Infinite-dimensional Geometry: Theory and Applications Erwin Schrödinger International Institute for Mathematics and Physics at the University of Vienna 13-17 January 2025, Vienna

Banach-Lie groupoids part III

Aneta Sliżewska Faculty of Mathematics University in Białystok

REFERENCES:

- T. Goliński, G. Jakimowicz, A. Sliżewska. Banach Lie groupoid of partial isometries over the restricted Grassmannian, arxiv 2404.12847, 2024
- D. Beltita, T. Goliński, A.B. Tumpach, Queer Poisson brackets, J. Geom. Phys. 132, 2018
- D. Beltita, T. Goliński, G. Jakimowicz, F. Pelletier, Banach-Lie groupoids and generalized inversion, J. Funct. Anal. 276, 2019
- T.Goliński, P.Rahangdale, A.B. Tumpach, Poisson structures in the Banach setting: comparison of different approaches, arXiv:2412.05391

Some problems in infinite dimensional geometry

- No dimension counting arguments: existence of injective automorphisms, which are not surjective.
- Image of a linear map may not be closed, closed subspaces may not be complemented (split).
- Many classical theorems fail or require non-trivial modifications (special assumptions).
- Ouble dual of the a Banach space may not be canonically isomorphic to the original space.
- 5

In effect many structures has various non-equivalent definitions: e.g. strong/weak riemannian structures, strong/weak symplectic structures, sub/weak Poisson groupoid, sub/almost sub Poisson morphism, partial Poisson manifold....

Example: Poisson bracket $\{.,.\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ Leibniz identity doesn't imply

$$\{f,g\}(m) = \pi_m(Df(m),Dg(m))$$

Even if π exists it is in $\Gamma^{\infty}(\bigwedge^2 T^*M)$, which implies $X_f(m) = \pi_m(Df(m), \cdot) \in T_m^{**}M \neq T_mM$

We fix the terminology related to Banach geometry: a smooth map $f:N\to M$ between two Banach manifolds will be called

• a submersion if for each $x \in N$ the tangent map $T_x f: T_x N \to T_{f(x)} M$ is a surjection and $\ker T_x f$ is a split subspace of $T_x N$;

- a weak immersion if $T_x f$ is an injection;
- an *immersion* if its range is additionally closed in $T_{f(x)}M$;
- an immersion is *split* if its range admits a closed complement.

Recall $\mathcal{L}(\mathcal{H})$ is the lattice of orthogonal projectors in Hilbert space \mathcal{H}

$$\mathcal{L}(\mathcal{H}) = \{ p \in \mathcal{L}^{\infty}(\mathcal{H}) \mid p^2 = p^* = p \}.$$

It is useful to identify the projector with its image.

So, $\mathcal{L}(\mathcal{H})$ is the Grassmannian of all closed subspaces of $\mathcal{H}.$

Manifold structure on $\mathcal{L}(\mathfrak{M})$: particular case $\mathfrak{M} = \mathcal{L}^{\infty}(\mathcal{H})$

The construction of this differential structure goes through a family of charts $\phi_W : U_W \to \mathcal{L}^{\infty}(W, W^{\perp})$ indexed by $W \in \mathcal{L}(\mathfrak{M})$ defined by

$$\phi_W(V) = P_{W^{\perp}}(P_W|_V)^{-1},$$
(1)

where

$$U_W = \{ V \in \mathcal{L}(\mathfrak{M}) \mid V \oplus_B W^{\perp} = \mathcal{H} \},$$
(2)

 P_W is the orthogonal projection on W and \oplus_B denotes a direct sum in the sense of Banach spaces (i.e. not necessarily orthogonal). Note that the condition for V to belong to the chart domain U_W is equivalent to the projection $(P_W|_V)^{-1}$. The inverse map $\phi_W^{-1} : \mathcal{L}^\infty(W, W^\perp) \to \mathcal{L}(\mathfrak{M})$ to a chart assigns to a bounded operator its graph in $W \oplus W^\perp = \mathcal{H}_1$ i.e.

$$\phi_W^{-1}(A) = \{ (w, Aw) \in W \times W^{\perp} \mid w \in W \}$$
(3)

for $A \in L^{\infty}(W, W^{\perp})$.

 \bullet fix an orthogonal decomposition (called polarization) of the Hilbert space ${\cal H}$

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$$

onto infinite dimensional Hilbert subspaces \mathcal{H}_+ and \mathcal{H}_-

• block decomposition of an operator A acting on \mathcal{H} :

$$A = \left(\begin{array}{cc} A_{++} & A_{+-} \\ A_{-+} & A_{--} \end{array}\right)$$

Definition

The restricted Grassmannian Gr_{res} is defined as a set of Hilbert subspaces $W \subset \mathcal{H}$ such that:

- the orthogonal projection $p_+: W \to \mathcal{H}_+$ is a Fredholm operator;
- ② the orthogonal projection $p_-: W \to \mathcal{H}_-$ is a Hilbert–Schmidt operator.
- \bullet identify the Hilbert subspace W with a projector P_W onto this subspace

Fact

$$W \in \operatorname{Gr}_{\operatorname{res}} \iff P_W - P_+ \in L^2$$

• P_+ , P_- : the orthogonal projectors onto \mathcal{H}_+ and \mathcal{H}_- Thus, we identify $\operatorname{Gr}_{\operatorname{res}}$ with the set of projectors $\{P_W \mid W \in \operatorname{Gr}_{\operatorname{res}}\} \subset \mathcal{L}(\mathcal{H}).$ The restricted Grassmannian ${\rm Gr}_{\rm res}$ (also known as the Sato Grassmannian) is a strongly symplectic (or even Kähler) manifold modeled on a Hilbert space.

It appeared in the study of the KdV and KP equations, it has many other applications, including quantum field theory, loop groups, Banach Lie-Poisson spaces, integrable Hamiltonian systems, Banach Poisson-Lie groups. • Unitary restricted group $U_{\mathsf{res}}(\mathcal{H})$

$$U_{\mathsf{res}}(\mathcal{H}) := \{ u \in U(\mathcal{H}) \mid [u, P_+] \in L^2 \}$$

is Banach Lie group [A.B.Tumpach 2020]

• $U_{res}(\mathcal{H})$ acts transitively on Gr_{res} and the stabilizer of \mathcal{H}_+ for this action is $U_+ \times U_-$, which is a Banach Lie subgroup of $U_{res}(\mathcal{H})$ [D.Beltita 2006]. In this way, Gr_{res} can also be seen as a smooth homogeneous space $U_{res}(\mathcal{H})/(U_+ \times U_-)$. The differential structure on $\operatorname{Gr}_{\operatorname{res}}$ is obtained using the same charts as for $\mathcal{L}(\mathcal{H})$ taking value in $L^2(W, W^{\perp})$ and transition functions are smooth in L^2 topology.

• the chart $\phi_W: U_W \to L^2(W, W^{\perp})$ on $\operatorname{Gr}_{\operatorname{res}}$, for $W \in \operatorname{Gr}_{\operatorname{res}}$

$$\phi_W(p) = (P_W)^{\perp} p P_W (P_W p P_W)^{-1},$$

where

$$U_W = \{ p \in \operatorname{Gr}_{\operatorname{res}} \mid P_W p P_W \text{ is invertible in } W \}.$$

• In particular for $W = P_+$ this formula can be written as

$$\phi_{\mathcal{H}_+}(p) = p_{-+}(p_{++})^{-1} = p(p_{++})^{-1} - P_+.$$

This map takes values in L^2_{+-} since P_-p is Hilbert–Schmidt by the definition of the restricted Grassmannian.

 \bullet for particular case of $W=\mathcal{H}_+$ the inverse to a chart is

$$\phi_{\mathcal{H}_{+}}^{-1}(A) = \begin{pmatrix} (1+A^*A)^{-1} & (1+A^*A)^{-1}A^* \\ A(1+A^*A)^{-1} & A(1+A^*A)^{-1}A^* \end{pmatrix}$$

• equivalently:

$$\phi_{\mathcal{H}_{+}}^{-1}(A) = (P_{+} + A)(1 + A^{*}A)(P_{+} + A^{*}P_{-})$$
$$\phi_{W}^{-1}(A) = (P_{W} + A)(1 + A^{*}A)(P_{W} + A^{*}P_{W^{\perp}})$$

Proposition

The transition maps for the atlas $\{\phi_W, \tilde{U}_W\}_{W \in Gr_{res}}$ on the restricted Grassmannian Gr_{res} are

$$\psi_{V,W}(A) = \phi_V \circ \phi_W^{-1}(A) = P_V^{\perp}(1_W + A) \left(P_V(P_W + A) \right)^{-1}$$

and are smooth with respect to L^2 topology.

Let us stress at this point that $^{-1}$ in above formula denotes the inverse in the space $L^{\infty}(W, V)$ and in consequence it is smooth. It can be also seen as inverse in the groupoid of partially invertible elements.

One defines a groupoid
$$\mathcal{U}_{\mathsf{res}}(\mathcal{H}) \rightrightarrows \operatorname{Gr}_{\operatorname{res}}$$
 as
$$\mathcal{U}_{\mathsf{res}}(\mathcal{H}) = s^{-1}(\operatorname{Gr}_{\operatorname{res}}) \cap t^{-1}(\operatorname{Gr}_{\operatorname{res}})$$
$$= \{ u \in \mathcal{U}(\mathcal{H}) \mid u^*u, uu^* \in \operatorname{Gr}_{\operatorname{res}} \}$$

Fact For $u \in \mathcal{U}_{\mathsf{res}}(\mathcal{H})$ we have $u_{+-}, u_{-+} \in L^2.$

• It is a subgroupoid (in algebraic sense).

- ∢ ⊒ →

э

Proposition

For every point $W \in \operatorname{Gr}_{\operatorname{res}}$ there exists a neighbourhood $\Omega_W \subset \operatorname{Gr}_{\operatorname{res}}$ and a smooth map $\sigma_W : \Omega_W \to \operatorname{U}_{\operatorname{res}}(\mathcal{H})$ such that

$$\forall W' \in \Omega_W \quad W' = \sigma_W(W')\mathcal{H}_+$$

• Using these local sections we construct injective maps:

$$\mathcal{U}_{\mathsf{res}}(\mathcal{H}) \supset s^{-1}(W') \cap t^{-1}(W) \rightrightarrows \operatorname{Gr}_{\operatorname{res}} \times U_+ \times \operatorname{Gr}_{\operatorname{res}}$$
$$u \mapsto (uu^*, \sigma_W(uu^*)^{-1} u \sigma_{W'}(u^*u)_{|\mathcal{H}_+}, u^*u)$$

Proposition

For every point $W \in \operatorname{Gr}_{\operatorname{res}}$ there exists a neighbourhood $\Omega_W \subset \operatorname{Gr}_{\operatorname{res}}$ and a smooth map $\sigma_W : \Omega_W \to \operatorname{U}_{\operatorname{res}}(\mathcal{H})$ such that

$$\forall W' \in \Omega_W \quad W' = \sigma_W(W')\mathcal{H}_+$$

• Using these local sections we construct injective maps:

$$\mathcal{U}_{\mathsf{res}}(\mathcal{H}) \supset s^{-1}(W') \cap t^{-1}(W) \rightrightarrows \operatorname{Gr}_{\operatorname{res}} \times U_+ \times \operatorname{Gr}_{\operatorname{res}}$$
$$u \mapsto (uu^*, \sigma_W(uu^*)^{-1} u \sigma_{W'}(u^*u)_{|\mathcal{H}_+}, u^*u)$$

• couple this map with charts on the respective manifolds

$$\begin{split} \Phi_{\alpha\beta\gamma}(u) &= (\tilde{\psi}_{\gamma}(uu^*), \psi_{\alpha}(\sigma_{\gamma}(uu^*)^{-1}u\sigma_{\beta}(u^*u))_{|\mathcal{H}_+}, \tilde{\psi}_{\beta}(u^*u)) \\ &\in L^2(W_{\gamma}, W_{\gamma}^{\perp}) \times \mathfrak{u}(\mathcal{H})_+ \times L^2(W_{\beta}, W_{\beta}^{\perp}) \end{split}$$

Theorem

The family $(\Omega_{\alpha\beta\gamma}, \Phi_{\alpha\beta\gamma})$ defines a smooth atlas on $\mathcal{U}_{\mathsf{res}}(\mathcal{H})$.

The manifold $\mathcal{U}_{\text{res}}(\mathcal{H})$ is a Banach–Lie groupoid with respect to the defined maps.

э

• Obviously, $\mathcal{U}_{res}(\mathcal{H})$ is not a Banach-Lie subgroupoid of the Banach-Lie groupoid of all partial isometries $\mathcal{U}(\mathcal{H})$: the restricted Grassmannian Gr_{res} is not a submanifold of Grassmannian . It is only a weakly immersed submanifold as the image of the tangent of the inclusion map is not closed.

• Unlike $\mathcal{U}(\mathcal{H})$, the groupoid $\mathcal{U}_{res}(\mathcal{H})$ is transitive and pure, i.e. the map $(s,t): \mathcal{U}_{res}(\mathcal{H}) \to \operatorname{Gr}_{res} \times \operatorname{Gr}_{res}$ is surjective and both base and total space are modeled on a single (up to isomorphism) Banach space.

Few words about tangent group $TU(\mathcal{H})$.

THANK YOU

Aneta Sliżewska Banach-Lie groupoids

æ