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Plan of the talk

1 Restricted Grassmannian Grres
2 KdV equation
3 Banach Lie–Poisson spaces
4 Quantum mechanics and Toda latice
5 Hierarchy of integrable systems on Banach Lie–Poisson spaces
related to the restricted Grassmannian
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Restricted Grassmannian

We fix a (complex, separable) Hilbert space H with an orthogonal
decomposition (polarization) H = H− ⊕H+.

P± is orthogonal projection on H±.

Definition
Restricted Grassmannian Grres is a set of Hilbert subspacesW in H
such that
1. the projection P+ restricted toW is Fredholm operator;
2. the projection P− restricted toW is Hilbert–Schmidt operator;
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Grres is Banach symplectic manifold modelled on Hilbert space
L2(H+,H−).

Idea behind the construction:
X ∈ L2(H+,H−) 7−→ graph of X ∈ Grres
Transition maps are certain homographic functions.

Connected components of Grres are Grres,k, k ∈ Z, consisting of
such subspacesW that index of P+ restricted toW is k.
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Block decomposition of the operator

A =

(
A++ A−+

A+− A−−

)

A++ : H+ → H+ A−− : H− → H−

A−+ : H− → H+ A+− : H+ → H−

Definition
We define the Banach Lie group

GLres := {g ∈ GL∞(H) | g−+ ∈ L2(H−,H+), g+− ∈ L2(H+,H−)}
(1)
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Banach Lie algebra of GLres is

Lres := {A ∈ L∞(H) | A−+ ∈ L2(H−,H+), A+− ∈ L2(H+,H−)}
(2)

with norm:

‖A‖res := ‖A++‖∞ + ‖A−−‖∞ + ‖A−+‖2 + ‖A+−‖2 (3)
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Since g ∈ GLres is invertible, g++, g−− are Fredholm operators.

Banach Lie group GLres is disconnected. Connected
components are indexed by index of Fredholm operator g++.
GLres,0 denotes connected component containing identity.

GLres and Ures (unitary counterpart) act transitively on Grres

Grres = GLres ·H+ = Ures ·H+

Grres,0 = GLres,0 ·H+ = Ures,0 ·H+

Grres = Ures /(U(H+)× U(H−))
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Essential case:

H — Hilbert space of complex square integrable functions on the
unit circle S1

H+ = span{1, z, z2, . . .}
H− = span{z−1, z−2, . . .}

If f : S1 → C \ {0} is twice differentiable then it defines a
multiplication operator on H which belongs to GLres.

We denote group generated by operators of this form by Γ.
Subgroups Γ± ⊂ Γ — real-analytic functions which extend to
holomorphic functions inside/outside of the disc, f (0) = 1 (or
f (∞) = 1).
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KdV equation

Korteweg–de Vries equation:

ut + uxxx + 6uux = 0

Idea:
solutions of KdV! flow on (a part of) Grres
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Grres(n) = {W ∈ Grres | znW ⊂W}

g = exp
∑
tkzk ∈ Γ+

(almost all tk vanish)

GivenW ∈ Grres(2) ∩Grres,0 one constructs a function uW s.t.
uW 7−→ ugW is a result of KdV flow by times (t1, t2, . . .)

uW(x) = 2(∂x)
2 log τW(x)

τW(x) is a determinant (in a certain sense) of the projection
e−xzW → H+.
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Banach Lie–Poisson spaces

Definition
Banach Poisson manifold is a smooth manifold M modelled on
Banach space with (localizable) Poisson bracket

{f , g} := π(df , dg) (4)

given by a Poisson tensor π ∈ Γ∞
2∧
T∗∗M , such that the map

] : T∗M → T∗∗M

]µ := π(·, µ)(m) ∈ T∗∗
m M, µ ∈ T∗

mM (5)

takes values in tangent bundle

](T∗M) ⊂ TM.
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Note 1: assumption of localizability means that one can apply
Poisson bracket also to locally defined functions. It isn’t the case in
general even for Banach spaces due to the lack of smooth bump
functions.

Note 2: there are Poisson brackets which are not defined by Poisson
tensor and they might include higher order derivatives. In that case
the usual approach to mechanics fails. Leibniz property does not
imply the existence of Poisson tensor or the map ] : T∗M → T∗∗M .
Uniqueness is also not guaranteed.
Those pathological (queer) Poisson bracket exist i.e. on lp spaces for
1 6 p 6 2.

Note 3: condition ](T∗M) ⊂ TM ensures that hamiltonian vector
fields are really vector fields and not sections of T∗∗M .
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Definition
Banach Lie–Poisson space is a Banach space b with the structure of
Banach Poisson manifold such that b∗ ⊂ C∞(b) is Banach Lie
algebra with respect to Poisson bracket.

Theorem
Banach space b is Banach Lie–Poisson space if b∗ is Banach Lie
algebra with the propriety

ad∗x b ⊂ b ⊂ b∗∗ for x ∈ b∗. (6)
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Poisson bracket on b is

{f , g}(b) := 〈[Df (b),Dg(b)], b〉, (7)

where Df (b),Dg(b) ∈ b∗ are Fréchet derivatives at b.

Hamilton equations on b with Hamiltonian h ∈ C∞(b)

d
dt
b = − ad∗Dh(b) b (8)
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Model example: trace-class operators L1(H)

It is predual to bounded operators:

(L1(H))∗ = L∞(H)

Since L1 is an ideal we get:

ad∗X ρ = [X, ρ] ∈ L1(H)

for X ∈ L∞(H) and ρ ∈ L1(H)

d
dtρ = −[Dh(ρ), ρ]
For ρ = |ψ〉〈ψ| we get

d
dt

|ψ〉 = Dh(ψ) |ψ〉
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A. Odzijewicz and T. S. Ratiu.
Induced and coinduced Banach Lie–Poisson spaces and
integrability
J. Funct. Anal., 225:1225–1272, 2008

Weak symplectic manifold `∞ × `1, q ∈ `∞, p ∈ `1.

ω = dq ∧ dp

HToda =
1

2

∞∑
n=0

p2n +
∞∑
n=0

νne2(qn+1−qn) ν ∈ `1

gives semi-infinite Toda lattice.
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The momentum map:

J : `∞ × `1 3 (q, p) 7→



p0 0 0 · · ·

ν0eq1−q0 p1 0

0 ν1eq2−q1 p2
... . . . . . .


∈ L1

is a Poisson map, i.e.

{F,G}L1 ◦ J = {F ◦ J,G ◦ J}`∞×`1

(note that { · , · }`∞×`1 is only a weak Poisson bracket)
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Predual space to ures is

u1res = {µ ∈ ures | µ++ ∈ L1(H+) , µ−− ∈ L1(H−)} (9)

with pairing
〈µ,A〉 = Trres(µA) (10)

for µ ∈ u1res, A ∈ ures.
Restricted trace Trres is defined as follows

Trres µ := Tr(P+µP+ + P−µP−) (11)

u1res is Banach Lie–Poisson space.
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Integrable systems on groupoid of partial isometries

• homogeneous polynomials

Hnk (µ) :=
∑

i0,i1,...in∈{0,1}
i0+...+in=k

Pi0+µP
i1
+µ . . . µP

in
+

of the degree n ∈ N in the operator variable µ ∈ u1res and degree k in
P+, where k 6 n+ 1.

• hierarchy of commuting equations (Lax form)

∂

∂tnk
µ = in+1[µ,Hnk (µ)]
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Proposition
The diagonal blocks µ++ and µ−− are constant

∂

∂tnk
µ++ = 0

∂

∂tnk
µ−− = 0

Proposition
In the case µ++ = 0 the modulus |µ−+| is constant along the
bihamiltonian flows for all tnk , n ∈ N, k 6 n+ 1.
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Consider the polar decomposition of µ−+ = uB.

Proposition
Assume that µ++ = 0 and |µ−+| is partially invertible. The
equations for the evolution of the partial isometry u assume the
form

∂

∂tnk
u = in+1(µHn−1

k−1 )−−u

for n ∈ N, k 6 n+ 1.

For k = 1
∂

∂tn1
u = in+1(µn)−−u.
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∂

∂t11
u = −Du

∂

∂t21
u = i(uB2 − D2u)

∂

∂t31
u = −DuB2 − uB2u∗Du+ D3u

∂

∂t32
u = −DuB2 − uB2u∗Du

∂

∂t42
u = i(2uB4 − D2uB2 − uB2u∗D2u− DuB2u∗Du)
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Affine coadjoint action of Ures on u1res:

Ãd∗g (µ) = g−1µg + γ(P+ − g−1P+g)

Restricted Grassmannian as one of the orbits:

Φγ : Grres 3W −→ µ = γ(PW − P+) ∈ O(0,γ) ⊂ u1res, γ ∈ iR

Proposition
An element µ ∈ u1res belongs to the coadjoint orbit O(0,γ) if and
only if 1γµ+ P+ is an orthogonal projection.

Tomasz Goliński Banach manifolds and integrable systems around them



Proposition

For initial conditions in the coadjoint orbit O(0,γ), the equations
are linear.

µ2 = γ(µ− µP+ − P+µ) = γ(µ−− − µ++)

implies µ = const

In a chart on the restricted Grassmannian:

Φγ ◦ ϕ−1
H+

(A) = γ

(
(1 + A∗A)−1 − 1 (1 + A∗A)−1A∗
A(1 + A∗A)−1 A(1 + A∗A)−1A∗

)
,

where A ∈ L2.

Tomasz Goliński Banach manifolds and integrable systems around them


