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Noncommutative Field Theory

▶ Noncommutative field theories appear as effective theories in many
physical scenarios, and are believed to provide frameworks for models of
quantum gravity

▶ Example: In constant NS–NS B-field backgrounds, open string
interactions in CFT correlation functions captured by Moyal-Weyl
star-product:

f ⋆ g = · exp
(

i
2
θµν ∂µ ⊗ ∂ν

)
(f ⊗ g) , θ = B−1

Low-energy dynamics described by
noncommutative gauge theory

(Douglas & Hull ’97;
Ardalan, Arfaei & Sheikh-Jabbari ’98; Chu & Ho ’98;

Schomerus ’99; Seiberg & Witten ’99; . . . )

▶ Extends to curved D-branes and non-constant B (possibly with H-flux
H = dB ̸= 0) (Cornalba & Schiappa ’01; Herbst, Kling & Kreuzer ’01)

Examples: D-branes in WZW models (Alekseev, Recknagel & Schomerus ’99)

Holographic duals to integrable deformations of AdS5 × S5 σ-models
(van Tongeren ’15; Araujo et al. ’17; Meier & van Tongeren ’23; . . . )



UV/IR Mixing

▶ These theories are plagued by the problem of UV/IR mixing:

ϕ̃(k) ϕ̃(q) −→ ϕ̃(k) ϕ̃(q) e i k×q , k × q = 1
2 kµ θ

µν qν
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with k1 + k2 + . . .+ kn = 0; effective at energies E with E
√
θ ≪ 1

▶ Non-planar graphs: (Minwalla, Van Raamsdonk & Seiberg ’99)

UV cutoff Λ =⇒ Effective IR cutoff Λ0 =
1

θ Λ

▶ The field theory cannot be renormalized!!!



UV/IR Mixing

▶ Grosse–Wulkenhaar Model: Real Euclidean scalar λϕ⋆42d -theory in

background harmonic oscillator potential:

□ 7−→ □+ 1
2 ω

2 x̃2 , x̃ = 2 θ−1 · x

▶ QFT symmetric under Fourier transformation of fields: kµ ↔ x̃µ
Renormalizable to all orders in λ

(Langmann & Sz ’02; Grosse & Wulkenhaar ’04; Rivasseau et al. ’05; . . . )

▶ In this talk: A new approach to renormalizable noncomm QFT by

modifying the path integral directly (not the classical theory)

— this is called braided quantum field theory

▶ Renormalization properties of braided QFT very different

— UV/IR mixing seems far less severe and maybe even absent
(Oeckl ’00; Balachandran et al. ’06; Bu et al. ’06; Fiore & Wess ’07; . . . )



Braided Quantum Field Theory

▶ Homotopy algebras: Deform L∞-algebra description of (noncomm) field
theories: Braided L∞-algebras construct braided field theories
equivariant under a triangular Hopf algebra action, with braided
noncommutative fields (Dimitrijević Ćirić, Giotopoulos, Radovanović & Sz ’21)

▶ Notion of braided gauge symmetry is not new — kinematical aspects of
this idea have appeared before (Brzezinski & Majid ’92; . . . )

— ideas and techniques borrowed from twisted noncommutative gravity
(Aschieri et al. ’05; . . . )

▶ Oeckl’s algebraic approach to braided QFT based on braided Wick’s
Theorem and Gaussian integration — (Oeckl ’99; Sasai & Sasakura ’07)

but does not treat theories with gauge symmetries

▶ Goal: Apply algebraic formalism of Batalin-Vilkovisky (BV) quantization
(à la Costello-Gwilliam), in a braided version which completely captures
perturbative braided QFT with explicit computations of correlation
functions (Nguyen, Schenkel & Sz ’21)



Drinfel’d Twist Deformation

▶ Let F = fα ⊗ fα ∈ UΓ(TM)⊗ UΓ(TM) be a Drinfel’d twist;

e.g. Moyal-Weyl twist F = exp
(
− i

2 θ
µν ∂µ ⊗ ∂ν

)
▶ If A is a UΓ(TM)-module algebra (functions, forms, tensors on M),

then Γ(TM) acts on A via Lie derivative and Leibniz rule

▶ Deform product on A into a star-product:

a ⋆ b = ·F−1(a⊗ b) = f̄α(a) · f̄α(b)

▶ Defines noncommutative algebra A⋆ carrying representation of

twisted Hopf algebra UFΓ(TM)

▶ If A is commutative, then A⋆ is braided-commutative:

a ⋆ b = Rα(b) ⋆ R
α(a)

R = F−2 = Rα ⊗ Rα = triangular R-matrix



L∞-Algebras of Classical Field Theories

▶ L∞-algebras organise gauge symmetries and dynamics:

· · · → V0 → V1 → V2 → V3 → · · ·
· · · gauge par. fields field eqs. Noether ids. · · ·

(Hohm & Zwiebach ’17; Jurčo, Raspollini, Sämann & Wolf ’18)

▶ Multilinear maps ℓn : ∧nV −→ V on V = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · :

ℓ1(ℓ1(v)) = 0 (V , ℓ1) is a cochain complex

ℓ1(ℓ2(v ,w)) = ℓ2(ℓ1(v),w)± ℓ2(v , ℓ1(w)) ℓ1 is a derivation of ℓ2

ℓ2(v , ℓ2(w , u)) + cyclic = (ℓ1 ◦ ℓ3 ± ℓ3 ◦ ℓ1)(v ,w , u) Jacobi up to homotopy

plus “higher homotopy Jacobi identities”

▶ L∞-algebras are homotopy coherent generalizations of Lie algebras

▶ Graded inner product ⟨−,−⟩ : V × V −→ R gives cyclic structure:

⟨v0, ℓn(v1, v2, . . . , vn)⟩ = ±⟨vn, ℓn(v0, v1, . . . , vn−1)⟩



Braided L∞-Algebras of Braided Field Theories

▶ If (V , {ℓn}) is a classical L∞-algebra in the category of

UΓ(TM)-modules, then (V , {ℓ⋆n}) is a braided L∞-algebra in the

category of UFΓ(TM)-modules, where

ℓ⋆n(v1 ∧ · · · ∧ vn) := ℓn(v1 ∧⋆ · · · ∧⋆ vn)

▶ Braided graded antisymmetry:

ℓ⋆n(. . . , v , v
′, . . . ) = −(−1)|v | |v

′| ℓ⋆n(. . . ,Rα(v
′),Rα(v), . . . )

+ braided homotopy Jacobi identities (unchanged for n = 1, 2)

▶ Braided L∞-algebras are homotopy coherent generalizations of

braided Lie algebras

▶ Cyclic inner product: ⟨−,−⟩⋆ := ⟨−,−⟩ ◦ F−1



Braided L∞-Algebras of Braided Field Theories

▶ Braided gauge transformations δ⋆λA = ℓ⋆1(λ) + ℓ⋆2(λ,A) + · · ·
close a braided Lie algebra under braided commutator [−,−]⋆

▶ Braided field eqs F ⋆A = ℓ⋆1(A)− 1
2 ℓ

⋆
2(A,A) + · · · are covariant:

δ⋆λF
⋆
A = ℓ⋆2(λ,F

⋆
A) +

1
2

(
ℓ⋆3(λ,F

⋆
A ,A)− ℓ⋆3(λ,A,F

⋆
A)
)
+ · · ·

▶ Braided Noether ids from weighted sum over all braided homotopy
identities on (An):

I⋆
AF

⋆
A = ℓ⋆1 (F

⋆
A ) +

1
2

(
ℓ⋆2 (F

⋆
A ,A)− ℓ⋆2 (A,F

⋆
A )

)
+ 1

3!
ℓ⋆1
(
ℓ⋆3 (A

3)
)
+ 1

4

(
ℓ⋆2 (ℓ

⋆
2 (A

2),A)− ℓ⋆2 (A, ℓ
⋆
2 (A

2))
)
+ · · · ≡ 0

▶ Action: S⋆ = 1
2 ⟨A, ℓ

⋆
1(A)⟩⋆ − 1

3! ⟨A, ℓ
⋆
2(A,A)⟩⋆ + · · ·

δS⋆ = ⟨δA,F ⋆
A ⟩⋆ , δ⋆λS

⋆ = −⟨λ, I⋆
AF

⋆
A ⟩⋆

▶ Systematic constructions of new noncomm. field theories with no
new degrees of freedom, good classical limit, and some “surprises”



Braided BV Formalism

▶ (V , {ℓ⋆n}, ⟨−,−⟩⋆) — braided cyclic L∞-algebra

▶ Braided symmetric algebra SymRV [2]:

φψ = (−1)|φ| |ψ| (Rαψ) (R
αφ)

▶ Extended braided L∞-algebra {ℓ⋆extn } on (SymRV [2])⊗ V :

ℓ⋆ext1 (a⊗ v) = a⊗ ℓ⋆1(v)

ℓ⋆ext2 (a1 ⊗ v1, a2 ⊗ v2) = ± a1 (Rαa2) ℓ
⋆
2(R

αv1, v2) etc.

▶ Choose dual bases εα ∈ V , ϱα ∈ V ∗ ≃ V [3] and ‘contracted

coordinate functions’ a = ϱα ⊗ εα ∈ (SymRV [2])⊗ V

▶ Braided BV Action S⋆BV ∈ SymRV [2]:

S⋆BV = S⋆0 + S⋆int = 1
2 ⟨a, ℓ

⋆ext
1 (a)⟩⋆ext + 1

3! ⟨a, ℓ
⋆ext
2 (a, a)⟩⋆ext + · · ·



Braided BV Formalism

▶ (Classical) Master Equation: {S⋆BV,S
⋆
BV}⋆ = 0,

with bracket {φ,ψ}⋆ = ⟨φ,ψ⟩⋆ 1 for φ,ψ ∈ V [2]

▶ Q2 = 0 where Q = ℓ⋆1 + {S⋆int,−}⋆

▶ Classical observables
(
SymRV [1]∗ ≃ SymRV [2],Q, {−,−}⋆

)
form a braided P0-algebra:

−Q{φ,ψ}⋆ = {Qφ,ψ}⋆ + (−1)|φ| {φ,Qψ}⋆ Leibniz rule

{φ,ψ}⋆ = (−1)|φ| |ψ| {Rαψ,Rαφ}⋆ braided symmetric

{φ, {ψ, χ}⋆}⋆ = ±{Rαψ, {Rβχ,Rβ Rαφ}⋆}⋆
± {Rβ Rαχ, {Rβφ,Rαψ}⋆}⋆ braided Jacobi identity

{φ,ψ χ}⋆ = {φ,ψ}⋆ χ± (Rαψ) {Rαφ, χ}⋆ braided Leibniz rule



Braided BV Quantization

▶ Braided BV Laplacian ∆BV : SymRV [2] −→ (SymRV [2])[1]:

∆BV(1) = 0 = ∆BV(φ) , ∆BV(φψ) = {φ,ψ}⋆

∆BV(a b) = ∆BV(a) b + (−1)|a| a∆BV(b) + {a, b}⋆

∆BV

(
φ1 · · ·φn

)
=

∑
i<j

±⟨φi ,Rαi+1 · · ·Rαj−1φj⟩⋆

× φ1 · · ·φi−1 (R
αi+1φi+1) · · · (Rαj−1φj−1)φj+1 · · ·φn

Implements braided Gaussian integration/Wick’s Theorem (Oeckl ’99)

▶ Satisfies ℓ⋆1 ∆BV +∆BV ℓ
⋆
1 = 0 , ∆2

BV = 0 , ∆BV(S
⋆
int) = 0

▶ Q2
BV = 0 where QBV = ℓ⋆1 + {S⋆int,−}+ i ℏ∆BV

▶ Quantum observables
(
SymRV [2],QBV

)
form a braided E0-algebra



Braided Homological Perturbation Theory

▶ Propagators give braided strong deformation retracts of V [1]∗ ≃ V [2]:

(
H•(V [2]), 0

) ι -- (
V [2], ℓ⋆1

)γ

��

πmm
π ι = 1 , ι π − 1 = ℓ⋆1 γ + γ ℓ⋆1
γ2 = 0 , γ ι = 0 , π γ = 0

where π, ι = UFΓ(TM)-equivariant , γ = UFΓ(TM)-invariant

▶ Observables:
(
SymRH•(V [1]), 0

) I .. (
SymRV [2], ℓ⋆1

)Γ

��

Πnn

▶ Homological Perturbation Lemma: With UFΓ(TM)-invariant
δ = {S⋆

int,−}⋆ + i ℏ∆BV, there is a braided strong deformation retract

(
SymRH•(V [2]), δ̃

) Ĩ .. (
SymRV [2],QBV

)Γ̃

��

Π̃
nn

where Π̃ = Π (1− δ Γ)−1 δ Γ = Π ◦
∞∑
k=1

(δ Γ)k

▶ ⟨φ1 · · ·φn⟩ = Π̃(φ1 · · ·φn) ∈ SymRH•(V [2]) are (smeared) n-point

correlation functions on vacua H•(V [2]) of the braided field theory



Noncommutative Scalar Field Theory

▶ V = V1 ⊕ V2 , V1 = V2 = C∞(R4) , Moyal-Weyl twist:

ℓ⋆1 = ℓ1 = □+m2 , ℓ⋆3(ϕ1, ϕ2, ϕ3) = λϕ1 ⋆ ϕ2 ⋆ ϕ3

▶ Braided field equations:

F ⋆ϕ = ℓ⋆1(ϕ) +
1
3! ℓ

⋆
3(ϕ, ϕ, ϕ) = (□+m2)ϕ+ λ

3! ϕ ⋆ ϕ ⋆ ϕ

▶ With cyclic inner product ⟨ϕ, ϕ+⟩⋆ =
∫
d4x ϕ ⋆ ϕ+, action is:

S⋆ =

∫
d4x

(1
2
ϕ ⋆ (□+m2)ϕ+

λ

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)
▶ Standard noncommutative scalar field theory is organised by a

braided L∞-algebra!

▶ Plane waves ek(x) = e i k·x , ⟨e∗k , ep⟩⋆ = (2π)4 δ4(k − p)



Noncommutative Scalar Field Theory

▶ Interactions: S⋆
int =

∫
k1,...,k4

Vk1,...,k4 e
∗
k1
· · · e∗k4 ∈ SymRV [2]:

Vk1,...,k4 = e
i

∑
I<J

kI×kJ
(2π)4 δ4(k1 + · · ·+ k4)

▶ Deformation retract: H•(V [2]) = 0 for m2 > 0:

(0, 0)
0 -- (

V [2], ℓ1
)−G

��

0
ll G = ℓ−1

1 = (□+m2)−1

▶ Correlation functions: (C, 0) Ĩ .. (
SymRV [2],QBV

)Γ̃

��

Π̃
ll

⟨ϕ(x1) ⋆ · · · ⋆ ϕ(xn)⟩ :=
∞∑
k=1

Π
(
i ℏ∆BV Γ + {S⋆

int,−}⋆ Γ
)k

(δx1 · · · δxn )

where δxi (x) = δ4(x − xi ); only Π(1) = 1 is non-zero (as π = 0)



Noncommutative Scalar Field Theory

▶ Example 1: 4-point function of free braided scalar field (λ = 0):

⟨ϕ(x1) ⋆ · · · ⋆ ϕ(x4)⟩ = ( i ℏ∆BV Γ)2(δx1 · · · δx4
)

= ⟨ϕ1 ϕ2⟩ ⟨ϕ3 ϕ4⟩+ ⟨ϕ1 Rαϕ3⟩ ⟨Rαϕ2 ϕ4⟩+ ⟨ϕ1 ϕ4⟩ ⟨ϕ2 ϕ3⟩

where ⟨ϕi ϕj⟩ := − i ℏ
∫
k

e− i k·(xi−xj )

k2 +m2
; Braided Wick’s Theorem

▶ Example 2: 2-point function at 1-loop (order λ):

⟨ϕ(x1) ⋆ ϕ(x2)⟩ = ( i ℏ∆BV Γ)2 {S⋆
int, Γ (δx1 δx2)}⋆

=
ℏ2 λ
2

∫
k1,k2

e− i k1·(x1−x2)

(k2
1 +m2)2 (k2

2 +m2)
= − i ℏ

∫
k

e− i k·(x1−x2)

k2 +m2 +Π⋆(k2)

identifies self-energy

i

ℏ
Π⋆ = −λ

2

∫
d4p

(2π)4
1

p2 +m2

No UV/IR mixing


