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Introduction

A blueprint for the framework of topological phases with
higher symmetry. Mathematically, many contents should be regarded as conjectures.

Up to invertibles, describe topological phases by fusion
n-categories with “trivial” center.
“Trivial” with respect to a given higher symmetry
⇒ non-trivial structures arise.
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Warm up: Symmetry in a quantum system

Let H,V be the Hamiltonian and Hilbert space of a quantum
system. G a group, represented by ρg ∈ GL(V), is the
symmetry group of the system if

ρgH = Hρg, ∀g ∈ G.

H,V are meant to be generic, not specific.
Allow symmetric perturbations, for example.

More precisely, one should consider a class of Hilbert
spaces where G acts on, and all possible Hamiltonians that
commute with G action.
For completeness, just take Rep(G)

objects: (V, ρ), vector space V with a G action
ρ : G→ GL(V)
morphisms: symmetric operators (those that commute with
G action)
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Tannaka duality

Duality between invariants and transformations

Rep(G)
Fgt−−→ Vec, G ∼= Aut(Fgt).

Fgt : (V, ρ) 7→ V is the forgetful functor.
It is faithful and picks the symmetric operators.
The commutation relation is encoded in the definition of
natural transformation, ∀g ∈ Aut(Fgt), f : V → V ′,

V = Fgt(V, ρ)
gV=ρg

//

f
��

Fgt(V, ρ) = V

f
��

V ′ = Fgt(V ′, ρ′)
gV′=ρ

′
g
// Fgt(V ′, ρ′) = V ′
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Tannaka formalism as symmetry breaking

We can also interpret the data of Tannaka formalism

Rep(G)
Fgt−−→ Vec

as
Rep(G): the systems with symmetry
Vec: the systems with no symmetry
Fgt: the process of symmetry breaking
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Generalizing symmetry

Thus the most general form of “symmetry” is, in an appropriate
category e.g. the category of physical theories of your interest

R β−→ V,

where
V is the trivial theory without symmetry “ground field”;
R is the theory with symmetry;
β is the symmetry breaking morphism in this appropriate
category.
The symmetry “algebra” is, by Tannaka duality, End(β).

Which category is for topological phases?
The category of fusion n-categories.
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Higher symmetry

Consider symmetry in the category of fusion n-categories. Let
V be the fusion n-category for the “elementary local” excitations.

Definition
A fusion n-category R equipped with monoidal n-functor

β : R → V,

which is
surjective: the image of β generates V;
top-faithful: injective on n-morphisms (i.e., operators);

is called a V-local fusion n-category.
We refer to R β−→ V as a higher symmetry.

Tian Lan Higher SET



Higher symmetry

V is the fusion n-category for the “elementary local” excitations:
Boson system: V = nVec ≡ Σn−1Vec.
Σ: delooping and condensation completion D. Gaiotto, T. Johnson-Freyd, arXiv:1905.09566.

T. Johnson-Freyd, arXiv:2003.06663.

R = nRep(G) ≡ Σn−1Rep(G): symmetry charges and higher
dimensional defects from condensation of symmetry
charges; β forgets group action. 0-form or global symmetry.

R = nVecG: G graded n-vector spaces, the symmetry
domain walls in the spontaneous G-symmetry breaking
phase; β forgets grading. Algebraic higher symmetry in the sense of X.-G. Wen.

. . .
Fermion system: V = nsVec ≡ Σn−1sVec.

R = nRep(G, z).
. . .

Anyon system, string system, . . . with more exotic V.
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Partial characterization of higher SET

The macroscopic observables topological defects or extended operators of an
(n + 1)D topological phase, whether with symmetry or not,
always form a fusion n-category.
“With symmetry”⇔ contains the macroscopic observables of a
higher symmetry, which are nothing but R

Definition (Partial)

A (potentially anomalous) (n + 1)D topological phase with

higher symmetry R β−→ V, also called a higher symmetry
enriched topological (SET) phase, is partially characterized by
a fusion n-category C with embedding

ι : R → C.

By embedding, we mean that R is equivalent to the image of ι.
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Anomaly detection: compute bulk

Anomaly-free⇔ trivial bulk
Bulk⇔ center, here we need to formulate the proper
notion of center relative to the higher symmetry.
Conjecture: the bulk of C with symmetry is given by the E1
center Z1(C) ≡ FunC|C(C, C) with additional structures.

Trivial phase must have C = R; the bulk of R β−→ V is trivial.
However, the trivial bulk with symmetry is not completely
trivial. We need extra data to characterize how the bulk of
C is trivial.
More precisely, the extra data is at least an equivalence
Z1(R) ' Z1(C) higher structures?; we also need to formulate how
the additional structure of symmetry is preserved by such
equivalence.
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Special case: R is symmetric or braided

Begin with the simpler case that R is symmetric (or braided).

R can be canonically embedded into Z1(R)

ιR : R → Z1(R).

R ιR−→ Z1(R) describes the trivial phase with symmetry in one
higher dimension. Z1(R) is the “trivial” minimal modular extension of symmetricR.

Let

FgtC : Z1(C) ≡ FunC|C(C, C)→ C
f 7→ f (1C)

be the forgetful functor. We have a natural formulation for an
equivalence between trivial bulk with symmetry.
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Special case: R is symmetric or braided

Definition
When R is symmetric (or braided), an anomaly-free n + 1D
higher SET phase is charaterized by up to invertible ones without symmetry

1 A fusion n-category C;
2 An embedding ι : R → C;
3 A braided equivalence γ : Z1(R) ' Z1(C) such that

R ι //

ιR
��

C

Z1(R) γ
// Z1(C)

FgtC

OO

L. Kong, TL, X.-G. Wen, Z.-H. Zhang, and H. Zheng, arXiv:2003.08898.
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Open problem: Higher structures

C′

R ι //

ιR
��

ι′ ..

C
'

_s
ϕ
'

88

Z1(R) γ
//

γ′ //

'

EY

Z1(C)
'l�

FgtC

OO

Z1(ϕ)

' %%

Z1(C′)

FgtC′

OO

Equivalences ϕ : C ' C′, natural isomorphisms, higher
homotopies, . . . ;
Even for C′ = C, the data γ is up to Aut(C); for ϕ = idC ,
FgtC ◦ γ ◦ ιR ⇒ ι is up to Aut(ι) and Aut(γ).
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Higher SPT

When C = R, the autoequivalences of Z1(R) preserving the
embedding R ιR−→ Z1(R), denoted by Aut(Z1(R), ιR), classify
the higher symmetry protected topological (SPT) phases.

R ιR
((

ιR
vv

Z1(R) γ
// Z1(R)

Example
R = RepG 1+1D bosonic: Aut(Z1(R), ιR) = Pic(Rep(G)) = H2(G,U(1)).

R = Rep(G, z) 1+1D fermionic: Aut(Z1(R), ιR) = Pic(Rep(G, z)) ={
H2(G,U(1))× Z2 if G = Gb × 〈z〉
H2(G,U(1)) otherwise

.

R = 2RepG 2+1D bosonic: conjecture Pic(2Rep(G)) = H3(G,U(1)).

R = 2sVec: conjecture Aut(Z1(R), ιR) = Z16.

L. Kong, TL, X.-G. Wen, Z.-H. Zhang, and H. Zheng, arXiv:2003.08898.

Tian Lan Higher SET



General case

To be more general, we no longer assume that R is braided.
For example,R = nVecG with non-abelian G.

We can no longer embed R into Z1(R).
How to consider the symmetry in the bulk?

Lemma (Bruguières, Natale, Proposition 5.1, arXiv:1006.0569)

Let C and D be fusion categories, F : C → D a monoidal functor
and R the right adjoint of F. Then A = R(1D), with a natural half
braiding, has a canonical structure of commutative algebra in
Z1(C) and D ' A-ModC , F coincides with the free module
functor C → A-ModC .
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Dual algebra

We believe the similar for higher categories:
β : R → V canonically determines a commutative (higher)
algebra Aβ in Z1(R), such that V ' Aβ-ModR and β is
reconstructed as the free module functor.
Physically, condensing Aβ breaks the symmetry R β−→ V.

Example

Take Rep(G)
Fgt−−→ Vec. End(Fgt) = C[G].

AFgt = Fun(G) = Hom(C[G],C) = C[G]∗. Fun(G) contains every
irreducable represention as a direct summand.

In general we may think Aβ as the algebra dual to the symmetry
algebra End(β).
When R is braided, Aβ = ιR ◦ FgtR(Aβ). We like to replace
R ιR−→ Z1(R) for Aβ.
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General case

Definition
An anomaly-free n + 1D higher SET phase with symmetry
R β−→ V is characterized by up to invertible ones without symmetry

1 A fusion n-category C;
2 An embedding ι : R → C;
3 A braided equivalence γ : Z1(R) ' Z1(C) such that

FgtC ◦ γ(Aβ) = ι ◦ FgtR(Aβ).

FgtR(Aβ) ∈ R � ι // FgtC ◦ γ(Aβ) = ι ◦ FgtR(Aβ) ∈ C

Aβ ∈ Z1(R) �
γ

//

_
FgtR

OO

γ(Aβ) ∈ Z1(C)
_

FgtC

OO

L. Kong, TL, X.-G. Wen, Z.-H. Zhang, and H. Zheng, arXiv:2005.14178.
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Open problem: Higher structures

Allow algebra isomorphism FgtC ◦ γ(Aβ)
?' ι ◦ FgtR(Aβ)?

ι ◦ FgtR(Aβ) is the macroscopic observable of symmetry in
C. If the difference is too large, we would regard it as a
different symmetry.
Indeed, higher structures such as natural isomorphisms
α ∈ Aut(ι) may introduce algebra isomorphisms
αFgtR(Aβ) ∈ Aut(ι ◦ FgtR(Aβ)). We expect
FgtC ◦ γ(Aβ) = ι ◦ FgtR(Aβ) up to such higher structures.
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Pushout and symmetry breaking in C

It is natural to consider the pushout, in the category of fusion
n-categories,

R ι //

β
��

C
ι∗β
��

V // C0

ι∗β describes symmetry breaking in the higher SET;

C0 is the resulting topological phase without R β−→ V
symmetry.

Similarly ι∗β canonically determines a commutative algebra
Aι∗β in Z1(C), FgtC(Aι∗β) = ι ◦ FgtR(Aβ). So we may instead
write the condition

γ(Aβ) ' Aι∗β.
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The bulk with symmetry breaking domain wall

The bulk, or center Z1, is functorial. L. Kong, X.-G. Wen, H. Zheng, arXiv:1502.01690

L. Kong, H. Zheng, arXiv:1507.00503

Compute the bulk of R β−→ V as a whole: β gives a symmetry
breaking domain wall in the bulk.

γ naturally gives rise to an equivalence of the whole bulk.
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The bulk with symmetry breaking domain wall

Z1(R) ≡ FunR|R(R,R), Z1(V) ≡ FunV|V(V,V);
β naturally makes V a R-V-bimodule βV, we take
Z1(β) ≡ FunR|V(βV, βV);
The following two functors are monoidal and central

FRβ : Z1(R) = FunR|R(R,R)→ FunR|V(βV, βV) = Z1(β)

f 7→ β(f (1R))⊗−,
FVβ : Z1(V) = FunV|V(V,V)→ FunR|V(βV, βV) = Z1(β)

f 7→ − ⊗ f (1V) = f ,

and makes Z1(β) a monoidal Z1(R)-Z1(V)-bimodule.

To conclude, the bulk of R β−→ V is Z1(R)
FRβ−−→ Z1(β)

FVβ←−− Z1(V).

Similarly the bulk of C ι∗β−−→ C0 is Z1(C)
FCι∗β−−−→ Z1(ι∗β)

F
C0
ι∗β←−−− Z1(C0).
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The bulk with symmetry breaking domain wall

The bulk of R β−→ V is Z1(R)
FRβ−−→ Z1(β)

FVβ←−− Z1(V).

The bulk of C ι∗β−−→ C0 is Z1(C)
FCι∗β−−−→ Z1(ι∗β)

F
C0
ι∗β←−−− Z1(C0).

γ : Z1(R) ' Z1(C) induces equivalences γ̃ : Z1(β) ' Z1(ι∗β) and
γ0 : Z1(V) ' Z1(C0), which satisfy

Z1(R)
FRβ
//

γ

��

Z1(β)

γ̃

��

Z1(V)
FVβ
oo

γ0

��

Z1(C)
FCι∗β // Z1(ι∗β) Z1(C0)

F
C0
ι∗βoo

Z1(β) ' Aβ-ModZ1(R) and Z1(ι∗β) ' Aι∗β-ModZ1(C). Thus,
γ(Aβ) ' Aι∗β induces γ̃ : Z1(β) ' Z1(ι∗β).

FVβ and FC0
ι∗β

are embeddings; γ0 is the restriction of γ̃.
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Categorical gauging

With γ : Z1(R) ' Z1(C), we can categorically gauge the higher

symmetry R β−→ V, and obtain the gauged theory

Rrev ⊗
Z1(R)

γ ⊗
Z1(C)

C,

a fusion n-category multifusion for n = 1 which describes a topological
phase without symmetry (its bulk is nVec).
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Categorical gauging

The old way of categorical gauging: G-crossed extension and
minimal modular extension.

M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, PRB 100, 115147 (2019), arXiv:1410.4540.

TL, L. Kong, and X.-G. Wen, Phys. Rev. B 95, 235140 (2017), arXiv:1602.05946.

TL, L. Kong, and X.-G. Wen, Commun. Math. Phys. 351, 709 (2016), arXiv:1602.05936.

Conjecture

For symmetric R, Ω(R ⊗
Z1(R)

γ ⊗
Z1(C)

C) is a

minimal modular extension of ΩC.
Moreover, there is a bijection bewteen
minimal modular extensions and
equivalence functors γ in the bulk.

L. Kong, TL, X.-G. Wen, Z.-H. Zhang, and H. Zheng, arXiv:2003.08898.
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Outlook

Higher structures: Study the higher category of higher
SETs.
Boundary theory, anomalous higher SETs.
. . .

Thanks for attention!
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