ N with Pn(x, y) > 0 we define a bounded linear operator

S
(n)
x,y on H by setting

S(n)
x,y (e

(m)
y′,z) = δy,y′

√
Pn(x, y)Pm(y, z)

Pn+m(x, z)
e(n+m)
x,z .

The Toeplitz C*-algebra of P is

T (Γ, µ) := C∗( S(n)
x,y | Pn(x, y) > 0, n ≥ 0 ).

It arises from a general subproduct system construction of Shalit
and Solel (2009), when applied to P as a positive map on c0(Γ).
This came about form work of mine with Markiewicz (2017).
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Co-universal Toeplitz quotient

This C*-algebra has a natural action α : T y T (Γ, µ) given on

generators by αz(S
(n)
x,y ) = znS

(n)
x,y , but there is also a group

action β : Γ y T (Γ, µ) given by βg(S
(n)
x,y ) = S

(n)
gx,gy. These

actions commute, and give rise to an action Γ× T y T (Γ, µ).

Question (D. 2021; Co-universal quotient)

is there a unique smallest Γ×T equivariant quotient of T (Γ, µ)?

This type of question is natural when a group acts on operator
algebras, and goes back to works of Cuntz and Krieger (1980)
on C*-algebras arising from SFTs (uniqueness theorems).

Theorem (D. 2021)

When Γ is hyperbolic and µ is symmetric, the co-universal
quotient exists, and coincides with C(T× ∂Γ)⊗K(`2(Γ)).
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The case of RH groups

When defining Toeplitz C*-algebra for RW, for every z ∈ Γ
there is a reducing subspace for T (Γ, µ) which is given by

HP,z := Sp{e(m)
y,z }Pm(y,z)>0, m≥0.

We may then define a closed
two-sided ideal J (Γ, µ) := T (Γ, µ) ∩

∏
z∈Γ K(HP,z). Then, the

Cuntz C*-algebra of P is

O(Γ, µ) := T (Γ, µ)/J (Γ, µ).

Theorem (D. 2021)

If P on Γ has SRLP, O(Γ, µ) ∼= C(∆RΓ× T)⊗K(`2(Γ)).

Theorem (D., Dussaule & Gekhtman)

Let P be a symmetric aperiodic (s.n.d.) RW on a RH Γ. Then
the co-universal quotient is C(∂mM,RΓ× T)⊗K(`2(Γ)).
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Concluding remarks

1 We constructed a Γ-equivariant bi-Lipschitz embedding
ι : ∂mM,RΓ→ ∂RΓ. Is it automatically surjective? In some
cases it is (beyond hyperbolic).

2 By Avez’s theorem we know that ∂RΓ = ∅ if and only if Γ
is amenable. What is the relationship between the
ratio-limit radical Rµ and the amenable radical of Γ?

3 In Dussaule’s first paper on LLTs, he is able to get a rough
LLT when G′R(x, y) =∞. How sensitive are ratio-limit
boundaries up to applying a quasi-isometry?

4 Viselter’s original quotient C*-algebra is by the ideal
⊕z∈ΓK(HP,z), and it seems to be intimately related to the
spacetime Martin boundary of the RW.
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Thank you

Thank you for your attention !
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