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Regular cfs

Regular cfs

Each x ∈ R has an (essentially) unique regular continued fraction
(rcf) expansion

x = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 +
.. .

,

where an ∈ Z with an > 0 for n > 0.

Denote rcf-convergents by

pn
qn

= [a0; a1, . . . , an] ∈ Q.
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Regular cfs

The Gauss map

The Gauss map G : [0, 1] → [0, 1] defined by
G (0) = 0 and for x 6= 0,

G (x) =
1

x
− a(x),

with a(x) = b1/xc generates rcf-digits:

an = a(G n−1(x)), n > 0.
0 1/3 1/2 1

1

· · ·

The dynamical system ([0, 1],B, νG ,G ) is ergodic, where the Gauss
measure νG is the a.c., G -invariant probability measure with density
1/(log 2(1 + x)).
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Regular cfs

The natural extension of the Gauss map
In the 1970s and 80s, Nakada, Ito and Tanaka introduced an explicit
natural extension (Ω,B, ν̄G ,G) of ([0, 1],B, νG ,G ), i.e., the ‘smallest’
invertible dynamical system of which ([0, 1],B, νG ,G ) is a factor, or
‘subsystem.’

Here Ω = [0, 1]2 and

G(x , y) =

(
1

x
− a(x),

1

a(x) + y

)
.

With π : Ω→ [0, 1] the projection to the first coordinate,
νG (A) = ν̄G (π−1A), where ν̄G has density 1/(log 2(1 + xy)2).

V1V2V3· · ·

H1

H2

H3

.

.

.

V1V2V3· · ·

H1

H2

H3

.

.

.
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Generalised cfs

Other cf-algorithms
There are several other algorithms producing generalised cf (gcf)
expansions

x = [β0;α1/β1, α2/β2, . . . ] = β0 +
α1

β1 +
α2

β2 +
.. .

with β0 ∈ Q and for n > 0, αn, βn ∈ Z, αn 6= 0.

S-expansions

α

Backward Nearest Integer Singular Regular

Optimal Diagonal
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Generalised cfs

Nakada’s α-cfs
For each α ∈ [0, 1], define Gα : [α− 1, α)→ [α− 1, α) by Gα(0) = 0 and

Gα(x) =
1

|x | −
⌊

1

|x | + 1− α
⌋
, x 6= 0.

Each Gα has a unique, a.c. invariant measure ρα, and
([α− 1, α),B, ρα,Gα) is ergodic.

-1 α− 1 0 α 1

α− 1

0

α

1
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Generalised cfs

Kraaikamp’s S-expansions

In 1991, Kraaikamp defined a large collection of gcf-algorithms by
coupling

1. singularisation, which is an arithmetic acceleration procedure for
gcfs, and

2. induced transformations of (Ω,B, ν̄G ,G), which is a dynamical
acceleration procedure based on first-return maps.

S-expansions use induced transformations to
govern singularisations: remove pn/qn iff
Gn(x , 0) ∈ S .

V1V2V3· · ·

H1

H2

H3

.

.

.

S∆
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Generalised cfs

Unifying family?

???Contracted Farey expansions

S-expansions

Superoptimal

α
Backward Nearest Integer Singular Regular

Optimal Diagonal
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Contraction

Singularisation vs. contraction

Singularisation is well-known and dates back to Lagrange (1798), but it is
limited:

(i) can only remove pn/qn if an+1 = 1, and

(ii) cannot remove pn/qn and pn+1/qn+1.

But there’s a more general acceleration technique called contraction:

Theorem (Seidel 1855)
Let [β0;α1/β1, α2/β2, . . . ] be a gcf with convergents
Pn/Qn = [β0;α1/β1, . . . , αn/βn], and let (nk)k≥0 be any strictly
increasing sequence of non-negative integers. Under mild assumptions,
there is an explicit gcf [β′0;α′1/β

′
1, α
′
2/β
′
2, . . . ] whose convergents are

precisely Pnk/Qnk .
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Contraction

All α-cfs realised as ‘S-expansions with contraction’?
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Contraction

All α-cfs realised as ‘S-expansions with contraction’?
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The Farey tent map and Farey expansions

Farey tent map
The Farey tent map F : [0, 1]→ [0, 1] is

F (x) =

{
x

1−x
, x ≤ 1/2,

1−x
x
, x > 1/2.

The dynamical system ([0, 1],B, µ,F ) is ergodic, where µ is the infinite,
σ-finite, a.c. invariant measure with density 1/x .

0 1/2 1

1
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The Farey tent map and Farey expansions
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The Farey tent map and Farey expansions

Farey expansions and convergents

Let x = [0; a1, a2, . . . ] and n ≥ 0. One finds that F n(x) = A−1[0,n] · x

,

where
A[0,n] =

(
un tn
sn rn

)
:=

(
λnpjn + pjn−1 pjn
λnqjn + qjn−1 qjn

)
and jn, λn ∈ Z satisfy

n = a1 + · · ·+ ajn + λn, 0 ≤ λn < ajn+1.

The map F generates gcf-expansions called Farey expansions whose
Farey convergents are

Pn−1

Qn−1
=

un
sn

=
λnpjn + pjn−1

λnqjn + qjn−1
,

i.e., all rcf-convergents and mediant convergents of x .
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Ito’s natural extension

Ito’s natural extension
In 1989, S. Ito introduced an explicit natural extension (Ω,B, µ̄,F) of
([0, 1],B, µ,F ).

Here

F(z) =


(

x
1−x ,

y
1+y

)
, x ≤ 1/2,(

1−x
x , 1

1+y

)
, x > 1/2,

µ̄(A) =

∫∫
A

dxdy

(x + y − xy)2
.

Ergodicity of F implies that of F .

V1V2V3· · ·

H1

H2

H3
.
.
.

V1V2V3· · ·

H1

H2

H3
.
.
.
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Ito’s natural extension

F -orbits and Farey convergents
Letting z = (x , 1) and zn := Fn(z), we have a 1-1 correspondence

zn ∈ Vajn+1−λn ∩ Hλn+1 ←→ un
sn

=
λnpjn + pjn−1
λnqjn + qjn−1

.

Example
Let x = [0; 4, 2, 3]. We have

z0 = ([0; 4, 2, 3, 4], [0; 1]),(
un

sn

)
n≥0

=

(
p−1

q−1
,
p0 + p−1

p0 + q−1
,
2q0 + p−1

2q0 + q−1
,
3p0 + p−1

3q0 + q−1
,

p0

q0
,
p1 + p0

q1 + q0
,

p1

q1
,
p2 + p1

q2 + q1
,
2p2 + p1

2q2 + q1
, . . .

)

V1V2V3· · ·

H1

H2

H3

.

.

.
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,
2q0 + p−1

2q0 + q−1
,
3p0 + p−1

3q0 + q−1
,

p0

q0
,
p1 + p0

q1 + q0
,

p1

q1
,
p2 + p1

q2 + q1
,
2p2 + p1

2q2 + q1
, . . .

)
V1V2V3· · ·

H1

H2

H3

.

.

.
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Ito’s natural extension

F -orbits and Farey convergents
Letting z = (x , 1) and zn := Fn(z), we have a 1-1 correspondence
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.
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, . . .

)
V1V2V3· · ·

H1

H2

H3

.

.

.

Descendants of the mother of all continued fractions



Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Ito’s natural extension

F -orbits and Farey convergents
Letting z = (x , 1) and zn := Fn(z), we have a 1-1 correspondence

zn ∈ Vajn+1−λn ∩ Hλn+1 ←→ un
sn

=
λnpjn + pjn−1
λnqjn + qjn−1

.

Example
Let x = [0; 4, 2, 3]. We have

z5 = ([0; 3, 4, 2, 3], [0; 1, 2, 4]),(
un

sn

)
n≥0

=

(
p−1

q−1
,
p0 + p−1

p0 + q−1
,
2q0 + p−1

2q0 + q−1
,
3p0 + p−1

3q0 + q−1
,

p0

q0
,
p1 + p0

q1 + q0
,

p1

q1
,
p2 + p1

q2 + q1
,
2p2 + p1

2q2 + q1
, . . .

)
V1V2V3· · ·

H1

H2

H3

.

.

.

Descendants of the mother of all continued fractions



Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Ito’s natural extension

F -orbits and Farey convergents
Letting z = (x , 1) and zn := Fn(z), we have a 1-1 correspondence

zn ∈ Vajn+1−λn ∩ Hλn+1 ←→ un
sn

=
λnpjn + pjn−1
λnqjn + qjn−1

.

Example
Let x = [0; 4, 2, 3]. We have

z5 = ([0; 2, 4, 2, 3], [0; 2, 2, 4]),(
un

sn

)
n≥0

=

(
p−1

q−1
,
p0 + p−1

p0 + q−1
,
2q0 + p−1

2q0 + q−1
,
3p0 + p−1

3q0 + q−1
,

p0

q0
,
p1 + p0

q1 + q0
,

p1

q1
,
p2 + p1

q2 + q1
,
2p2 + p1

2q2 + q1
, . . .

)
V1V2V3· · ·

H1

H2

H3

.

.

.

Descendants of the mother of all continued fractions



Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Ito’s natural extension

F -orbits and Farey convergents
Letting z = (x , 1) and zn := Fn(z), we have a 1-1 correspondence

zn ∈ Vajn+1−λn ∩ Hλn+1 ←→ un
sn

=
λnpjn + pjn−1
λnqjn + qjn−1

.

Example
Let x = [0; 4, 2, 3]. We have

z5 = ([0; 1, 4, 2, 3], [0; 3, 2, 4]),(
un

sn

)
n≥0

=

(
p−1

q−1
,
p0 + p−1

p0 + q−1
,
2q0 + p−1

2q0 + q−1
,
3p0 + p−1

3q0 + q−1
,

p0

q0
,
p1 + p0

q1 + q0
,

p1

q1
,
p2 + p1

q2 + q1
,
2p2 + p1

2q2 + q1
, . . .
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Contracted Farey expansions

Inducing Ito’s natural extension

For R ⊂ Ω with 0 < µ̄(R) <∞, define FR := FNR : Ω→ R, where

NR(z) := inf{n ≥ 1 | Fn(z) ∈ R}

is the hitting time to R.

Ergodicity of (Ω,B, µ̄,F) implies that of the
induced system (R,B, µ̄R ,FR), where µ̄R(S) := µ̄(S)/µ̄(R) for any
measurable S ⊂ R.

Let z = (x , 1). When µ̄(intR) > 0, Fn(z) ∈ R i.o. for a.e. x . The map
FR determines a subsequence (zRk )k≥0 = (zNR

k
)k≥0 of (zn)n≥0 and, via

zn ←→ un/sn, a subsequence (uRk /s
R
k )k≥0 = (uNR

k
/sNR

k
)k≥0 of (un/sn)n≥0.

Descendants of the mother of all continued fractions
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Contracted Farey expansions

Inducing contractions of the mother

Definition
The contracted Farey expansion (cfe) of x w/r/t R ⊂ Ω, denoted
[βR

0 ;αR
1 /β

R
1 , α

R
2 /β

R
2 , . . . ], is the contraction of the Farey expansion of x

w/r/t (NR
k+1 − 1)k≥0.

Proposition
The contracted Farey expansion of x w/r/t R has convergents
(uRn /s

R
n )n≥0. Moreover, the digits αR

n , β
R
n may be described explicitly in

terms of the dynamics of (R,B, µ̄R ,FR).
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Definition
The contracted Farey expansion (cfe) of x w/r/t R ⊂ Ω, denoted
[βR

0 ;αR
1 /β

R
1 , α

R
2 /β

R
2 , . . . ], is the contraction of the Farey expansion of x

w/r/t (NR
k+1 − 1)k≥0.

Proposition
The contracted Farey expansion of x w/r/t R has convergents
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R
n )n≥0. Moreover, the digits αR
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terms of the dynamics of (R,B, µ̄R ,FR).
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Contracted Farey expansions

Two-sided shift space
Let A[0,NR (z)] =:

(
uR (z) tR (z)
sR (z) rR (z)

)
, and suppose R is bounded away from

y = 0 and that sR = 1 ( =⇒ uR = 0, 1).

Let (ΩR ,B, ν̄R , τR) be obtained
from (R,B, µ̄R ,FR) through the isomorphism ϕR : R → ΩR ⊂ R2, where

ϕR(z) :=

{(
x , 1−yy

)
, uR(z) = 0,

(x − 1, 1− y) , uR(z) = 1.

R R

ΩR ΩR

FR

ϕR ϕR

τR

Theorem (Dajani, Kraaikamp, S. 2025)
If z = (x , 1) with x = [βR

0 ;αR
1 /β

R
1 , α

R
2 /β

R
2 , . . . ] and (X ,Y ) = ϕR(z),

then

τ nR(X ,Y ) =
(
[0;αR

n+1/β
R
n+1, α

R
n+2/β

R
n+2, . . . ], [0; 1/β

R
n , α

R
n /β

R
n−1, . . . , α

R
2 /β

R
1 ]
)
.

Moreover, ν̄R = µ̄R ◦ ϕ−1R has density 1/(µ̄(R)(1 + XY )2).
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from (R,B, µ̄R ,FR) through the isomorphism ϕR : R → ΩR ⊂ R2, where

ϕR(z) :=

{(
x , 1−yy

)
, uR(z) = 0,
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then
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Descendants of the mother of all continued fractions



Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Some cf-algorithms, revisited

Regular cfs

Let R = H1. Brown–Yin (’96) showed (H1,B, µ̄H1 ,FH1) ∼= (Ω,B, ν̄G ,G).

We find (ΩH1 ,B, ν̄H1 , τH1) = (Ω,B, ν̄G ,G). Moreover,
uH1
n /sH1

n = pn−1/qn−1, and the cfe of x w/r/t H1 recovers the
rcf-expansion of x :

x = [βH1
0 ;αH1

1 /β
H1
1 , αH1

2 /β
H1
2 , . . . ] = [0;βH1

1 , βH1
2 , . . . ].

V1V2V3· · ·

H1

H2

H3
.
.
.

FH1

ϕH1

V1V2V3· · ·

H1

H2

H3
.
.
.

G

= τH1
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Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Some cf-algorithms, revisited

Regular cfs

Let R = H1. Brown–Yin (’96) showed (H1,B, µ̄H1 ,FH1) ∼= (Ω,B, ν̄G ,G).
We find (ΩH1 ,B, ν̄H1 , τH1) = (Ω,B, ν̄G ,G).

Moreover,
uH1
n /sH1

n = pn−1/qn−1, and the cfe of x w/r/t H1 recovers the
rcf-expansion of x :

x = [βH1
0 ;αH1

1 /β
H1
1 , αH1

2 /β
H1
2 , . . . ] = [0;βH1

1 , βH1
2 , . . . ].

V1V2V3· · ·

H1

H2

H3
.
.
.

FH1

ϕH1

V1V2V3· · ·

H1

H2

H3
.
.
.

G = τH1

Descendants of the mother of all continued fractions



Some cf-algorithms Contraction The mother of all cfs Contracted Farey expansions Superoptimal cfs

Some cf-algorithms, revisited

Regular cfs
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Some cf-algorithms, revisited

Kraaikamp’s S-expansions

Let S be a singularisation area, ∆ = Ω\S , and R := ϕ−1H1
◦ G(∆).

Then
the cfe of x w/r/t R is the S-expansion of x , and (ΩR ,B, ν̄R , τR)
coincides with the two-sided shift space for S-expansions introduced by
Kraaikamp.

V1V2V3· · ·

H1

H2

H3

.

.

.

S∆

V1V2V3· · ·

H1

H2

H3

.

.

.

V1V2V3· · ·

H1

H2

H3

.

.

.

R

G ϕH1
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Some cf-algorithms, revisited

Kraaikamp’s S-expansions

Let S be a singularisation area, ∆ = Ω\S , and R := ϕ−1H1
◦ G(∆). Then

the cfe of x w/r/t R is the S-expansion of x , and (ΩR ,B, ν̄R , τR)
coincides with the two-sided shift space for S-expansions introduced by
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Some cf-algorithms, revisited

Nakada’s α-cfs
Fix 0 < α ≤ 1. Let k(z) := inf{j > 0 | F−jH1

(z) ∈ [0, α)× [1/2, 1]}

,
A = {z ∈ H1 | k(z) is odd}, and

R := A ∪
∞⋃
a=2

a−1⋃
λ=1

Fλ(A ∩ Va ∩ [α, 1]× [1/2, 1]).

Theorem (Dajani, Kraaikamp, S. 2025)
(R,B, µ̄R ,FR) is the natural extension of the α-cf map.

0

1

1−1

ϕR
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Some cf-algorithms, revisited

Nakada’s α-cfs
Fix 0 < α ≤ 1. Let k(z) := inf{j > 0 | F−jH1

(z) ∈ [0, α)× [1/2, 1]},
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Superoptimal cfs

Semi-regular cfs

gcfs

srcfs

rcf

Descendants of the mother of all continued fractions
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Superoptimal cfs

Bosma’s optimal cfs

For x irrational and p, q relatively prime, set Θ(x , p/q) := q2|x − p/q|.

For a.e. x and any srcf-expansion with (reduced) convergents Pk/Qk ,

(i) sup
k≥1

Θ

(
x ,

Pk

Qk

)
≥ 1

2

& (ii) lim sup
k→∞

n(k)

k
≤ log 2

logG
≈ 1.4404 . . . ,

where qn(k) ≤ Qk < qn(k)+1 and G := (
√

5 + 1)/2.

In 1987, Bosma introduced an algorithm producing optimal cfs
(introduced by Selenius, 1960) which satisfy

(i) Θ (x ,Pk/Qk) <
1

2
∀k & (ii) lim

k→∞

n(k)

k
=

log 2

logG
.
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Superoptimal cfs

Superoptimal cfs
Let ε,C > 0. A gcf-exp’n with (reduced) convergents Pk/Qk is
(ε,C )-superoptimal if both

(i) Θ (x ,Pk/Qk) ≤ ε ∀k & (ii) lim sup
k→∞

n(k)

k
≥ C .

Proposition
Θ(x , un/sn) < ε iff zn ∈ Sε, where

Sε :=

{
z = (x , y)

∣∣∣∣ 1− y

x + y − xy
< ε

}
.

Theorem (S. 2025+)
If R ⊂ Sε with µ̄(R) ≤ log 2

C , then the cfe
of x w/r/t R is (ε,C )-superoptimal.

V1V2V3· · ·

H1

H2

...

ε = 0

ε = 1

ε = 2

ε = 3
ε = 4

Descendants of the mother of all continued fractions
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Superoptimal cfs

Legendre–Hurwitz cfs

Θ(x , p/q) < 1/2 =⇒ p/q = pn/qn for some n (Legendre, 1798)

Θ(x , p/q) < 1/
√

5 for infinitely many p, q (Hurwitz, 1891)

Corollary
The cfe of any irrational x w/r/t R = S1/

√
5

exists, is (ε,C )-superoptimal for
ε=1/

√
5≈0.4472 . . . , C =

√
5 log 2≈1.5499 . . . ,

and the Farey convergents uRn /s
R
n of x are

precisely the rationals p/q from Hurwitz’s
theorem. V1V2V3· · ·

H1

H2

H3

.

.

.

Descendants of the mother of all continued fractions
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