Central extensions in infinite dimensions

-tutorial-

Cornelia Vizman

West University of Timişoara

Plan of the talk

- 1. Neeb's theorem on integrability of Lie algebra extensions
- 2. Integration via path groups
- 3. Integration via prequantization extension

Neeb's theorem on integrability of Lie algebra extensions

Lie algebra cohomology

The continuous Lie algebra cohomology $H^n_{CE}(\mathfrak{g})$ of a Fréchet Lie algebra \mathfrak{g} is the cohomology of the complex $(C^n(\mathfrak{g}),d)$ of continuous alternating n-linear maps $\psi \colon \mathfrak{g}^n \to \mathbb{R}$ with differential $d_{CE} \colon C^n(\mathfrak{g}) \to C^{n+1}(\mathfrak{g})$

$$d_{\mathsf{CE}}\psi(x_0,\ldots,x_n) := \sum_{0 \le i < j \le n} (-1)^{i+j} \psi([x_i,x_j],x_0,\ldots,\widehat{x}_i,\ldots,\widehat{x}_j,\ldots,x_n)$$

 $H^1_{CE}(\mathfrak{g})$ classifies continuous characters of \mathfrak{g}

 $H^2_{\mathsf{CE}}(\mathfrak{g})$ classifies continuous central extensions of \mathfrak{g} by \mathbb{R}

 $H^3_{CE}(\mathfrak{g})$ classifies crossed modules over \mathfrak{g} .

Lie algebra 2-cocycles

A Lie algebra 2–cocycle $\psi:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z}$ satisfies the cyclic identity

$$\psi([x_1, x_2], x_3) + \psi([x_2, x_3], x_1) + \psi([x_3, x_1], x_2) = 0.$$

It defines a Lie bracket on $\mathfrak{z} \times \mathfrak{g}$:

$$[(c,x),(c',x')] := (\psi(x,x'),[x,x']).$$

The coboundary $\psi = d_{\mathsf{CE}}\alpha$ of linear $\alpha : \mathfrak{g} \to \mathfrak{z}$,

$$\psi(x, x') = -\alpha([x, x']),$$

defines a central extension $\widehat{\mathfrak{g}}$ that is isomorphic to the trivial extension $\mathfrak{z} \times \mathfrak{g}$.

Theorem The continuous Lie algebra cohomology $H^2_{CE}(\mathfrak{g},\mathfrak{z})$ parameterizes isomorphism classes of continuous central extensions of \mathfrak{g} by \mathfrak{z} .

Central extensions

A continuous central extension of \mathfrak{g} by \mathfrak{z} is a (topologically split) exact sequence with \mathfrak{z} is central in $\widehat{\mathfrak{g}}$:

$$0 \to \mathfrak{z} \longrightarrow \widehat{\mathfrak{g}} \longrightarrow \mathfrak{g} \to 0$$

A continuous linear splitting $\sigma: \mathfrak{g} \to \widehat{\mathfrak{g}}$ gives a Lie algebra 2-cocycle

$$\psi(x,x') := [\sigma(x),\sigma(x')] - \sigma([x,x']) \in \mathfrak{z}$$

which defines a Lie algebra isomorphic to $\widehat{\mathfrak{g}}$.

A smooth central extension of G by Z is exact sequence with Z central in \widehat{G}

$$1 \to Z \longrightarrow \widehat{G} \longrightarrow G \to 1$$

that admits smooth local sections s (principal bundle). Group 2-cocycle

$$c(g, g') = s(g)s(g')s(gg')^{-1} \in Z$$

defines a Lie group isomorphic to \widehat{G} .

Lie group 2-cocycles

A normalized Lie group 2–cocycle $c: G \times G \to Z$ is smooth in a neighborhood of (e, e), satisfies c(g, e) = c(e, g) = 1, and the cocycle condition holds:

$$c(g_1, g_2)c(g_1g_2, g_3) = c(g_2, g_3)c(g_1, g_2g_3).$$

It defines a Lie group structure on $Z \times G$ by

$$(z,g)(z',g') = (zz'c(g,g'),gg'),$$

thus obtaining a central Lie group extension \widehat{G} of G by Z.

The coboundary of $\lambda: G \to Z$

$$c(g, g') = \lambda(g)\lambda(g')\lambda(gg')^{-1},$$

defines a central extension \widehat{G} that is isomorphic to the trivial extension $Z \times G$.

Theorem The Lie group cohomology $H^2(G, \mathbb{Z})$ parameterizes isomorphism classes of smooth central extensions of G by \mathbb{Z} (i.e. extensions that admit smooth local sections).

Virasoro-Bott group

The Bott cocycle on $G = Diff_+(S^1)$

$$c(\varphi, \psi) := \frac{1}{2} \int_{S^1} \log(\varphi \circ \psi)' d \log \psi',$$

with $\varphi' \in C^{\infty}(S^1)$ defined by $\varphi^*(dx) = \varphi'dx$.

The corresponding Lie algebra cocycle on $\mathfrak{g}=\mathfrak{X}(S^1)$ is the Virasoro cocycle

$$\psi(X,Y) = \int_{S^1} (X'Y'' - X''Y') dx$$

Short exact sequence for $Z = \mathfrak{z}/\Pi$ with $\Pi \subset \mathfrak{z}$ discrete subgroup:

$$H^2(G,Z) \xrightarrow{D} H^2_{\mathsf{CE}}(\mathfrak{g},\mathfrak{z}) \xrightarrow{P} \mathsf{Hom}(\pi_2(G),Z) \times \mathsf{Hom}(\pi_1(G),\mathsf{Lin}(\mathfrak{g},\mathfrak{z}))$$

with $D[c] = [\psi]$ for ψ the corresponding Lie algebra cocycle to c:

$$\psi(X,Y) = d_{(e,e)}^2 c(X,Y) - d_{(e,e)}^2 c(Y,X).$$

Integrability of Lie algebra extensions

There are two obstructions for the integration of a continuous Lie algebra 2-cocycle ψ on $\mathfrak g$ to a smooth Lie group extension of G.

Let ψ^{ℓ} be the closed left invariant 2-form on G determined by the cocycle ψ . The *period group* Π_{ψ} is the image of the period homomorphism

$$\operatorname{per}_{\psi}:\pi_{2}(G)\to\mathfrak{z},\quad \operatorname{per}_{\psi}([\sigma])=\int_{S^{2}}\sigma^{*}\psi^{\ell}.$$

The flux homomorphism $F_{\psi}: \pi_1(G) \to \text{Lin}(\mathfrak{g},\mathfrak{z})$ assigns to each piecewise smooth loop γ in G the linear map

$$X \in \mathfrak{g} \mapsto -\int_{\gamma} i_{Xr} \psi^{\ell} \in \mathfrak{z}.$$

Theorem [Neeb'04] The Lie algebra cocycle ψ with discrete period group Π_{ψ} and vanishing flux homomorphism F_{ψ} integrates to the Lie group extension

$$1 \to Z = \mathfrak{z}/\Pi_{\psi} \to \widehat{G} \to G \to 1.$$

Integration via path groups

Van Est method

Let ψ Lie algebra 2-cocycle with discrete period group $\Pi_{\psi} \subset \mathfrak{z}$ and $\{a_g\}_{g \in G}$ family of smooth paths in G from e to g.

By integrating the closed left invariant 2-form ψ^{ℓ} , we define

$$C: G \times G \to \mathfrak{z}, \quad C(f,g) := \int_{\Sigma_{f,g}} \psi^{\ell},$$

with $\Sigma_{f,g}$ any piecewise smooth 2-simplex in G with boundary $fa_g - a_{fg} + a_f$.

Since $\Theta_{f,g,h}:=f\Sigma_{g,h}-\Sigma_{fg,h}+\Sigma_{f,gh}-\Sigma_{f,g}$ is a spherical 2-cycle in G,

$$C(g,h) - C(fg,h) + C(f,gh) - C(f,g) = \int_{\Theta_{f,g,h}} \psi^{\ell} \in \Pi_{\psi}.$$

We get a group 2-cocycle $c: G \times G \to Z = \mathfrak{z}/\Pi_{\psi}$ that integrates ψ .

Central extensions of G/H

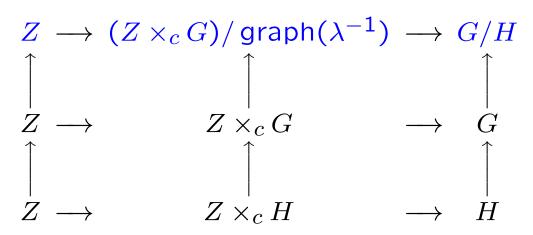
The 1-cochain $\lambda: H \to Z$ resolves the 2-cocycle $c: G \times G \to Z$ over the subgroup $H \subset G$ if the restriction of c to H is the coboundary of λ :

$$c(h_1, h_2) = \lambda(h_1)\lambda(h_2)\lambda(h_1h_2)^{-1}, \quad h_1, h_2 \in H.$$

This is equivalent to graph(λ^{-1}) is a Lie subgroup of $Z \times_c G$. Assuming that H is a normal subgroup of G, the additional condition

$$c(g,h)c(ghg^{-1},g)^{-1} = \lambda(h)\lambda(ghg^{-1})^{-1}, g \in G, h \in H$$

ensures that the graph(λ^{-1}) is a normal subgroup of $Z \times_c G$. The rows and columns below are exact sequences of groups



The path group

Let G be a connected Lie group with Lie algebra \mathfrak{g} , and \tilde{G} its universal covering group. The path group

$$PG = \{ g \in C^{\infty}([0,1], G) | g(0) = e \}$$

is a smoothly contractible Lie group with path Lie algebra

$$P\mathfrak{g} = \{X \in C^{\infty}([0,1],\mathfrak{g}) | X(0) = 0\}.$$

Two Lie subgroups of PG integrating the loop Lie subalgebra $\Omega \mathfrak{g} \subset P\mathfrak{g}$ are the groups ΩG of loops and $\Omega_0 G$ of null-homotopic loops (both based at e). Exact sequences of Lie groups

$$\Omega G \longrightarrow PG \longrightarrow G
\uparrow \qquad \uparrow \qquad \uparrow
\Omega_0 G \longrightarrow PG \longrightarrow \tilde{G}$$

with the same exact sequence of Lie algebras $\Omega \mathfrak{g} \to P \mathfrak{g} \to \mathfrak{g}$.

Path group cocycle

Each \mathfrak{z} -valued Lie algebra 2-cocycle ψ on \mathfrak{g} defines a 2-cocycle on $P\mathfrak{g}$ that vanishes on the loop Lie algebra $\Omega\mathfrak{g}$:

$$P\psi: (X,Y) \mapsto \psi(X(1),Y(1)).$$

On PG there are natural system of paths $a_g(s)(t) = g(st)$ together with 2-simplexes $\Sigma_{f,g}(s,t) = a_f(s)a_g(st)$ with boundary $fa_g - a_{fg} + a_f$.

The Van Est method yields the following \mathfrak{z} -valued group 2-cocycle on PG integrating $P\psi$:

$$C(f,g) = \int_{\sigma_f,g} \psi^{\ell} = \int_0^1 \int_0^s \psi(\operatorname{Ad}_{g(t)^{-1}} \delta^{\ell} f(s), \delta^{\ell} g(t)) dt ds,$$

where the 2-simplex $\sigma_{f,g}(s,t) = f(s)g(st)$ in G is $\Sigma_{f,g}$ evaluated at 1, and $\delta^{\ell}g = g^{-1}g' \in P\mathfrak{g}$ is the left logarithmic derivative of $g \in PG$.

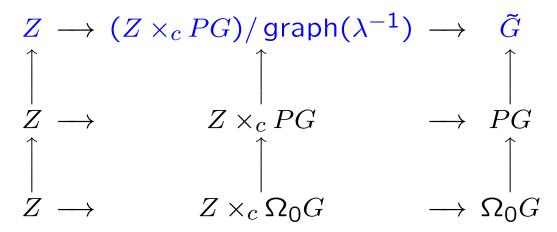
A similar cocycle involving right log derivatives: $(f,g) \mapsto -C(g^{-1},f^{-1})$.

Central extension of \tilde{G}

Assume the 2-cocycle ψ has discrete period group $\Pi_{\psi} \subset \mathfrak{z}$. The 2-cocycle $c(f,g) = C(f,g) \mod \Pi_{\omega}$ on PG is resolved over $\Omega_0 G$ by the 1-cochain

$$\lambda:\Omega_0G o Z,\quad \lambda(g)=\int_{\overline{g}}\psi^\ell\operatorname{mod}\Pi_\psi,$$

with \bar{g} any homotopy from e to $g \in \Omega_0 G$. Thus



Theorem [Vizman'08] The cocycle ψ with discrete period group is integrated by the first line central Lie group extension.

Loop group [Mickelsson]

Let H be a compact simple Lie group with Lie algebra \mathfrak{h} . We consider the Killing form κ on \mathfrak{h} and the Cartan 3-form $\eta = \frac{1}{6}\kappa(\theta^l, [\theta^l, \theta^l]) \in \Omega^3(H)$, where $\theta^l \in \Omega^1(H, \mathfrak{h})$ is the left Maurer-Cartan 1-form on H.

If H simply connected, then the loop group $G = C^{\infty}(S^1, H)$ is simply connected. The cocycle on its loop algebra $\mathfrak{g} = C^{\infty}(S^1, \mathfrak{h})$,

$$\psi(X,Y) = \int_{S^1} \kappa(X,dY) \in \mathbb{R},$$

has discrete period group. The circle-valued cocycle on PG integrating $P\psi$,

$$c(f,g) = \int_{I \times S^1} \delta^l f \wedge_{\kappa} \delta^r g \operatorname{mod} \mathbb{Z},$$

when restricted to $\Omega_0 G$, is the coboundary of

$$\lambda(g) = \int_{I \times I \times S^1} \bar{g}^* \eta \operatorname{mod} \mathbb{Z}.$$

This follows also via the Polyakov-Wiegmann formula

$$m^* \eta = \operatorname{pr}_1^* \eta + \operatorname{pr}_2^* \eta - d(\kappa(\operatorname{pr}_1^* \theta^l, \operatorname{pr}_2^* \theta^r)).$$

Current group [Losev-Moore-Nekrasov-Shatashvili]

Let $G = C^{\infty}(M, H)_0$ be the identity component of the current group, with current Lie algebra $\mathfrak{g} = C^{\infty}(M, \mathfrak{h})$, for M a compact manifold. Continuous Lie algebra 2-cocycle with values in $\mathfrak{z} = \Omega^1(M)/dC^{\infty}(M)$:

$$\psi(X,Y) = [\kappa(X,dY) - \kappa(Y,dX)] = 2[\kappa(X,dY)].$$

The period group $\Pi_{\psi} = \Omega^1_{\mathbb{Z}}(M)/dC^{\infty}(M)$ (de Rham cohomology with integral periods) of the continuous Lie algebra 2-cocycle ψ is discrete.

The Z-valued group cocycle c on PG,

$$c(f,g) = \left[\int_I \delta^l f \wedge_{\kappa} \delta^r g \right] \operatorname{mod} \Pi_{\psi},$$

that integrates the Lie algebra cocycle $P\psi$ is resolved over Ω_0G by

$$\lambda: \Omega_0 G \to Z, \quad \lambda(g) = \left[\int_{I \times I} \overline{g}^* \eta \right] \operatorname{mod} \Pi_{\psi}.$$

Lichnerowicz cocycles

On the compact manifold M we consider a volume form μ normalized by $\int_M \mu = 1$. Let $G = \text{Diff}(M,\mu)_0$. Given η a closed 2-form on M, the Lichnerowicz cocycle

$$\psi_{\eta}(X,Y) = \int_{M} \eta(X,Y)\mu$$

is a 2-cocycle on the Lie algebra $\mathfrak{g}=\mathfrak{X}(M,\mu)$ of divergence free vector fields.

The period group of ψ_{η} is contained in the period group of η , thus $\Pi_{\psi_{\eta}} \subseteq \mathbb{Z}$ if η is a closed integral 2-form. The path group construction gives a construction of the central extension of \tilde{G} integrating the Lichnerowicz cocycle.

To write the cocycle c on PG one uses a connection on a principal circle bundle over M with curvature η . It is resolved over $\Omega_0 G$ by

$$\lambda(g) = \int_{I \times I \times M} p^* \eta \wedge \overline{g}^* \mu \operatorname{mod} \mathbb{Z},$$

with projection $p: I \times I \times M \to M$ and a path \bar{g} from id_M to g in $\Omega_0 G$ viewed as $(s,t,x) \in I \times I \times M \mapsto \bar{g}(s,t)(x) \in M$.

Integration via prequantization extension

Prequantization extension

 (\mathcal{M}, Ω) prequantizable symplectic manifold, i.e. there exists $\mathcal{P} \to \mathcal{M}$ principal circle bundle with principal connection $\Theta \in \Omega^1(\mathcal{P})$ with curvature Ω .

The Lie algebra extension

$$0 \to \mathbb{R} \to C^{\infty}(\mathcal{M}) \to \mathfrak{X}_{\mathsf{ham}}(\mathcal{M}) \to 0,$$

with Poisson bracket $\{f,g\} = \Omega(X_g,X_f)$ on $C^{\infty}(\mathcal{M})$, integrates to the prequantization central extension [Kostant'70, Souriau'70]

$$1 \to S^1 \to \mathsf{Quant}(\mathcal{P}) \to \mathsf{Ham}(\mathcal{M}) \to 1,$$

with $Quant(\mathcal{P}) = \{\psi \in Aut(\mathcal{P}) : \psi^* \Theta = \Theta\}$ the quantomorphism group. The Lie algebra extension splits for compact \mathcal{M} (the Kostant-Souriau 2-cocycle is a coboundary).

Theorem [Neeb-V.'03] The pull-back of the prequantization central extension for infinite dimensional \mathcal{M} yields smooth Lie group extensions integrating the Lie algebra cocycle $(X,Y)\mapsto \Omega(\zeta_X,\zeta_Y)(m_0)$.

Universal central extension

Theorem [Conjectured by Roger'95, Janssens-Ryvkin-V.'24] Let (M^m, μ) be compact with m > 2 and volume form μ . Then the Lie algebra cohomology is $H^2_{CF}(\mathfrak{X}_{ex}(M)) = H^2_{dR}(M)$ and the

Then the Lie algebra cohomology is $H_{CE}^2(\mathfrak{X}_{ex}(M)) = H_{dR}^2(M)$ and the universal central extension is

$$0 \to H^{m-2}_{dR}(M) \to \Omega^{m-2}(M)/d\Omega^{m-3}(M) \to \mathfrak{X}_{ex}(M,\mu) \to 0$$

with Lie bracket $\{[\alpha_1], [\alpha_2]\} = [i_{X_{\alpha_1}} i_{X_{\alpha_2}} \mu].$

Integrability of Lichnerowicz cocycles

The Lichnerowicz cocycle

$$\psi_{\eta}(X,Y) = \int_{M} \eta(X,Y)\mu,$$

for integral $[\eta] \in H^2_{dR}(M)$ Poincaré dual to $[N] \in H_{m-2}(M,\mathbb{R})$ with codimension 2 submanifold $N \subset M$, is cohomologous to

$$\psi_N(X,Y) = \int_N i_Y i_X \mu$$

Theorem [Ismagilov'96, Haller-V.'04] The above cocycle integrates to a central Lie group extension of $Diff_{ex}(M, \mu)$.

One considers the Marsden-Weinstein symplectic form $\Omega = \tilde{\mu}$ on connected component $\mathcal{M} \subset \mathrm{Gr}_{m-2}(M)$ of N, and the pullback of the prequantization extension by Hamiltonian action

$$\mathsf{Diff}_{\mathsf{ex}}(M) \to \mathsf{Ham}(\mathcal{M}).$$

MW symplectic form is prequantizable

Lemma Let $\alpha \in \Omega^{k+2}(M)$ be a closed differential form with integral cohomology class. Then the non-linear Grassmannian $\operatorname{Gr}_k(M)$ endowed with the closed 2-form $\tilde{\alpha}$ is prequantizable.

In [Haller-V.'04] a principal circle bundle (\mathcal{P}, θ) over $Gr_k(M)$ with curvature $\tilde{\alpha}$ has been constructed through its Čech 1-cocycle.

In [Diez-Janssens-Neeb-V.'24] we get such a prequantum bundle using the transgression \tilde{h} to $\operatorname{Gr}_k(M)$ of a differential character h with curvature α . The degree one differential character \tilde{h} represents the holonomy of a principal bundle with curvature $\tilde{\alpha}$.

The diff. characters $h_{(\mathcal{P},\theta)}$ and \tilde{h} may differ by an element in $H^1(Gr_k(M), \mathbb{T})$.

Universal central extension

Theorem [Conjectured by Roger'95] [Janssens-V.'16]

Let (M,ω) be compact symplectic. The Lie algebra cohomology is $H^2_{\sf CE}(\mathfrak{X}_{\sf ham}(M)) = H^1_{\sf dR}(M)$ and the universal central extension is

$$H^{2n-1}_{\mathsf{dR}}(M) \to \Omega^{2n-1}(M)/d\Omega^{2n-2}(M) \to \mathfrak{X}_{\mathsf{ham}}(M,\omega),$$

with Lie bracket

$$[[\gamma_1], [\gamma_2]] = [f_1 df_2 \wedge \omega^{n-1}/(n-1)!], \text{ where } f\omega^n/n! = d\gamma.$$

Each closed $\alpha \in \Omega^1(M)$ determines Roger cocycle on $\mathfrak{X}_{ham}(M)$:

$$\sigma_{\alpha}(X_f, X_g) = \int_M f\alpha(X_g)\omega^n/n!.$$

If $[\alpha] \in H^1_{dR}(M)$ is Poincaré dual to $[C] \in H_{2n-1}(M, \mathbb{R})$, it is cohomologous to

$$\sigma_C(X_f, X_g) = \int_C f dg \wedge \omega^{n-1} / (n-1)!.$$

Integrability of Roger cocycles

Let $\pi:(P^{2n+1},\theta)\to (M^{2n},\omega)$ be a prequantum bundle over the symplectic manifold. The volume form $\mu=\theta\wedge(d\theta)^n/(n+1)!$ on the contact manifold (P,θ) has total volume $V=\frac{2\pi}{n+1}\operatorname{vol}_{\omega}(M)$.

The identity component Quant $(P)_0$ is a subgroup of $Diff_{ex}(P,\mu)$.

The pullback of the integrable Lichnerowicz cocycle $\frac{1}{V}\psi_N$ on $\mathfrak{X}_{\text{ex}}(P,\mu)$ to the Lie algebra $C^\infty(M)$ is cohomologous to $\frac{1}{V}\sigma_{\pi_*N}$.

Integrability of Roger cocycles

Theorem [Janssens-V.'16] The classes $[\sigma_C] \in H^2_{CE}(C^{\infty}(M))$ corresponding to the lattice

$$\frac{1}{V}\pi_*H_{2n-1}(P,\mathbb{Z})\subseteq H_{2n-1}(M,\mathbb{R})$$

give rise to integrable cocycles of the Poisson Lie algebra $C^{\infty}(M)$.

The same holds for Roger cocycles $[\sigma_{\alpha}]$ with $[\alpha]$ in the lattice

$$\frac{1}{V}\pi_! H^2_{\mathsf{dR}}(P)_{\mathbb{Z}} \subseteq H^1_{\mathsf{dR}}(M) ,$$

where the map $\pi_!$ is given by fibre integration and $H^2_{dR}(P)_{\mathbb{Z}}$ denotes the space of integral cohomology classes.

Hamiltonian group

By Lie's Second Theorem for regular Lie groups [Kriegl-Michor'97], the Lie algebra homomorphism that splits the prequantization extension,

$$\kappa: \mathfrak{X}_{\mathsf{ham}}(M) \to C^{\infty}(M), \quad \kappa(X_f) := f - \frac{1}{\mathsf{vol}_{\omega}(M)} \int_M f\omega^n/n!,$$

integrates to a group homomorphism on the universal covering group of the group of Hamiltonian diffeomorphisms:

$$K: \widetilde{\mathsf{Ham}}(M) \to \mathsf{Quant}(P)_0$$
.

The above extensions of the quantomorphism group can be pulled back by K to obtain extensions of the universal covering group $\widehat{Ham}(M)$.