Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000	000	0000

Descendants of the mother of all continued fractions

Slade Sanderson with Karma Dajani and Cor Kraaikamp

Uniform Distribution of Sequences ESI University of Vienna 23 April 2025

3 D A 3 D A 3 D A 6

Some CF-algorithms ●00 ○000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Regular CFs				

$Regular \ {\rm CFs}$

Each $x \in \mathbb{R}$ has an (essentially) unique regular continued fraction (RCF) expansion

$$x = [a_0; a_1, a_2, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}},$$

where $a_n \in \mathbb{Z}$ with $a_n > 0$ for n > 0.

・ロト・西・・川田・ 山田・ つんの

Some CF-algorithms ●00 ○000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Regular CFs				

Regular CFs

Each $x \in \mathbb{R}$ has an (essentially) unique regular continued fraction (RCF) expansion

$$x = [a_0; a_1, a_2, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}},$$

where $a_n \in \mathbb{Z}$ with $a_n > 0$ for n > 0. Denote RCF-**convergents** by

$$\frac{p_n}{q_n} = [a_0; a_1, \ldots, a_n] \in \mathbb{Q}.$$

ヘロト (同) (ヨト (ヨト)のの

Some CF-algorithms ○●○ ○○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Regular CFs				

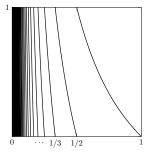
The Gauss map

The Gauss map $G : [0,1] \rightarrow [0,1]$ defined by G(0) = 0 and for $x \neq 0$,

$$G(x)=\frac{1}{x}-a(x),$$

with $a(x) = \lfloor 1/x \rfloor$ generates RCF-digits:

$$a_n = a(G^{n-1}(x)), \quad n > 0.$$



▲日▼▲□▼▲回▼▲回▼ あるの

Some CF-algorithms	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
	1			

Regular CFs

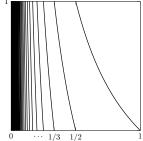
The Gauss map

The Gauss map $G : [0,1] \rightarrow [0,1]$ defined by G(0) = 0 and for $x \neq 0$,

$$G(x)=\frac{1}{x}-a(x),$$

with $a(x) = \lfloor 1/x \rfloor$ generates RCF-digits:

$$a_n = a(G^{n-1}(x)), \quad n > 0.$$



The dynamical system ([0, 1], \mathcal{B} , ν_G , G) is ergodic, where the **Gauss measure** ν_G is the a.c., *G*-invariant probability measure with density $1/(\log 2(1 + x))$.

Some CF-algorithms ○○● ○○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs
Regular CFs				

The natural extension of the Gauss map

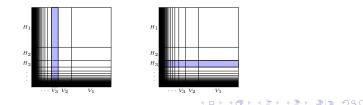
In the 1970s and 80s, Nakada, Ito and Tanaka introduced an explicit **natural extension** $(\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$ of $([0, 1], \mathcal{B}, \nu_G, G)$, i.e., the 'smallest' invertible dynamical system of which $([0, 1], \mathcal{B}, \nu_G, G)$ is a factor, or 'subsystem.'

Some CF-algorithms ○○● ○○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Regular CFs				

The natural extension of the Gauss map

In the 1970s and 80s, Nakada, Ito and Tanaka introduced an explicit **natural extension** $(\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$ of $([0, 1], \mathcal{B}, \nu_G, G)$, i.e., the 'smallest' invertible dynamical system of which $([0, 1], \mathcal{B}, \nu_G, G)$ is a factor, or 'subsystem.' Here $\Omega = [0, 1]^2$ and

$$\mathcal{G}(x,y) = \left(\frac{1}{x} - a(x), \frac{1}{a(x) + y}\right).$$



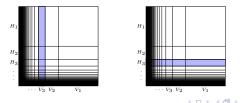
Some CF-algorithms ○○● ○○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Regular CFs				

The natural extension of the Gauss map

In the 1970s and 80s, Nakada, Ito and Tanaka introduced an explicit **natural extension** $(\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$ of $([0, 1], \mathcal{B}, \nu_G, G)$, i.e., the 'smallest' invertible dynamical system of which $([0, 1], \mathcal{B}, \nu_G, G)$ is a factor, or 'subsystem.' Here $\Omega = [0, 1]^2$ and

$$\mathcal{G}(x,y) = \left(rac{1}{x} - a(x), rac{1}{a(x) + y}
ight).$$

With $\pi : \Omega \to [0, 1]$ the projection to the first coordinate, $\nu_G(A) = \bar{\nu}_G(\pi^{-1}A)$, where $\bar{\nu}_G$ has density $1/(\log 2(1 + xy)^2)$.



Some CF-algorithms ○○○ ●○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

There are several other algorithms producing **generalised** CF (GCF) expansions

$$x = [\beta_0; \alpha_1/\beta_1, \alpha_2/\beta_2, \dots] = \beta_0 + \frac{\alpha_1}{\beta_1 + \frac{\alpha_2}{\beta_2 + \ddots}}$$

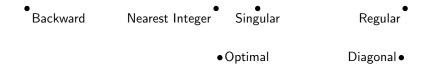
with $\beta_0 \in \mathbb{Q}$ and for n > 0, $\alpha_n, \beta_n \in \mathbb{Z}$, $\alpha_n \neq 0$.

Some CF-algorithms ○○○ ●○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

There are several other algorithms producing **generalised** CF (GCF) expansions

$$x = [\beta_0; \alpha_1/\beta_1, \alpha_2/\beta_2, \dots] = \beta_0 + \frac{\alpha_1}{\beta_1 + \frac{\alpha_2}{\beta_2 + \ddots}}$$

with $\beta_0 \in \mathbb{Q}$ and for n > 0, $\alpha_n, \beta_n \in \mathbb{Z}$, $\alpha_n \neq 0$.

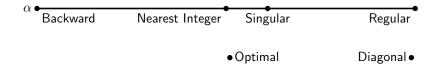


Some CF-algorithms ○○○ ●○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

There are several other algorithms producing generalised ${\rm CF}$ (GCF) expansions

$$x = [\beta_0; \alpha_1/\beta_1, \alpha_2/\beta_2, \dots] = \beta_0 + \frac{\alpha_1}{\beta_1 + \frac{\alpha_2}{\beta_2 + \ddots}}$$

with $\beta_0 \in \mathbb{Q}$ and for n > 0, $\alpha_n, \beta_n \in \mathbb{Z}$, $\alpha_n \neq 0$.



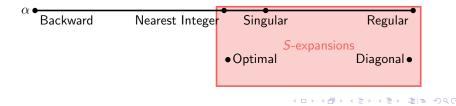
3 D A 3 D A 3 D A A 4 5 D A A 6

Some CF-algorithms ○○○ ●○○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

There are several other algorithms producing **generalised** CF (GCF) expansions

$$x = [\beta_0; \alpha_1/\beta_1, \alpha_2/\beta_2, \dots] = \beta_0 + \frac{\alpha_1}{\beta_1 + \frac{\alpha_2}{\beta_2 + \ddots}}$$

with $\beta_0 \in \mathbb{Q}$ and for n > 0, $\alpha_n, \beta_n \in \mathbb{Z}$, $\alpha_n \neq 0$.



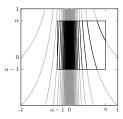
Some CF-algorithms ○○○ ○●○○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

Nakada's α -CFs

For each $\alpha \in [0,1]$, define $\mathcal{G}_{\alpha} : [\alpha - 1, \alpha) \rightarrow [\alpha - 1, \alpha)$ by $\mathcal{G}_{\alpha}(0) = 0$ and

$$\mathcal{G}_{lpha}(x) = rac{1}{|x|} - \left\lfloor rac{1}{|x|} + 1 - lpha
ight
floor, \qquad x
eq 0.$$

Each G_{α} has a unique, a.c. invariant measure ρ_{α} , and $([\alpha - 1, \alpha), \mathcal{B}, \rho_{\alpha}, G_{\alpha})$ is ergodic.



- 4 母 ト 4 ヨ ト ヨ ヨ め ()

Some CF-algorithms ○○○ ○○●○	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

Kraaikamp's S-expansions

In 1991, Kraaikamp defined a large collection of $_{\rm GCF}\xspace$ -algorithms by coupling

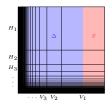
1. singularisation, which is an arithmetic acceleration procedure for $_{\rm GCFs,\ and}$

Some CF-algorithms	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CFs				

Kraaikamp's S-expansions

In 1991, Kraaikamp defined a large collection of $_{\rm GCF}\xspace$ -algorithms by coupling

- 1. singularisation, which is an arithmetic acceleration procedure for $_{\rm GCFs,\ and}$
- 2. induced transformations of $(\Omega, \mathcal{B}, \overline{\nu}_G, \mathcal{G})$, which is a dynamical acceleration procedure based on first-return maps.



= - na(

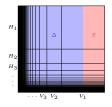
Some CF-algorithms	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CEs				

Kraaikamp's S-expansions

In 1991, Kraaikamp defined a large collection of $_{\rm GCF}\xspace$ -algorithms by coupling

- 1. singularisation, which is an arithmetic acceleration procedure for $_{\rm GCFs,\ and}$
- 2. induced transformations of $(\Omega, \mathcal{B}, \overline{\nu}_G, \mathcal{G})$, which is a dynamical acceleration procedure based on first-return maps.

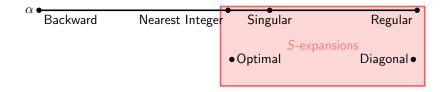
S-expansions use induced transformations to govern singularisations: remove p_n/q_n iff $\mathcal{G}^n(x,0) \in S$.



1 = 1 = 1 = 1 0 0 C

Some CF-algorithms ○○○ ○○○●	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CFs				

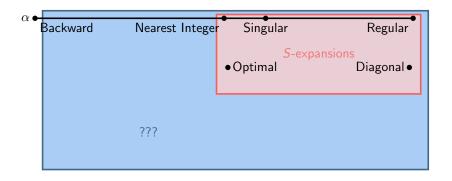
Unifying family?



▲日▼▲園▼▲田▼▲田▼ 倒す ろんの

Some CF-algorithms ○○○ ○○○●	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CFs				

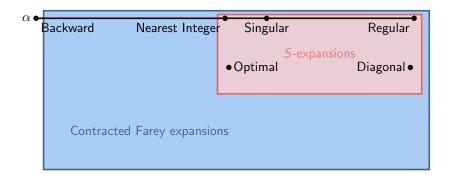
Unifying family?



◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 美国 のへの

Some CF-algorithms ○○○ ○○○●	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Generalised CFs				

Unifying family

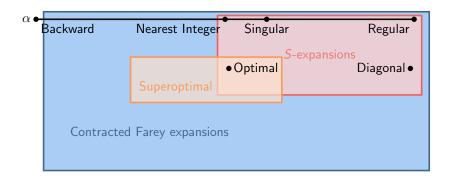


▲□▶▲□▶▲□▶▲□▶ ▲□▼ のへの

Some CF-algorithms	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
C				

Generalised CFs

Unifying family



Some CF-algorithms 000 0000	Contraction ●○	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000
Contraction				

Singularisation vs. contraction

Singularisation is well-known and dates back to Lagrange (1798), but it is limited:

- (i) can only remove p_n/q_n if $a_{n+1} = 1$, and
- (ii) cannot remove p_n/q_n and p_{n+1}/q_{n+1} .

Some CF-algorithms 000 0000	Contraction ●O	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs
Contraction				

Singularisation vs. contraction

Singularisation is well-known and dates back to Lagrange (1798), but it is limited:

- (i) can only remove p_n/q_n if $a_{n+1} = 1$, and
- (ii) cannot remove p_n/q_n and p_{n+1}/q_{n+1} .

But there's a more general acceleration technique called contraction:

Theorem (Seidel 1855)

Let $[\beta_0; \alpha_1/\beta_1, \alpha_2/\beta_2, ...]$ be a GCF with convergents $P_n/Q_n = [\beta_0; \alpha_1/\beta_1, ..., \alpha_n/\beta_n]$, and let $(n_k)_{k\geq 0}$ be any strictly increasing sequence of non-negative integers. Under mild assumptions, there is an explicit GCF $[\beta'_0; \alpha'_1/\beta'_1, \alpha'_2/\beta'_2, ...]$ whose convergents are precisely P_{n_k}/Q_{n_k} .

Some CF-algorithms 000 0000	Contraction ○●	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs

Contraction

All α -CFs realised as 'S-expansions with contraction'?

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 美国 のへの

Some CF-algorithms	Contraction O	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
0000		00	000	

Contraction

All α -CFs realised as 'S-expansions with contraction'?

IOP PUBLISHING

Nonlinearity 21 (2008) 1207-1225

NONLINEARITY

doi:10.1088/0951-7715/21/6/003

The non-monotonicity of the entropy of α -continued fraction transformations

Hitoshi Nakada¹ and Rie Natsui²

between the extensions of any α and $\alpha_{\frac{1}{2}}$ for $\alpha \in [\sqrt{2}-1, \frac{1}{2}]$ as a generalization of [1]. Here we note that the natural extension of T_{α} cannot be obtained by a simple induced transformation, in the sense of [1], of the natural extension of T_1 . This is related to the fact that a convergent of the continued fraction expansion of x by T_{α} may not be a convergent of the simple continued fraction expansion of x.

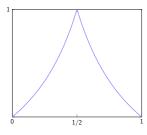
Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs ●○○ ○○	Contracted Farey expansions 000 000	Superoptimal CFs
	/			

Farey tent map

The Farey tent map $F : [0,1] \rightarrow [0,1]$ is

$$F(x) = \begin{cases} \frac{x}{1-x}, & x \le 1/2, \\ \frac{1-x}{x}, & x > 1/2. \end{cases}$$

The dynamical system ([0, 1], \mathcal{B}, μ, F) is ergodic, where μ is the infinite, σ -finite, a.c. invariant measure with density 1/x.



▶ ▲ 프 ▶ 프 | = ● ● ●

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs $0 \oplus 0$	Contracted Farey expansions 000 000	Superoptimal CFs 0000

COLLOQUIUM MATHEMATICUM

VOL. 84/85 2000 PART 1

'THE MOTHER OF ALL CONTINUED FRACTIONS'

 $_{\rm BY}$

KARMA DAJANI (UTRECHT) AND COR KRAAIKAMP (DELFT)

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 美国 のへの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs ○○● ○○	Contracted Farey expansions 000 000	Superoptimal CFs

Farey expansions and convergents

Let $x = [0; a_1, a_2, ...]$ and $n \ge 0$. One finds that $F^n(x) = A_{[0,n]}^{-1} \cdot x$

・ロト・日本・ キョト・ 日本・ クタの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs ○○● ○○	Contracted Farey expansions 000 000	Superoptimal CFs

Farey expansions and convergents

Let $x = [0; a_1, a_2, \dots]$ and $n \ge 0$. One finds that $F^n(x) = A_{[0,n]}^{-1} \cdot x$, where $A_{[0,n]} = \begin{pmatrix} u_n & t_n \\ s_n & r_n \end{pmatrix} := \begin{pmatrix} \lambda_n p_{j_n} + p_{j_n-1} & p_{j_n} \\ \lambda_n q_{j_n} + q_{j_n-1} & q_{j_n} \end{pmatrix}$

and $j_n, \ \lambda_n \in \mathbb{Z}$ satisfy

$$n = a_1 + \cdots + a_{j_n} + \lambda_n, \qquad 0 \leq \lambda_n < a_{j_n+1}.$$

Some CF-algorit	hms Contraction 00	The mother of all CFs ○○● ○○	Contracted Farey expansions 000 000	Superoptimal CFs 0000

Farey expansions and convergents

Let $x = [0; a_1, a_2, \dots]$ and $n \ge 0$. One finds that $F^n(x) = A_{[0,n]}^{-1} \cdot x$, where $A_{[0,n]} = \begin{pmatrix} u_n & t_n \\ s_n & r_n \end{pmatrix} := \begin{pmatrix} \lambda_n p_{j_n} + p_{j_n-1} & p_{j_n} \\ \lambda_n q_{j_n} + q_{j_n-1} & q_{j_n} \end{pmatrix}$

and $j_n, \ \lambda_n \in \mathbb{Z}$ satisfy

$$n = a_1 + \cdots + a_{j_n} + \lambda_n, \qquad 0 \leq \lambda_n < a_{j_n+1}.$$

The map F generates GCF-expansions called **Farey expansions** whose **Farey convergents** are

$$\frac{P_{n-1}}{Q_{n-1}} = \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}},$$

i.e., all RCF-convergents and mediant convergents of x.

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs ○○○ ●○	Contracted Farey expansions 000 000	Superoptimal CFs
Ito's natural extension				

In 1989, S. Ito introduced an explicit natural extension $(\Omega, \mathcal{B}, \overline{\mu}, \mathcal{F})$ of $([0, 1], \mathcal{B}, \mu, \mathcal{F})$.

<ロト < 部 > < 目 > < 目 > の < 0</p>

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs ○○○ ●○	Contracted Farey expansions 000 000	Superoptimal CFs
Ito's natural extension	on			

In 1989, S. Ito introduced an explicit natural extension $(\Omega, \mathcal{B}, \overline{\mu}, \mathcal{F})$ of $([0, 1], \mathcal{B}, \mu, F)$. Here

$$\mathcal{F}(z) = \begin{cases} \left(\frac{x}{1-x}, \frac{y}{1+y}\right), & x \leq 1/2, \\ \left(\frac{1-x}{x}, \frac{1}{1+y}\right), & x > 1/2, \end{cases} \qquad \bar{\mu}(A) = \iint_A \frac{dxdy}{(x+y-xy)^2}.$$

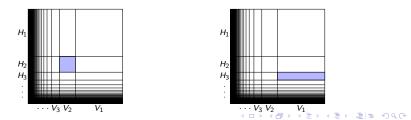
Ergodicity of F implies that of \mathcal{F} .

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs $\circ \circ \circ$	Contracted Farey expansions	Superoptimal CFs 0000
lto's natural extension				

In 1989, S. Ito introduced an explicit natural extension $(\Omega, \mathcal{B}, \overline{\mu}, \mathcal{F})$ of $([0, 1], \mathcal{B}, \mu, F)$. Here

$$\mathcal{F}(z) = \begin{cases} \left(\frac{x}{1-x}, \frac{y}{1+y}\right), & x \leq 1/2, \\ \left(\frac{1-x}{x}, \frac{1}{1+y}\right), & x > 1/2, \end{cases} \qquad \bar{\mu}(A) = \iint_{A} \frac{dxdy}{(x+y-xy)^{2}}.$$

Ergodicity of F implies that of \mathcal{F} .

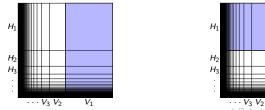


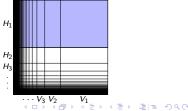
Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs $\circ \circ \circ$	Contracted Farey expansions	Superoptimal CFs 0000
lto's natural extension				

In 1989, S. Ito introduced an explicit natural extension $(\Omega, \mathcal{B}, \overline{\mu}, \mathcal{F})$ of $([0, 1], \mathcal{B}, \mu, F)$. Here

$$\mathcal{F}(z) = \begin{cases} \left(\frac{x}{1-x}, \frac{y}{1+y}\right), & x \leq 1/2, \\ \left(\frac{1-x}{x}, \frac{1}{1+y}\right), & x > 1/2, \end{cases} \qquad \bar{\mu}(A) = \iint_{A} \frac{dxdy}{(x+y-xy)^{2}}.$$

Ergodicity of F implies that of \mathcal{F} .

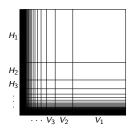




0000 0 0 000	Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
			0.	000	

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$



ののの 正則 スポットボット 御をえる

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

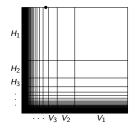
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

$$z_{0} = ([0; 4, \overline{2, 3, 4}], [0; 1]),$$

$$\left(\frac{u_{n}}{s_{n}}\right)_{n \geq 0} = \left(\frac{p_{-1}}{q_{-1}}, \frac{p_{0} + p_{-1}}{p_{0} + q_{-1}}, \frac{2q_{0} + p_{-1}}{2q_{0} + q_{-1}}, \frac{3p_{0} + p_{-1}}{3q_{0} + q_{-1}}, \frac{p_{0}}{q_{0}}, \frac{p_{1} + p_{0}}{q_{1} + q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2} + p_{1}}{q_{2} + q_{1}}, \frac{2p_{2} + p_{1}}{2q_{2} + q_{1}}, \dots\right)$$



> < = > = = + <

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

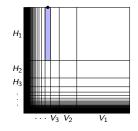
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_0 = ([0; 4, \overline{2, 3, 4}], [0; 1]),$

$$\left(\frac{u_n}{s_n}\right)_{n\geq 0} = \left(\frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \right)$$



○▲曰▶▲圖▶▲릴▶▲릴▶ 필급 외약이

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

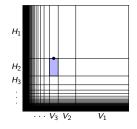
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_1 = ([0; 3, \overline{2, 3, 4}], [0; 2]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



3 = 1 - 1 A A

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

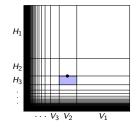
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_2 = ([0; 2, \overline{2, 3, 4}], [0; 3]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

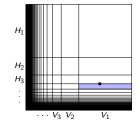
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_3 = ([0; 1, \overline{2, 3, 4}], [0; 4]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} p_{-1} \\ q_{-1} \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}} \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



- ▲口 ▶ ▲園 ▶ ▲ 国 ▶ ▲目 ▲ の Q @

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

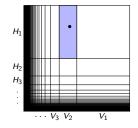
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_4 = ([0; 2, \overline{3, 4, 2}], [0; 1, 4]),$

$$\left(\frac{u_n}{s_n}\right)_{n\geq 0} = \left(\frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \right)$$



○◇□〉 ▲圖〉 ▲필〉 ▲필▷ ▲티▲ ���

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

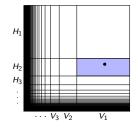
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_5 = ([0; 1, \overline{3, 4, 2}], [0; 2, 4]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



· 《 曰 》 《 쿱 》 《 쿱 》 《 圊 》 《 曰 》 ·

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

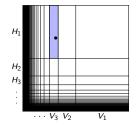
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_5 = ([0; 3, \overline{4, 2, 3}], [0; 1, 2, 4]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



◎ 20~ 月回 → 山田 → → 西 → → 日 → ●

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

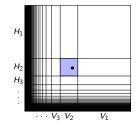
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_5 = ([0; 2, \overline{4, 2, 3}], [0; 2, 2, 4]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000 0•	000	0000

 \mathcal{F} -orbits and Farey convergents Letting z = (x, 1) and $z_n := \mathcal{F}^n(z)$, we have a 1-1 correspondence

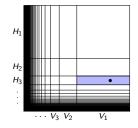
$$z_n \in V_{a_{j_n+1}-\lambda_n} \cap H_{\lambda_n+1} \quad \longleftrightarrow \quad \frac{u_n}{s_n} = \frac{\lambda_n p_{j_n} + p_{j_n-1}}{\lambda_n q_{j_n} + q_{j_n-1}}$$

Example

Let $x = [0; \overline{4, 2, 3}]$. We have

 $z_5 = ([0; 1, \overline{4, 2, 3}], [0; 3, 2, 4]),$

$$\begin{pmatrix} u_n \\ s_n \end{pmatrix}_{n \ge 0} = \begin{pmatrix} \frac{p_{-1}}{q_{-1}}, \frac{p_0 + p_{-1}}{p_0 + q_{-1}}, \frac{2q_0 + p_{-1}}{2q_0 + q_{-1}}, \frac{3p_0 + p_{-1}}{3q_0 + q_{-1}}, \\ \frac{p_0}{q_0}, \frac{p_1 + p_0}{q_1 + q_0}, \\ \frac{p_1}{q_1}, \frac{p_2 + p_1}{q_2 + q_1}, \frac{2p_2 + p_1}{2q_2 + q_1}, \dots \end{pmatrix}$$



3 = 1 - 1 A A

Some CP-algorithms Contraction I he mother of all CPs Contracted Farey expansions Superoptimal C 000 00 000 000 000 000 000 000 000 000 000		Contraction 00			Superoptimal CF 0000
---	--	-------------------	--	--	-------------------------

Inducing Ito's natural extension

For $R \subset \Omega$ with $0 < \overline{\mu}(R) < \infty$, define $\mathcal{F}_R := \mathcal{F}^{N_R} : \Omega \to R$, where

$$N_R(z) := \inf\{n \ge 1 \mid \mathcal{F}^n(z) \in R\}$$

is the **hitting time** to R.

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ●○○ ○○○	Superoptimal CFs

Inducing Ito's natural extension

For $R \subset \Omega$ with $0 < \overline{\mu}(R) < \infty$, define $\mathcal{F}_R := \mathcal{F}^{N_R} : \Omega \to R$, where

$$N_R(z) := \inf\{n \ge 1 \mid \mathcal{F}^n(z) \in R\}$$

is the **hitting time** to *R*. Ergodicity of $(\Omega, \mathcal{B}, \bar{\mu}, \mathcal{F})$ implies that of the **induced system** $(R, \mathcal{B}, \bar{\mu}_R, \mathcal{F}_R)$, where $\bar{\mu}_R(S) := \bar{\mu}(S)/\bar{\mu}(R)$ for any measurable $S \subset R$.

A B A B A B B B A A A

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ●○○ ○○○	Superoptimal CFs

Inducing Ito's natural extension

For $R \subset \Omega$ with $0 < \overline{\mu}(R) < \infty$, define $\mathcal{F}_R := \mathcal{F}^{N_R} : \Omega \to R$, where

$$N_R(z) := \inf\{n \ge 1 \mid \mathcal{F}^n(z) \in R\}$$

is the **hitting time** to *R*. Ergodicity of $(\Omega, \mathcal{B}, \bar{\mu}, \mathcal{F})$ implies that of the **induced system** $(R, \mathcal{B}, \bar{\mu}_R, \mathcal{F}_R)$, where $\bar{\mu}_R(S) := \bar{\mu}(S)/\bar{\mu}(R)$ for any measurable $S \subset R$.

Let z = (x, 1). When $\overline{\mu}(intR) > 0$, $\mathcal{F}^n(z) \in R$ i.o. for a.e. x.

▲□▶▲□▶▲□▶▲□▶ ▲□■ わんの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ●○○ ○○○	Superoptimal CFs

Inducing Ito's natural extension

For $R \subset \Omega$ with $0 < \overline{\mu}(R) < \infty$, define $\mathcal{F}_R := \mathcal{F}^{N_R} : \Omega \to R$, where

$$N_R(z) := \inf\{n \ge 1 \mid \mathcal{F}^n(z) \in R\}$$

is the **hitting time** to *R*. Ergodicity of $(\Omega, \mathcal{B}, \bar{\mu}, \mathcal{F})$ implies that of the **induced system** $(R, \mathcal{B}, \bar{\mu}_R, \mathcal{F}_R)$, where $\bar{\mu}_R(S) := \bar{\mu}(S)/\bar{\mu}(R)$ for any measurable $S \subset R$.

Let z = (x, 1). When $\overline{\mu}(\operatorname{int} R) > 0$, $\mathcal{F}^n(z) \in R$ i.o. for a.e. x. The map \mathcal{F}_R determines a subsequence $(z_k^R)_{k\geq 0} = (z_{N_k^R})_{k\geq 0}$ of $(z_n)_{n\geq 0}$ and, via $z_n \longleftrightarrow u_n/s_n$, a subsequence $(u_k^R/s_k^R)_{k\geq 0} = (u_{N_k^R}/s_{N_k^R})_{k\geq 0}$ of $(u_n/s_n)_{n\geq 0}$.

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ⊙⊙⊙ ○○○	Superoptimal CFs 0000

Inducing contractions of the mother

Definition

The contracted Farey expansion (CFE) of $x w/r/t \ R \subset \Omega$, denoted $[\beta_0^R; \alpha_1^R/\beta_1^R, \alpha_2^R/\beta_2^R, \dots]$, is the contraction of the Farey expansion of $x w/r/t (N_{k+1}^R - 1)_{k \ge 0}$.

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ⊙⊙⊙ ○○○	Superoptimal CFs

Inducing contractions of the mother

Definition

The contracted Farey expansion (CFE) of $x w/r/t \ R \subset \Omega$, denoted $[\beta_0^R; \alpha_1^R/\beta_1^R, \alpha_2^R/\beta_2^R, \dots]$, is the contraction of the Farey expansion of $x w/r/t (N_{k+1}^R - 1)_{k \ge 0}$.

Proposition

The contracted Farey expansion of x w/r/t R has convergents $(u_n^R/s_n^R)_{n\geq 0}$. Moreover, the digits α_n^R , β_n^R may be described explicitly in terms of the dynamics of $(R, \mathcal{B}, \overline{\mu}_R, \mathcal{F}_R)$.

	Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 00● 000	Superoptimal CFs
--	-----------------------------------	-------------------	------------------------------------	---	------------------

Two-sided shift space Let $A_{[0,N_R(z)]} =: \begin{pmatrix} u_R(z) & t_R(z) \\ s_R(z) & r_R(z) \end{pmatrix}$, and suppose R is bounded away from y = 0 and that $s_R = 1$ ($\implies u_R = 0, 1$).

◆□▶▲□▶▲□▼▲□▼ ④�?

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs	Contracted Farey expansions ○○●	Superoptimal CFs 0000

Two-sided shift space Let $A_{[0,N_R(z)]} =: \begin{pmatrix} u_R(z) \ t_R(z) \\ s_R(z) \ r_R(z) \end{pmatrix}$, and suppose R is bounded away from y = 0 and that $s_R = 1$ ($\implies u_R = 0, 1$). Let $(\Omega_R, \mathcal{B}, \bar{\nu}_R, \tau_R)$ be obtained from $(R, \mathcal{B}, \bar{\mu}_R, \mathcal{F}_R)$ through the isomorphism $\varphi_R : R \to \Omega_R \subset \mathbb{R}^2$, where

$$\varphi_{R}(z) := \begin{cases} \left(x, \frac{1-y}{y}\right), & u_{R}(z) = 0, \\ \left(x-1, 1-y\right), & u_{R}(z) = 1. \end{cases} \xrightarrow{R \longrightarrow R} \psi_{\varphi_{R}} \downarrow \psi_{\varphi_{R}} \downarrow \varphi_{\varphi_{R}} \varphi_{\varphi_{R}} \downarrow \varphi_{\varphi_{R}} \downarrow$$

▲日▼▲□▼▲□▼▲□▼ ▲□▼ もののの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 00● 000	Superoptimal CFs 0000

Two-sided shift space Let $A_{[0,N_R(z)]} =: \begin{pmatrix} u_R(z) & t_R(z) \\ s_R(z) & r_R(z) \end{pmatrix}$, and suppose R is bounded away from y = 0 and that $s_R = 1$ ($\implies u_R = 0, 1$). Let $(\Omega_R, \mathcal{B}, \bar{\nu}_R, \tau_R)$ be obtained from $(R, \mathcal{B}, \bar{\mu}_R, \mathcal{F}_R)$ through the isomorphism $\varphi_R : R \to \Omega_R \subset \mathbb{R}^2$, where

$$\varphi_{R}(z) := \begin{cases} \left(x, \frac{1-y}{y}\right), & u_{R}(z) = 0, \\ \left(x-1, 1-y\right), & u_{R}(z) = 1. \end{cases} \xrightarrow{R} \xrightarrow{\mathcal{F}_{R}} R \\ \varphi_{R} \downarrow & \downarrow \varphi_{R} \\ \varphi_{R} \downarrow & \downarrow \varphi_{R} \\ \Omega_{R} \xrightarrow{\tau_{R}} \Omega_{R} \end{cases}$$

Theorem (Dajani, Kraaikamp, S. 2025) If z = (x, 1) with $x = [\beta_0^R; \alpha_1^R / \beta_1^R, \alpha_2^R / \beta_2^R, ...]$ and $(X, Y) = \varphi_R(z)$, then

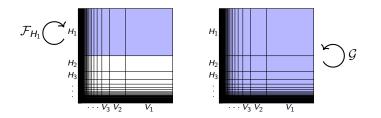
$$\tau_{R}^{n}(X,Y) = \left([0; \alpha_{n+1}^{R} / \beta_{n+1}^{R}, \alpha_{n+2}^{R} / \beta_{n+2}^{R}, \dots], [0; 1/\beta_{n}^{R}, \alpha_{n}^{R} / \beta_{n-1}^{R}, \dots, \alpha_{2}^{R} / \beta_{1}^{R}] \right).$$

Moreover, $\bar{\nu}_R = \bar{\mu}_R \circ \varphi_R^{-1}$ has density $1/(\bar{\mu}(R)(1+XY)^2)$.

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs	Contracted Farey expansions ○○○ ●○○	Superoptimal CFs 0000
Some CF-algorithms, rev	visited			

$Regular \ {\rm CFs}$

Let $R = H_1$. Brown-Yin ('96) showed $(H_1, \mathcal{B}, \bar{\mu}_{H_1}, \mathcal{F}_{H_1}) \cong (\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G}).$

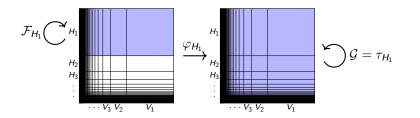


Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ○○○ ●○○	Superoptimal CFs 0000
Some CF-algorithms, revisited				

_ .

Regular CFs

Let $R = H_1$. Brown-Yin ('96) showed $(H_1, \mathcal{B}, \bar{\mu}_{H_1}, \mathcal{F}_{H_1}) \cong (\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$. We find $(\Omega_{H_1}, \mathcal{B}, \bar{\nu}_{H_1}, \tau_{H_1}) = (\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$.

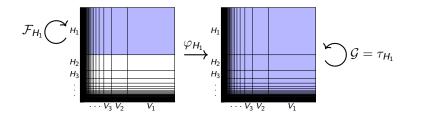


Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ○○○ ●○○	Superoptimal CFs

Regular CFs

Let $R = H_1$. Brown-Yin ('96) showed $(H_1, \mathcal{B}, \bar{\mu}_{H_1}, \mathcal{F}_{H_1}) \cong (\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$. We find $(\Omega_{H_1}, \mathcal{B}, \bar{\nu}_{H_1}, \tau_{H_1}) = (\Omega, \mathcal{B}, \bar{\nu}_G, \mathcal{G})$. Moreover, $u_n^{H_1}/s_n^{H_1} = p_{n-1}/q_{n-1}$, and the CFE of $x \text{ w/r/t } H_1$ recovers the RCF-expansion of x:

$$x = [\beta_0^{H_1}; \alpha_1^{H_1} / \beta_1^{H_1}, \alpha_2^{H_1} / \beta_2^{H_1}, \dots] = [0; \beta_1^{H_1}, \beta_2^{H_1}, \dots].$$

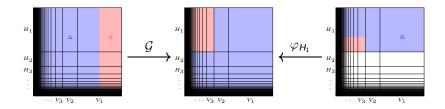


伺 ト イヨ ト イヨ ト ヨヨ うえつ

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000		0000

Kraaikamp's S-expansions

Let S be a singularisation area, $\Delta = \Omega \setminus S$, and $R := \varphi_{H_1}^{-1} \circ \mathcal{G}(\Delta)$.

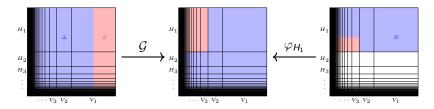


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ��

000 00 000 000 0000 0000 00 00 000 0000	Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
	000	00			0000

Kraaikamp's S-expansions

Let S be a singularisation area, $\Delta = \Omega \setminus S$, and $R := \varphi_{H_1}^{-1} \circ \mathcal{G}(\Delta)$. Then the CFE of x w/r/t R is the S-expansion of x, and $(\Omega_R, \mathcal{B}, \bar{\nu}_R, \tau_R)$ coincides with the two-sided shift space for S-expansions introduced by Kraaikamp.



ののの 正則 スポットボット 予告 ふくり

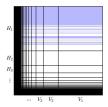
Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000	000	0000

Nakada's α -CFS Fix $0 < \alpha \le 1$. Let $k(z) := \inf\{j > 0 \mid \mathcal{F}_{H_1}^{-j}(z) \in [0, \alpha) \times [1/2, 1]\}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▼ ◆○ ◆

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000		0000

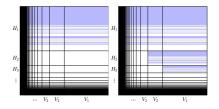
Nakada's α -CFS Fix $0 < \alpha \leq 1$. Let $k(z) := \inf\{j > 0 \mid \mathcal{F}_{H_1}^{-j}(z) \in [0, \alpha) \times [1/2, 1]\}, A = \{z \in H_1 \mid k(z) \text{ is odd}\}$



▲日▼▲園▼▲田▼▲田▼ 倒す ろんの

	Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions ○○○ ○○●	Superoptimal CFs
--	-----------------------------------	-------------------	------------------------------------	---	------------------

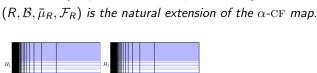
Nakada's
$$\alpha$$
-CFS
Fix $0 < \alpha \leq 1$. Let $k(z) := \inf\{j > 0 \mid \mathcal{F}_{H_1}^{-j}(z) \in [0, \alpha) \times [1/2, 1]\},$
 $A = \{z \in H_1 \mid k(z) \text{ is odd}\}, \text{ and}$
 $R := A \cup \bigcup_{a=2}^{\infty} \bigcup_{\lambda=1}^{a-1} \mathcal{F}^{\lambda}(A \cap V_a \cap [\alpha, 1] \times [1/2, 1]).$



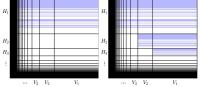
▲□▶▲@▶▲≣▶▲≣▶ ▲□▼ のQ@

Some CF-algorithms	Contraction 00	The mother of all CFs	Contracted Farey expansions ○○○ ○○●	Superoptimal CFs 0000

Nakada's α -CFS Fix $0 < \alpha \leq 1$. Let $k(z) := \inf\{j > 0 \mid \mathcal{F}_{H_1}^{-j}(z) \in [0, \alpha) \times [1/2, 1]\},$ $A = \{z \in H_1 \mid k(z) \text{ is odd}\}, \text{ and}$ $R := A \cup \bigcup_{a=2}^{\infty} \bigcup_{\lambda=1}^{a-1} \mathcal{F}^{\lambda}(A \cap V_a \cap [\alpha, 1] \times [1/2, 1]).$



Theorem (Dajani, Kraaikamp, S. 2025)



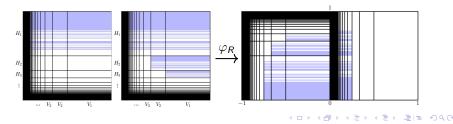
-▲日▼▲留▼▲田▼▲田▼ もんの

Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
0000		00	000	

Nakada's α -CFS Fix $0 < \alpha \leq 1$. Let $k(z) := \inf\{j > 0 \mid \mathcal{F}_{H_1}^{-j}(z) \in [0, \alpha) \times [1/2, 1]\},$ $A = \{z \in H_1 \mid k(z) \text{ is odd}\}, \text{ and}$ $R := A \cup \bigcup_{a=2}^{\infty} \bigcup_{\lambda=1}^{a-1} \mathcal{F}^{\lambda}(A \cap V_a \cap [\alpha, 1] \times [1/2, 1]).$

Theorem (Dajani, Kraaikamp, S. 2025)

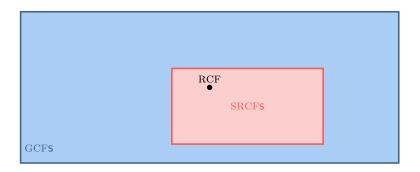
 $(R, \mathcal{B}, \overline{\mu}_R, \mathcal{F}_R)$ is the natural extension of the α -CF map.



Some CF-algorithms	Contraction	The mother of all CFs	Contracted Farey expansions	Superoptimal CFs
000	00	000	000	0000

 ${\small Superoptimal} \ {\small CFs}$

$Semi-regular \ {\rm CFs}$



・ロト・西ト・山田・山田・ 白ト

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000

Bosma's optimal CFs

For x irrational and p, q relatively prime, set $\Theta(x, p/q) := q^2 |x - p/q|$.

・ロト・日本・ 山田・ 山田・ つんの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs ○●○○
Superoptimal CFs				

Bosma's optimal CFs

For x irrational and p, q relatively prime, set $\Theta(x, p/q) := q^2 |x - p/q|$. For a.e. x and any SRCF-expansion with (reduced) convergents P_k/Q_k ,

(i)
$$\sup_{k\geq 1}\Theta\left(x,\frac{P_k}{Q_k}\right)\geq \frac{1}{2}$$

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 0000

Bosma's optimal CFs

For x irrational and p, q relatively prime, set $\Theta(x, p/q) := q^2 |x - p/q|$. For a.e. x and any SRCF-expansion with (reduced) convergents P_k/Q_k ,

(i)
$$\sup_{k\geq 1}\Theta\left(x,\frac{P_k}{Q_k}\right)\geq \frac{1}{2}$$
 & (ii) $\limsup_{k\to\infty}\frac{n(k)}{k}\leq \frac{\log 2}{\log G}\approx 1.4404\ldots,$

where $q_{n(k)} \leq Q_k < q_{n(k)+1}$ and $G := (\sqrt{5} + 1)/2$.

▲日▼▲御▼★回▼★回▼ 倒日 ろえの

000 00 000 00	Superoptimal CFs 00 00
---------------	------------------------------------

Bosma's optimal CFs

For x irrational and p, q relatively prime, set $\Theta(x, p/q) := q^2 |x - p/q|$. For a.e. x and any SRCF-expansion with (reduced) convergents P_k/Q_k ,

(i)
$$\sup_{k\geq 1}\Theta\left(x,\frac{P_k}{Q_k}\right)\geq \frac{1}{2}$$
 & (ii) $\limsup_{k\to\infty}\frac{n(k)}{k}\leq \frac{\log 2}{\log G}\approx 1.4404\ldots,$

where $q_{n(k)} \leq Q_k < q_{n(k)+1}$ and $G := (\sqrt{5} + 1)/2$.

In 1987, Bosma introduced an algorithm producing **optimal** CFs (introduced by Selenius, 1960) which satisfy

(i)
$$\Theta(x, P_k/Q_k) < \frac{1}{2} \forall k$$
 & (ii) $\lim_{k \to \infty} \frac{n(k)}{k} = \frac{\log 2}{\log G}$

▲日▼▲□▼▲□▼▲□▼ ▲□▼ もののの

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs
Superoptimal CFs				

Let $\varepsilon, C > 0$. A GCF-exp'n with (reduced) convergents P_k/Q_k is (ε, C) -superoptimal if both

(i)
$$\Theta(x, P_k/Q_k) \le \varepsilon \ \forall k$$
 & (ii) $\limsup_{k \to \infty} \frac{n(k)}{k} \ge C$.

・ロト・日本・山田・山田・ 白や

Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 00●0
Superoptimal CFs				

Let $\varepsilon, C > 0$. A GCF-exp'n with (reduced) convergents P_k/Q_k is (ε, C) -superoptimal if both

(i)
$$\Theta(x, P_k/Q_k) \le \varepsilon \ \forall k \& (ii) \lim_{k\to\infty} \sup \frac{n(k)}{k} \ge C.$$

 V_1

Proposition $\Theta(x, u_n/s_n) < \varepsilon \text{ iff } z_n \in S_{\varepsilon}, \text{ where}$ $S_{\varepsilon} := \left\{ z = (x, y) \mid \frac{1 - y}{x + y - xy} < \varepsilon \right\}.$ $\varepsilon = 1$ H_1 $\varepsilon = 1$ H_2 $\varepsilon = 3$ $\varepsilon = 3$ $\varepsilon = 4$ $U_1 = 1$ $U_2 = 1$ $U_3 = 1$

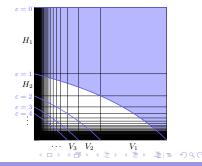
Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs

Superoptimal CFs

Let $\varepsilon, C > 0$. A GCF-exp'n with (reduced) convergents P_k/Q_k is (ε, C) -superoptimal if both

(i)
$$\Theta(x, P_k/Q_k) \le \varepsilon \ \forall k \&$$
 (ii) $\limsup_{k\to\infty} \frac{n(k)}{k} \ge C.$

Proposition $\Theta(x, u_n/s_n) < \varepsilon \text{ iff } z_n \in S_{\varepsilon}, \text{ where}$ $S_{\varepsilon} := \left\{ z = (x, y) \mid \frac{1 - y}{x + y - xy} < \varepsilon \right\}.$ Theorem (S. 2025+) If $R \subset S_{\varepsilon}$ with $\overline{\mu}(R) \leq \frac{\log 2}{C}$, then the CFE of x w/r/t R is (ε, C) -superoptimal.



		Contraction 00			Superoptimal CFs
--	--	-------------------	--	--	------------------

Legendre–Hurwitz CFs

 $\Theta(x, p/q) < 1/2 \implies p/q = p_n/q_n$ for some *n* (Legendre, 1798)

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 美国 のへの

Some CF-algorithms Contraction The mother of all CFs Contracted Farey expansions Superoptimal CF 000	7 s
--	------------

Legendre–Hurwitz CFs

 $\Theta(x, p/q) < 1/2 \implies p/q = p_n/q_n$ for some *n* (Legendre, 1798) $\Theta(x, p/q) < 1/\sqrt{5}$ for infinitely many *p*, *q* (Hurwitz, 1891)

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 美国 のへの

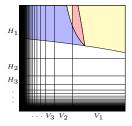
Some CF-algorithms 000 0000	Contraction 00	The mother of all CFs 000 00	Contracted Farey expansions 000 000	Superoptimal CFs 000●
0000		00	000	

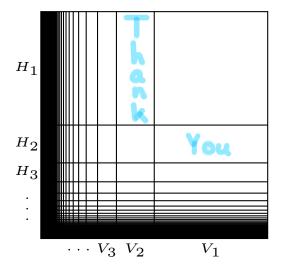
Legendre–Hurwitz CFs

$$\Theta(x, p/q) < 1/2 \implies p/q = p_n/q_n$$
 for some *n* (Legendre, 1798)
 $\Theta(x, p/q) < 1/\sqrt{5}$ for infinitely many *p*, *q* (Hurwitz, 1891)

Corollary

The CFE of any irrational x w/r/t $R = S_{1/\sqrt{5}}$ exists, is $(\varepsilon, \overline{C})$ -superoptimal for $\varepsilon = 1/\sqrt{5} \approx 0.4472..., C = \sqrt{5} \log 2 \approx 1.5499...,$ and the Farey convergents u_n^R/s_n^R of x are precisely the rationals p/q from Hurwitz's theorem.





Descendants of the mother of all continued fractions

•