Model Orbits and Unipotent Representations

Jing-Song Huang

CUHK, Shenzhen

Workshop

Minimal Representations and Theta Correspondence

ESI, Vienna, April 11-15, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Model orbits
- Model unipotent ideals
- Model unipotent representations
- Classification for split groups
 - ▶ Simply laced groups (type A, D, E) and G₂
 - Symplectic groups (type C)
 - Orthogonal groups (type B)
 - F₄

This is joint work with Lucas Mason-Brown.

Our results are inspired by the work of Gordan Savin and his friends.

Model nilpotent orbit

 $\mathfrak{g}:$ a simple Lie algebra/ $\mathbb{C}.$

Simply connected Lie group $\boldsymbol{\mathsf{G}}$ with $\mathsf{Lie}(\boldsymbol{\mathsf{G}})=\mathfrak{g}.$

 $G = \mathbf{G}(\mathbb{R})$ the split real form. K a max'l compact subgroup of G.

There is a unique nilpotent (co)adjoint orbit O_{mod} , called the model orbit:

1) O_{mod} is spherical (Borel subgroup has an open orbit);

2) \overline{O}_{mod} contains all spherical nilpotent orbit.

Partitions for classical and dimensions for exceptional of O_{mod} :

Ref. McGovern, Comm. Algebra, 1994.

Maximal primitive ideal

 $U(\mathfrak{g})$ the universal enveloping algebra with center $Z(\mathfrak{g})$. Given $\chi \colon Z(\mathfrak{g}) \to \mathbb{C}$ an infinitesimal character. Denote by J_{χ} the maximal ideal with infl. char. χ . An alternative way to define the model orbit is

$$\overline{O}_{\mathsf{mod}} = AV(J_{\frac{1}{2}\rho}).$$

Set $Q = U(\mathfrak{g})/J_{\frac{1}{2}\rho}$. Then under adjoint action

$$Q = \bigoplus_{\mu \in \Lambda^d_r} V_{\mu},$$

where Λ_r^d is set of dominant weights in root lattice s.t. $V_\mu \cong V_\mu^*$.

・ロト・4回ト・モート・モー・ショーのへで

A Theorem of Loke-Savin and its extension

Theorem (Loke-Savin). The inclusion of $\mathfrak{k} \subset \mathfrak{g}$ induces an algebra isomorphism

$$t\colon U(\mathfrak{k})^K\to Q^K=U(\mathfrak{g})^K/J^K.$$

In particular, Q^{K} is commutative. **Ref.** Loke-Savin, IMRN, 2012.

Extension. Let J_{χ} be a maximal ideal with infl. char. χ , s.t.

$$AV(J_{\chi}) = \overline{O}_{mod}.$$

Set $Q_{\chi} = U(\mathfrak{g})/J_{\chi}$. Then we still have an algebra isomorphism $t \colon U(\mathfrak{k})^K o Q_{\sim}^K$.

Corollary. This implies that any two representations with the same annihilator
$$J_{\chi}$$
 and a same K-type are isomorphic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The unitary dual of a reductive Lie group G

A central problem in representation theory is to classifying the equivalence classes of irreducible unitary representations of G. The orbit method suggests a correspondence between irreducible unitary representations of G and orbits for G in $\mathfrak{g}_{\mathbb{R}}^*$

 $\{G - \text{orbits in } \mathfrak{g}_{\mathbb{R}}^*\} \iff \{\text{Irreducible unitary repns of } G\}$

- One expects a finite set of irreducible unitary representations of G corresponding to the nilpotent co-adjoint G-orbits.
- They have a name—'*unipotent representations*'—but not yet a completely satisfactory definition.
- Properly defined unipotent representations form the building blocks of all irreducible unitary representations.

Ref. Vogan's 1986 Hermann Weyl Lectures notes.

Unipotent representations for $G(\mathbb{F}_q)$

Let \mathbb{F}_q be the finite field with q elements, let G be a connected reductive algebraic group defined over \mathbb{F}_q , and let $G(\mathbb{F}_q)$ be its \mathbb{F}_q -rational points.

In 1976, Deligne and Lusztig defined the notion of a unipotent representation of $G(\mathbb{F}_q)$ (geometric and case-free).

In 1984, Lusztig completed the classification of irreducible finite-dimensional representations of $G(\mathbb{F}_q)$, in particular,

- 1. The classification of all irreducible finite-dimensional representations of $G(\mathbb{F}_q)$ can be reduced to the classification of the unipotent representations, and
- 2. The unipotent representations are classified by certain geometric data related to the nilpotent co-adjoint orbits for the complex group associated to *G*.

Unipotent representations for real reductive G

The analogy between representations of finite groups of Lie type and reductive Lie groups suggests that the unitary dual is built over a finite set of building blocks parameterized by nilpotent co-adjoint orbits.

- The problem of correctly defining and classifying unipotent representations is one of central importance in the subject.
- Classifying the irreducible unitary representations of real reductive groups by construction from the unipotent representations.
- The solution would have major implications for representation theory and the Langlands program.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Unipotent ideals

Given a nilpotent orbit $O \subset \mathfrak{g}^*$.

What are the primitive ideals J, s.t. $AV(J) = \overline{O}$?

Beauville showed that $\text{Spec}(\mathbb{C}[O])$ has symplectic singularities. Then the Namikawa space and Weyl group admit a Lie-theoretic description.

The canonical quantization \mathcal{A}_0 of $\text{Spec}(\mathbb{C}[O])$

is ${\bf G}\mbox{-}{\rm equivariant}$ and there is a uniquely defined co-moment map

$$\Phi_0: U(\mathfrak{g})
ightarrow \mathcal{A}_0.$$

Taking the kernel of Φ_0 , we get a primitive ideal $J_0(O) = \text{Ker } \Phi_0$. If we replace O with a **G**-equivariant cover $\widetilde{O} \to O$, all of this remains true, and we get a primitive ideal

$$J_0(\widetilde{O}) \subset U(\mathfrak{g}).$$

Ref. Losev, Transf. Groups 2021.

Losev, Mason-Brown, Matvieievskyi

Definition. Let $O \subset \mathfrak{g}^*$ be a nilpotent **G**-orbit. Let $\widetilde{O} \to O$ be a **G**-equivariant cover. The *unipotent ideal* attached to \widetilde{O} is the primitive ideal $J_0(\widetilde{O}) \subset U(\mathfrak{g}).$

The *unipotent infinitesimal character* attached to \widetilde{O} is the infinitesimal character

 $\lambda_0(\widetilde{O})$ for $J_0(\widetilde{O})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

They have determined all unipotent infinitesimal characters.

Harish-Chandra bimodules associated with the model orbits

Example. (Losev, Mason-Brown and Matvieievsky) Let $\mathbf{G} = Sp(2n, \mathbb{C})$. Then

- (i) There is one unipotent Harish-Chandra bimodule attached to O_{mod}. It is parabolically induced from the trivial representation of the Segal parabolic.
- (ii) There are two unipotent Harish-Chandra bimodules attached to \tilde{O}_{mod} . One (the spherical) is the midpoint of the complementary series. The other (the anti-spherical) is unitarily induced from a nontrivial character of the Segal parabolic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model unipotent infinitesimal characters

All exceptional groups: $\frac{1}{2}\rho$, except for F_4 : (1,0,1,0).

Model unipotent representations

G: the connected, simply connected Lie group with Lie algebra \mathfrak{g} . $G = \mathbf{G}(\mathbb{R})$: the split real form of **G**. \widetilde{G} : the two-fold nonlinear covering group of *G*.

Definition. A unipotent representation of \tilde{G} attached to O_{mod} is an irreducible representation M of \tilde{G} such that

(i) *M* is unitary.

(ii) The annihilator of M is one of the unipotent ideals $J_0(\widetilde{O}_{mod})$. **Remark.** By a theorem of Vogan, Codim ≥ 2 condition implies that the associated variety of M is closure of a single $K_{\mathbb{C}}$ -orbit.

Ref. Vogan, Associated Varieties and Unipotent Representations, 1991.

Model unipotent representations: type C

Note there are two unipotent ideals for these groups. T_{1}

The interesting one comes from O_{mod} .

Theorem. (Huang and Mason-Brown) The following are true:

- (i) If n even, there are exactly 4n model unipotent representations of Sp(2n, ℝ) with annihilator J₀(Õ_{mod}). All irreducible representations of Sp(2n, ℝ) with this annihilator are unitary and are obtained as theta-lifts of finite-dimensional unitary chbaracters of O(p, q) with p + q = n.
- (ii) If n is odd, there are no model unipotent representations of Sp(2n, ℝ) with annihilator J₀(Õ_{mod}). There are exactly 4n model unipotent representations of Mp(2n, ℝ) with this annihilator. All irreducible representations of Mp(2n, ℝ) with this annihilator are unitary and are obtained as theta-lifts of unitary characters of O(p, q) with p + q = n.

Model unipotent representations: simply laced case and G_2

Suppose **G** is simply laced or G_2 .

The model genuine unipotent representations have infl. char $\frac{1}{2}\rho$.

• A_{2n-1} : 4; A_{2n} : 1. • G_2 : 1 • E_6 : 1 • E_7 : 4 • E_8 :1 • D_{2n} : 16, D_{2n+1} : 4.

They are lifted from the trivial of the linear group.

Ref. Tsai, IMRN, 2022.

Model unipotent representations: type B

Suppose **G** is of type B.

Let Spin(2n+1,2n) denote the connected and simply connected group.

The model genuine unipotent representations:

They are restrictions from the model unipotent representations of Spin(2n+1,2n+1) and Spin(2n+2,2n+2),

which are in turn obtained from restriction of the minimal representations of Spin(2n+1,2n+2) and Spin(2n+3,2n+2).

Ref. Loke-Savin, AJM 2008; Barbasch-Tsai, J. Lie Theory, 2021.

Model unipotent representations: F_4

Suppose **G** is of type F_4 . The split real form is $G = F_{4(4)}$. The model unipotent representations have infl. char (1, 0, 1, 0). The model orbits O_{mod} has 3 real forms. The model unipotent representations:

- ▶ linear G: 3 (Atlas)
- ▶ nonlinear G̃: 3

Remark By a theorem of Leung-Yu, the codim \geq 3 condition implies that # repns = # orbit data. **Ref.** Leung-Yu, Duke, 2021.

Thank You!

Hi Gordan, Happy Birthday!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @