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Harish-Chandra modules

Let GR be a real reductive Lie group. We will often assume GR is
connected, and later on it will be simple and linear.

Let Θ be a fixed Cartan involution of GR and assume that
KR = GΘ

R is a maximal compact subgroup of GR. Let g be the
complexified Lie algebra of GR. We denote by G and K the
complexifications of GR and KR.

We study admissible representations of GR through their
Harish-Chandra modules. These are finite length g-modules with a
compatible locally finite action of K .



Harish-Chandra modules

Let GR be a real reductive Lie group. We will often assume GR is
connected, and later on it will be simple and linear.

Let Θ be a fixed Cartan involution of GR and assume that
KR = GΘ

R is a maximal compact subgroup of GR. Let g be the
complexified Lie algebra of GR. We denote by G and K the
complexifications of GR and KR.

We study admissible representations of GR through their
Harish-Chandra modules. These are finite length g-modules with a
compatible locally finite action of K .



Harish-Chandra modules

Let GR be a real reductive Lie group. We will often assume GR is
connected, and later on it will be simple and linear.

Let Θ be a fixed Cartan involution of GR and assume that
KR = GΘ

R is a maximal compact subgroup of GR. Let g be the
complexified Lie algebra of GR. We denote by G and K the
complexifications of GR and KR.

We study admissible representations of GR through their
Harish-Chandra modules. These are finite length g-modules with a
compatible locally finite action of K .



Dirac index

Fix a nondegenerate invariant symmetric bilinear form B on g (e.g.
the Killing form or the trace form).

Let g = k⊕ p be the Cartan decomposition.

Let C (p) be the Clifford algebra of p with respect to B:
the associative algebra with 1, generated by p, with relations

xy + yx + 2B(x , y) = 0.
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Let bi be any basis of p; let di be the dual basis with respect to B.

The Dirac operator defined by Parthasarathy is

D =
∑
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bi ⊗ di ∈ U(g)⊗ C (p).

D is independent of bi and K -invariant.

D2 is the “spin Laplacean”.
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Dirac index

Let M be a Harish-Chandra module with infinitesimal character.
Let S be a spin module for C (p); it is constructed as S =

∧
p+ for

p+ ⊂ p max isotropic.

Then D acts on M ⊗ S .

The Dirac cohomology of M is

HD(M) = KerD/ ImD ∩ KerD.

HD(M) is a module for the spin double cover K̃ of K . It is
finite-dimensional since M is of finite length.

If HD(M) 6= 0, then the infinitesimal character of M can be read
off from HD(M) (conjectured by Vogan, proved by Huang-P.)
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Dirac index

For many purposes, like the study of characters, translation
principle, etc., it is good to replace Dirac cohomology by its Euler
characteristic, the Dirac index.

To define the Dirac index, assume rank g = rank k. Then dim p is
even, so the C (p)-module S is graded:

S = S+ ⊕ S− (=
∧evenp+ ⊕

∧oddp+).
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Dirac index

D interchanges M ⊗ S+ and M ⊗ S−, so

HD(M) = HD(M)+ ⊕ HD(M)−.

The Dirac index of M is the virtual K̃ -module

I (M) = HD(M)+ − HD(M)−.

Since M has finite length, I (M) is a finite-dimensional virtual
K̃ -module and we consider its (virtual) dimension. It is an integer,
given by the Weyl dimension formula for k.
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Associated variety

Another important geometric invariant of a Harish-Chandra
module M is its associated variety.

U(g) has filtration by degree; gr(U(g)) = S(g) = P(g∗).

A Harish-Chandra module M has compatible ‘good filtrations’;
gr(M) is a finitely generated P(g∗)-module.

The associated variety AV (M) of M is the support of gr(M) – the
variety in g∗ defined by the ideal annihilating gr(M).

Since a good filtration of M is K -stable, k ⊂ ann(gr(M)), so
AV (M) is a K -stable subset of (g/k)∗ ∼= p∗.
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Associated variety

In fact, AV (M) is contained in the nilpotent cone Np, so is a union
of closures of some K -orbits in Np:

AV (M) = O1 ∪ · · · ∪ O`.

If M is irreducible, then each Ok is a ‘real form’ of a single G -orbit
in the nilpotent cone Ng. In other words, there is a G -orbit
OC ⊂ Ng such that G · Ok = OC, for all k = 1, . . . , `.

In this situation, OC is the associated variety of the annihilator of
M (i.e., the associated variety of the U(g)-module U(g)/ ann(M)).
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The associated cycle of M is a formal integer combination

AC (M) =
∑̀
k=1

mkOk ,

where the multiplicity mk is the rank of gr(M) at a generic point in
Ok .

The associated cycle is a finer invariant than the associated variety,
but the multiplicities mk are very hard to compute explicitly.

Definitions and basic facts can be found in
D. A. Vogan, Associated varieties and unipotent representations,
Harmonic Analysis on reductive groups (W. Barker and P. Sally,
eds.), Progress in Mathematics, vol. 101, Birkhäuser, 1991,
pp. 315–388.
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Coherent families

Let h be a Cartan subalgebra of g, and let λ0 ∈ h∗ be regular. Let
Λ be the lattice of G -integral weights.

A family of virtual (g,K )-modules Xλ, λ ∈ λ0 + Λ, is called
coherent if

1. For each λ, Xλ has infinitesimal character λ;

2. For any finite-dimensional (g,K )-module F , and for any λ,

Xλ ⊗ F =
∑

µ∈∆(F )

Xλ+µ,

where ∆(F ) denotes the multiset of all weights of F .

See Vogan’s Green Book.
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Coherent families

A basic fact is that any (virtual) Harish-Chandra module X with
regular infinitesimal character λ0 defines a unique coherent family
Xλ with Xλ0 = X .

In particular, if an invariant of Harish-Chandra modules can be
extended to virtual Harish-Chandra modules, then studying how it
varies over the coherent family attached to X can lead to new
invariants of X .
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Dirac index polynomial

Dirac index can be defined for virtual Harish-Chandra modules,
and it varies coherently over any coherent family on h∗, where h is
the compact Cartan subalgebra of g.

This follows from the fact that

I (M) = M ⊗ S+ −M ⊗ S−

for M with infinitesimal character. The right side of this formula
then gives the general definition and one shows that it has the
desired properties. (One can also extend the definition of Dirac
cohomology and define the index as its Euler characteristc.)

The function λ 7→ dim I (Xλ) extends to a homogeneous polynomial
DIp(X ) on h∗. It is given by the Weyl dimension formula for k.
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Dirac index polynomial

DIp(X ) is W -harmonic, i.e., it generates a W -representation which
does not appear in lower degrees. (W is the Weyl group of (g, h).)

DIp(X ) is analogous to Joseph’s Goldie rank polynomial, which is
defined on the maximally split Cartan subalgebra. DIp(X ) is the
leading term in the Taylor expansion of the character of (a
completion of) Xλ on the compact Cartan subgroup.

Reference:

S. Mehdi, P. Pandžić, D. Vogan, Translation principle for Dirac
index, Amer. J. Math. 139 (2017), no. 6, 1465–1491.
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Multiplicity polynomials

The associated cycle can also be defined for virtual Harish-Chandra
modules, but this is not immediate, because associated cycles are
not additive with respect to short exact sequences. We will say
more about this below.

For a coherent family Xλ, all Xλ have the same associated variety,
while the multiplicities mk vary with λ in a polynomial fashion.
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Multiplicity polynomials

In this way, starting from a Harish-Chandra module X and
considering its coherent family Xλ, one obtains the multiplicity
polynomials mk(X ). They are again W -harmonic.

In general, the polynomials mk(X ) are quite different from DIp(X );
for example their degrees are usually different.

For a certain interesting class of Harish-Chandra modules we have
however found a connection and we showed how DIp(X ) can be
obtained as an integer linear combination of the mk(X ).
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The main result

Assume that GR is simple, connected and linear and that g and k
have equal rank.
Assume that the W -representation generated by the Weyl
dimension formula for k is Springer and corresponds to a G -orbit
OC ⊂ Ng.

These assumptions are satisfied if

I GR = SU(p, q);

I GR = SOe(2p, 2q + 1) with q ≥ p − 1;

I GR = Sp(2n,R)

I GR = SO∗(2n);

I GR = SOe(2p, 2q);

I GR is any exceptional equal rank group except F4 with
KR = Spin(9).
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Under the above assumptions, let X be a Harish-Chandra module
with associated variety of the annihilator equal to OC.

Then
DIp(X ) =

∑
k

ckmk(X ),

where ck are integers independent of X . Moreover, these constants
can be explicitly computed.
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Remarks about the proof

The first issue is the definition of the associated cycle for virtual
Harish-Chandra modules. This was done in

D. A. Vogan, The method of coadjoint orbits for real reductive
groups, Representation theory of Lie groups (Park City, UT, 1998),
IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence,
RI, 2000, pp. 179–238.

We use a version of this construction in terms of the K-theory of
K -equivariant coherent sheaves on the nilpotent cone Np.



Remarks about the proof

The first issue is the definition of the associated cycle for virtual
Harish-Chandra modules. This was done in

D. A. Vogan, The method of coadjoint orbits for real reductive
groups, Representation theory of Lie groups (Park City, UT, 1998),
IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence,
RI, 2000, pp. 179–238.

We use a version of this construction in terms of the K-theory of
K -equivariant coherent sheaves on the nilpotent cone Np.



If M is a Harish-Chandra module, then grM is a finitely generated
(S(p),K )-module supported in Np. Since Np is affine, such
modules correspond to K -equivariant coherent sheaves on Np.

In this way we get a map

gr : {virtual Harish-Chandra modules} → KK (Np),

where KK (Np) is the Grothendieck group of the abelian category
of K -equivariant coherent sheaves on Np.

Roughly speaking, we now find a nice Z-basis for KK (Np) –
corresponding to certain integer combinations of the discrete series
representations – for which everything can be computed.
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This basis is obtained from homogeneous bundles on the (finitely
many) K -orbits in Np, and it can be used to express the associated
cycle.

Write O = K · e = K/K e and let τ ∈ (K e)̂, where (K e)̂ is the
set of irreducible algebraic representations of K e .

Then the sheaf of sections of the homogeneous vector bundle

K ×
K e
τ → O

extends (although not uniquely) to a K -equivariant coherent sheaf
on O, then extends by zero to a K -equivariant coherent sheaf
ẼO(τ) on Np.



This basis is obtained from homogeneous bundles on the (finitely
many) K -orbits in Np, and it can be used to express the associated
cycle.

Write O = K · e = K/K e and let τ ∈ (K e)̂, where (K e)̂ is the
set of irreducible algebraic representations of K e .

Then the sheaf of sections of the homogeneous vector bundle

K ×
K e
τ → O

extends (although not uniquely) to a K -equivariant coherent sheaf
on O, then extends by zero to a K -equivariant coherent sheaf
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Theorem

{[ẼO(τ)]}, with O running over all K -orbits in Np and τ ∈ (K e)̂,
is a Z-basis of KK (Np).

Moreover, for any virtual Harish-Chandra module X , writing
gr(X ) =

∑
O,τ nO,τ [ẼO(τ)], we have

AC (X ) =
∑
O max’l

(∑
τ

nO,τ dim(τ)

)
O.

An important point is that these “leading coefficients” nO,τ are
independent of the choices of extensions ẼO′(τ ′).
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A second ingredient of the proof is a formula for extensions ẼO(τ)
in terms of virtual Harish-Chandra modules of discrete series
representations.

This is accomplished using a resolution of singularities of O.

The conjecture is then proved using a simple formula for the Dirac
index of a discrete series representation (up to sign, it is the lowest
K -type shifted by ρg − ρk).
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An extension ẼO(τ) can be constructed as the pushforward of a
vector bundle under a resolution of singularities of O.

Let O = K · x be a K -orbit in Np. Let {x , h, y} be a standard
triple with h ∈ h.

The eigenvalues of ad(h) are integers, therefore give a grading of g:

gm = {X ∈ g : [h,X ] = mX}, m ∈ Z.

We set pm = gm ∩ p, the m-eigenspace in p.
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This grading gives a θ-stable parabolic subalgebra

q = l + u, with l = g0 and u =
∑

m≤−1

gm.

The corresponding parabolic subgroup in G and its Levi
decomposition are written as Q = LU.
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We use two well-known facts due to Kostant and Rallis:

(i) The stabilizer K x has a Levi decomposition with reductive
part

(K x)red = K ∩ Lx = (K ∩ L)x

and K x ⊂ K ∩ Q.

(ii) If we set p[2] :=
∑

m≥2 pm, then p[2] is stable under

Ad(K ∩ Q) and the morphism

µ : K ×
K∩Q

p[2]→ O, µ(k , ξ) := k · ξ, (1)

is a resolution of singularities.
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The higher direct images R iµ∗ of the morphism µ give a
homomorphism of KK groups:

µ∗ : KK (K ×
K∩Q

p[2])→ KK (Np)

µ∗([S]) :=
∑
i

(−1)i [R iµ∗(S)].
(2)

For any representation σ of K ∩ Q there is a K -equivariant vector
bundle

K ×
K∩Q

(p[2]⊗ σ)→ K ×
K∩Q

p[2].

We write Sσ for the sheaf of algebraic sections of this bundle.
Using results of Achar and some additional computations we show
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(1) [µ∗(Sσ)] is an extension of EO(σ|K x ).

(2) Assume σ is irreducible with highest weight λσ, and denote by
X (µ) the discrete series representation with Harish-Chandra
parameter µ. Then Γ(µ∗(Sσ))|K equals∑

A⊂∆+
n (l)

C⊂∆(p1)

(−1)#A+#CX (λσ + ρc(l)− ρn(l) + 2ρ(A)− 2ρ(C )

+ ρ(u)− 2ρ(p ∩ u))|K .

This gives the announced formula for the extensions in terms of
discrete series representations. (One shows that in this way we
indeed obtain extensions of all EO(τ), τ ∈ (K x)̂.)



(1) [µ∗(Sσ)] is an extension of EO(σ|K x ).

(2) Assume σ is irreducible with highest weight λσ, and denote by
X (µ) the discrete series representation with Harish-Chandra
parameter µ. Then Γ(µ∗(Sσ))|K equals

∑
A⊂∆+

n (l)
C⊂∆(p1)

(−1)#A+#CX (λσ + ρc(l)− ρn(l) + 2ρ(A)− 2ρ(C )

+ ρ(u)− 2ρ(p ∩ u))|K .

This gives the announced formula for the extensions in terms of
discrete series representations. (One shows that in this way we
indeed obtain extensions of all EO(τ), τ ∈ (K x)̂.)



(1) [µ∗(Sσ)] is an extension of EO(σ|K x ).

(2) Assume σ is irreducible with highest weight λσ, and denote by
X (µ) the discrete series representation with Harish-Chandra
parameter µ. Then Γ(µ∗(Sσ))|K equals∑

A⊂∆+
n (l)

C⊂∆(p1)

(−1)#A+#CX (λσ + ρc(l)− ρn(l) + 2ρ(A)− 2ρ(C )

+ ρ(u)− 2ρ(p ∩ u))|K .

This gives the announced formula for the extensions in terms of
discrete series representations. (One shows that in this way we
indeed obtain extensions of all EO(τ), τ ∈ (K x)̂.)



(1) [µ∗(Sσ)] is an extension of EO(σ|K x ).

(2) Assume σ is irreducible with highest weight λσ, and denote by
X (µ) the discrete series representation with Harish-Chandra
parameter µ. Then Γ(µ∗(Sσ))|K equals∑

A⊂∆+
n (l)

C⊂∆(p1)

(−1)#A+#CX (λσ + ρc(l)− ρn(l) + 2ρ(A)− 2ρ(C )

+ ρ(u)− 2ρ(p ∩ u))|K .

This gives the announced formula for the extensions in terms of
discrete series representations. (One shows that in this way we
indeed obtain extensions of all EO(τ), τ ∈ (K x)̂.)



More about K -groups

Suppose an algebraic group H acts on a variety X with finitely
many orbits. Let KH(X ) denote the Grothendieck group of the
category of H-equivariant coherent sheaves on X .

Basic Fact 1
If X = H · x , then KH(X ) ' Rep(Hx).

Basic Fact 2
Let Z ⊂ X be closed and H-stable, and let U = X \ Z . Let
i : Z ↪→ X and j : U ↪→ X be the embeddings. Then there is an
exact sequence

· · · −→ KH
1 (U) −→ KH(Z )

i∗−→ KH(X )
j∗−→ KH(U) −→ 0,

where i∗ is extension by zero and j∗ is the restriction from X to U.
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The higher K-groups, including K1, were defined and studied by
Quillen, and the equivariant version by Thomason.

Quillen’s definition starts from an abelian (or exact) category A
and attaches to it another category Q(A), with the same objects
as A, and with morphisms being isomorphisms onto a subquotient.

Then one considers the nerve of Q(A): it is the simplicial set with
p-simplices defined as diagrams X0 → · · · → Xp in Q(A), and
edges defined by deleting one of the Xi .
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Then one passes to the classifying space BQ(A) of Q(A); it is a
CW complex which is a geometric realization of the nerve of Q(A).

Finally, the K-groups of A are defined as shifted homotopy groups
of BQ(A):

Ki (A) = πi+1(BQ(A)).

One shows that the fundamental group π1(BQ(A)) is the
Grothendieck group K (A).
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Let EO(τ) be the sheaf of local sections of the homogeneous vector
bundle H ×

Hx
Eτ on O = H · x ⊂ X .

We consider the exact sequence of Basic Fact 2 for O in place of
X and ∂O = O \ O in place of Z .

By surjectivity of j∗, EO(τ) extends to O. We extend this
extension further by zero and obtain an H-equivariant coherent
sheaf ẼO(τ) on X .



Let EO(τ) be the sheaf of local sections of the homogeneous vector
bundle H ×

Hx
Eτ on O = H · x ⊂ X .

We consider the exact sequence of Basic Fact 2 for O in place of
X and ∂O = O \ O in place of Z .

By surjectivity of j∗, EO(τ) extends to O. We extend this
extension further by zero and obtain an H-equivariant coherent
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We list the H-orbits on X as O1, . . . ,OM in a way compatible with
closure (Ok ⊂ Oj implies k ≤ j).

Choose base points xk in each orbit; so Ok = H · xk .

Applying the construction above to each orbit and each isotropy
representation we obtain coherent sheaves ẼOk

(τkl).
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Lemma

KH(X ) is spanned (over Z) by
{ẼOk

(τkl) : k = 1, . . . ,M, τkl ∈ (Hxk )̂ }.

This is proved by induction on the number M of orbits in X .

The inductive step uses Basic Fact 2 applied to U = OM (which
has to be open), and Z = X \ U.
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Theorem

In the above setting, let
B := {[ẼOk

(τkl)] : k = 1, . . . ,M, τkl ∈ (Hxk )̂ } ⊂ KH(X ).

Then

1. for any closed embedding i : Z ↪→ X of an H-stable subset Z
of X , i∗ : KH(Z )→ KH(X ) is injective

2. B is a Z-basis of KH(X ).
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Sketch of proof

Induction on the number of orbits.

If there is just one orbit, then X = O = H · x and the coherent
sheaves EO(τ) are a basis; this is Basic Fact 1. (1) holds trivially.

The inductive step again uses Basic Fact 2 applied to the open
orbit U = OM , and Z = X \ U. The main ingredient is the fact
that i∗ : KH(Z )→ KH(X ) is injective.

This follows from the exact sequence of Basic Fact 2, and the fact
that there are no nonzero homomorphisms from KH

1 (OM) to
KH(Z ).
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To see this last fact, we compute KH
1 (OM) and see that it is equal

to a direct sum of copies of C× (one copy for each representation
of HxM ).

This follows from Quillen’s Devissage Theorem which says that any
abelian category has the same K-groups as its semisimplification,
and from the well known fact that the K1 group of the category of
finite-dimensional vector spaces is C×.

On the other hand, our induction hypothesis says that KH(Z ) is a
free abelian group and there are no nonzero homomorphisms from
a divisible group into a free abelian group.
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BIRTHDAY TO GORDAN!


