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Symplectic geometry (mechanics flavour) 2

”geometric approach” to mechanics . . .

Def: Symplectic Manifold(
M , ω

)
Smooth mfd.

non-degenerate, closed,
2-form.

Example: M = T ∗Q is symplectic

with ω = dθ given by

θ|(q,p) (v) = p(π∗v) .

based on the notion of
”states”.

”algebraic approach” to mechanics . . .

Def: Classical Observables

Unital, associative, commutative alge-
bra C∞(M).

Def: Hamiltonian vector fields

vf ∈ X(M) such that:

ιvf ω = −df

vf = Ham.v.f. pertaining to f ∈ C∞(M).

Def: Poisson Algebra of Observables

C∞(M) is a Poisson algebra with

{f , g} = ιvg ιvf ω = ω(vf , vg ) .

based on the notion of
”measurable quantities”.
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From symplectic to multisymplectic 3

− multisymplectic means going higher in the degree of ω −

Def: n-plectic manifold (Cantrijn, Ibort, De León) [CID99](
M , ω

)
Smooth Mfd.
non-degenerate, closed, (n + 1)-form.

symplectic forms (n = 1) ! volume forms (n = dim(M)− 1)

Historical motivation
Mechanics: geometrical foundations of (first-order) field theories.

mechanics geometry

phase space symplectic manifold multisymplectic manifold

classical
observables

Poisson algebra L∞-algebra

symmetries group actions admitting
comoment map

group actions admitting (ho-
motopy) comomentum map︸ ︷︷ ︸

point-like particles systems
︸ ︷︷ ︸

field-theoretic systems
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Scope of the talk 4

1 Introduction

2 Multisymplectic Geometry
Multisymplectic manifolds
Observability
L∞-algebra of Observables
Leibniz-algebra of Observables

3 Momentum maps and regular reduction
Regular reduction in symplectic geometry
Regular reduction in multisymplectic geometry

4 Algebraic singular reduction
Symplectic singular reduction
Multisymplectic singular reduction

Review the basics of
multisym. geometry.

Discuss the regular reduction
scheme in multisym. geometry.

Discuss the singular reduction
scheme in multisym. geometry.



Outline 4

1 Introduction

2 Multisymplectic Geometry
Multisymplectic manifolds
Observability
L∞-algebra of Observables
Leibniz-algebra of Observables

3 Momentum maps and regular reduction
Regular reduction in symplectic geometry
Regular reduction in multisymplectic geometry
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Multisymplectic manifolds 5

Def: n-plectic manifold (Cantrijn, Ibort, De León) [CID99](
M , ω

)
Smooth Mfd.
non-degenerate, closed, (n + 1)-form.

Def: Non-degenerate (n + 1)-form

The ω[ (flat) bundle map is
injective.

ω[ : TM ΛnT ∗M

(x , u) (x , ιuωx)

Examples:
• n = 1 ⇒ ω is a symplectic form

• n = (dim(M)− 1) ⇒ ω is a volume form

• Let Q a smooth manifold, the multicotangent bundle ΛnT ∗Q is naturally
n-plectic. (cfr, GIMMSY construction for classical field theories)

https://arxiv.org/abs/physics/9801019
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Special classes of smooth objects 6

Def: Hamiltonian v.f.

Xham = {X ∈ X| ιxω exact}

Def: Multisymplectic v.f.

Xms = {X ∈ X| LXω = 0}

Def: Hamiltonian (n-1)−forms

Ωn−1
ham :=

{
H ∈ Ωn−1

∣∣∣∣ ∃X ∈ Xham

: dH = −ιXω

}

Global symmetries

Def: Multisym. (Lie group) action

Smooth action θ : G y (M, ω) s.t.

(Φg )∗ω = ω ∀g ∈ G .

Infinitesimal symmetries

Def: Multisym. (Lie algebra) action

Lie algebra hom. · : g→ X(M) s.t.

Lξω = 0 ∀ξ ∈ g .

(a
si

d
e)

Hierarchy of conserved quantities

strictly conserved LXα = 0
α ∈ Ω• globally conserved along X ∈ X ⇔ LXα ∈ B (exact)

locally conserved LXα ∈ Z (closed)
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Observables in n-plectic geometry 7

Def: Hamiltonian (n − 1)-forms

Ωn−1
ham(M, ω) :=

{
σ ∈ Ωn−1(M)

∣∣∣∣ ∃vσ ∈ X(M) : dσ = −ιvσω
}

Hamilton-DeDonder-Weyl

equation

Thm: Observables L∞-algebra

Ωn−1
ham(M, ω) endowed with

{σ1, σ2} = −ιv1ιv2ω

can be ”completed” to a
L∞ − algebra.

3 Skew-symmetric;

7 multiplication of observables;

7 Jacobi equation;

+ Jacobi equation up to homotopies.

Thm: Observables Leibniz algebra

Ωn−1
ham(M, ω) endowed with

Jσ1, σ2K = Lv1σ2 .

forms a Leibniz algebra.

7 Skew-symmetric;

7 multiplication of observables;

3 Jacobi equation;

+ Skew-symmetric up to homotopies.
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L∞-algebra of Observables (higher observables) 8

Let be (M, ω) a n-plectic manifold.

Def: L∞-algebra of observables (Rogers) [Rog12]

L∞(M, ω) is given by:

� a cochain-complex (L, {·}1)

0 L1−n . . . L2−k . . . L−1 L0 0

Ω0(M) . . . Ωn+1−k(M) . . . Ωn−2(M) Ωn−1
ham(M, ω)

:=

{·}1 {·}1

:=

{·}1 {·}1

:=

{·}1

:=

d d d d d

� with n (skew-symmetric) multibrackets (2 ≤ k ≤ n + 1)

{·, . . . , ·}k :
(
Ωn−1

ham(M, ω)
)⊗k

Ωn+1−k(M)

σ1 ⊗ · · · ⊗ σk (−)k+1 ιvσ1
· · · ιvσk ω
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Reminder: L∞ Algebras 9

L∞-algebra is the notion that one obtains from a Lie algebra when one requires
the Jacobi identity to be satisfied only up to a higher coherent chain homotopy.

Def: L∞-algebra (Lada, Markl) [LM95]

(
L , {µk}k∈N

) Z-Graded vector space L =
⊕
i∈Z

Li

Family of homogenous skew-multilinear maps
(multi-brackets) µk : ∧kL→ L[k − 2]

satisfying ”Higher Jacobi” relations ( ∀m ≥ 1 and xi homogeneous elements in L)

0 =
∑

i+j=m+1
σ∈ush(i,m−i)

(−)i(j+1)(−)σε(σ; x) µj

(
µi

(
xσ1 , . . . , xσi

)
, xσi+1 , . . . , xσm

)

Thm: Rogers [Rog12]

The higher observable algebra L∞(M, ω) forms an honest L∞ algebra.

Take µ1 = d, µk = {. . . }k , L is a shifted truncation of the de Rham complex.
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Def: L∞-algebra (Lada, Markl) [LM95]

(
L , {µk}k∈N

) Z-Graded vector space L =
⊕
i∈Z

Li

Family of homogenous skew-multilinear maps
(multi-brackets) µk : ∧kL→ L[k − 2]

satisfying ”Higher Jacobi” relations ( ∀m ≥ 1 and xi homogeneous elements in L)

0 =
∑

i+j=m+1
σ∈ush(i,m−i)

(−)i(j+1)(−)σε(σ; x) µj

(
µi

(
xσ1 , . . . , xσi

)
, xσi+1 , . . . , xσm

)

Thm: Rogers [Rog12]

The higher observable algebra L∞(M, ω) forms an honest L∞ algebra.

Take µ1 = d, µk = {. . . }k , L is a shifted truncation of the de Rham complex.



Leibniz-algebra of Observables 10

Def: Leibniz algebra of observables

Leib(M, ω) is given by:

� the vector space
Ωn−1

ham(M, ω)

� with the binary bracket

J·, . . . , ·K :
(
Ωn−1

ham(M, ω)
)⊗2

Ωn−1
ham(M, ω)

σ1 ⊗ σ2 Lvσ1
σ2

Prop:

i. vJα,βK = [vα, vβ]

ii. Jσ, Jα, βKK = JJσ, αK, βK + Jα, Jσ, βKK

iii. Jα, βK + Jβ, αK = d
(
ιvαβ + ιvβα

)
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Reminder: momentum maps in symplectic geometry 11

Consider θ : G y M symplectic, · : g→ X(M) infinitesimal action.

Def: Equivariant moment map

Smooth map

µ : M → g∗

such that:

i. d〈µ, ξ〉 = −ιξω , ∀ξ ∈ g

ii. µ ◦ θg = Ad∗g ◦ µ , ∀g ∈ G

Def: Comoment map

Linear map

µ̃ : g→ C∞(M, ω)

such that:

i. d µ̃(ξ) = −ιξω , ∀ξ ∈ g

ii. µ̃([ξ, η]) = {µ̃(ξ), µ̃(η)} , ∀ξ, η ∈ g

Upshot: Duality

µ(x) : ξ 7→ µ̃(ξ)
∣∣
x

”duality wrt. the currying opera-

tion”

Upshot: µ̃ as a lift

C∞(M, ω)

g X(M)

vµ̃

·

”it is a lift (in the Lie category) of the infinitesimal

action by the assigment of hamiltonian v.fields.”
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Reminder: regular reduction in symplectic geometry 12

Symplectic reduction:
Procedure associating to any (suitably regular) pair of symplectic manifold and

Hamiltonian action another symplectic manifold of smaller dimension.

Thm: Marsden-Weinstein reduction [MW74]

Given: (M, ω) symplectic
G y M symplectic with equivariant momap. µ : M → g∗

Assume: φ ∈ g∗ regular value of µ (⇒ µ−1(φ) ↪→ M smooth embedding)

Gφ y µ−1(φ) free and proper (⇒ µ−1(φ)/Gφ smooth manifold)

Then: ∃! symplectic structure ωφ in Mφ := µ−1(φ)/Gφ
s.t. π∗ωφ = j∗ω with j : µ−1(φ) ↪→ M and π : µ−1(φ)� Mµ

In mechanics:
it embodies the process of restricting the dynamics of

the system to the level sets of the conserved

quantities pertaining to the symmetry group.

( e.g. restricting to studying a point-like particle in a
central potential by studying it in radial coordinates)
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Momentum maps in multisymplectic geometry 13

Consider θ : G y M multisymplectic, · : g→ X(M) infinitesimal action.

Def: Equivariant moment map

Smooth map

µ : M → g∗⊗Λn−1T ∗M

such that:

i. d〈µ, ξ〉 = −ιξω ,∀ξ ∈ g

ii. µ ◦ θg =
(
Ad∗g ⊗ θ∗g

)
◦ µ , ∀g ∈ G

iii. µ ∈ Ωn−1(M, g∗)

Def: Comoment map

Linear map

µ̃ : g→ Leib(M, ω)

such that:

i. d µ̃(ξ) = −ιξω , ∀ξ ∈ g

ii. µ̃([ξ, η]) = Jµ̃(ξ), µ̃(η)K , ∀ξ, η ∈ g

Upshot: Duality

µ(x) : ξ 7→ µ̃(ξ)
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x

”duality wrt. the currying opera-

tion”

Upshot: µ̃ as a lift

Leib(M, ω)

g X(M)

vµ̃

·

”it is a lift (in the Leibniz category) of the infinitesi-

mal action by the assigment of hamiltonian v.fields.”
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Regular reduction in multisymplectic geometry 14

Let (M, ω) be n-plectic. Consider an action G y M with moment map µ.

Def: Regular value of µ

Closed differential form φ ∈ Ωn−1(M, g∗), such that

µ−1(φ) = {x ∈ M | µ(x) = φ(x)}
is a smoothly embedded into M.

Thm: Multisymplectic regular reduction [Bla21]

Given: (M, ω) n-plectic
G y M multisymplectic with equivariant momap. µ ∈ Ωn−1(M, g∗)

Assume: φ ∈ Ωn−1(M, g∗) regular value of µ (µ−1(φ) ↪→ M embedding)

Gφ y µ−1(φ) free and proper (µ−1(φ)/Gφ smooth manifold)

Then: ∃! pre-n-plectic structure ωφ in Mφ := µ−1(φ)/Gφ
s.t. π∗ωφ = j∗ω with j : µ−1(φ) ↪→ M and π : µ−1(φ)� Mµ
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Singular reduction schemes 15

The gist of singular reduction

- when µ is singular (i.e. µ−1(0) is not a mfd.), the (geometrically) reduced
space may not exist.

- a singular reduction scheme is a procedure to construct a ”reduced” algebra
of observable out of the given data

- such that it corresponds to the algebra of observable of the reduced manifold
in the regular case.

Thm: Sniatycki-Weinstein reduction [ŚW83]

Given: (M, ω) symplectic
G y M symplectic with equivariant momap. µ : M → g∗

Then: [C
∞(M)/Iµ]G admits a Poisson algebra structure

it agrees with the M–W reduction in the regular case.

Iµ = associative ideal generated by µ̃(g)
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Singular Reduction: Roadmap 16

Data:
I A constraint set N (possibly singular),

I An infinitesimal action preserving N.

Goal:
I Obtain a ”reduced” observables algebra out of the data.

Strategy:

1. Define smooth fields/forms tangent to N,

2. define smooth fields/forms vanishing along N,

3. define reducible fields requiring the preservation of the vanishing objects,

4. define reducible forms requiring their conservation w.r.t. the infinitesimal
action,

5. define reducible and vanishing observables,

6. quotient
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Smooth objects on a singular set 17

Consider N closed subset of M.

Def:

IN = ideal of smooth functions vanishing over N.

Def: v.f tangent to N

XN(M) :=
{
v ∈ X(M)

∣∣∣ Lv (IN) ⊆ IN
}

Def: v.f vanishing on N

IX(N) :=
{
v ∈ X(M)

∣∣∣ Lv (C∞(M)) ⊆ IN
}

Vector field tangent to N

Lem: If N is smoothly embedded, X(N) ∼= XN(M)/IX.

Def: Differential form vanishing on N

IΩ(N) :=

{
α ∈ Ωk(M

∣∣∣∣ k ≥ 0,
α(u1, . . . , uk) ∈ IN ∀ui ∈ XN(M)

}
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Reducible smooth objects (w.r.t. N and g y M) 18

Consider g y M by vector fields tangent to N

Denote by : g ⊆ XN(M) the fundamental distribution,
Xg the C∞-module generated by g.
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Singular reduction 19

Def/Prop: Reducible L∞-observables

Is the L∞-subalgebra of L∞(M, ω) given by

L∞(M, ω)k[N] :=


Ωn−1−k(M)[N] (reducible forms) if n − 1 ≤ k < 0

(Ω(M)n−1
ham)[N] (reducible hamiltonians) if k = 0

0 if k > 0

Def/Prop: Vanishing L∞-observables

Is the L∞-ideal of L∞(M, ω)[N] given by

IL∞(M,ω) :=

{
α ∈ L∞(M, ω)[N]

∣∣∣∣ α(v1, . . . , vk) ∈ IN ∀vi ∈ XN if α ∈ Ωk

vα ∈ Xg + IX if α ∈ Ωn−1

}
Def: Reduced L∞-algebra of observables

Is the L∞-quotient :
L∞(M, ω)k[N]

IL∞(M,ω)
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Singular reduction (Upshot and conclusions) 20

I Consider N = µ−1(0) to be regular (smooth embedding)

Multisymplectic Multisymplectic
regular ≡ singular

reduction reduction

I Consider ω to be 1-plectic

Multisymplectic Sniaticky–Weinstein
singular �≡ singular

reduction reduction

(but ∃ a canonical Poisson algebra morphism)

Thank you for your attention!
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MS geometry and classical field mechanics 1

Consider a smooth manifold Y ,

Multicotangent bundle
∧

=
∧n T ∗Y

is naturally n-plectic

Λ TΛ

Y TY

π Tπ

Def: Tautological n-form

θ ∈ Ωn(Λ) such that:

[ιu1∧...∧unθ]η = ι(Tπ)∗u1∧...∧(Tπ)∗unη

= ιu1∧...∧unπ
∗η ∀η ∈ Λ , ∀ui ∈ TηΛ

Def: Tautological (multisymplectic) (n+1)-form

ω := dθ
Claim: ω is not degenerate.

ke
yw

or
d

s point-particles mechanics  classical fields mechanics
symplectic  multisymplectic

Observables (Poisson) algebra  Observables L−∞ algebra
Co-moment map  Homotopy co-momentum map
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Unwrapping the higher Jacobi equations 2

Slogan: Jacobi identity satisfied up to an higher coherent homotopy

Higher Jacobi implies:

I Underlying chain-complex (L, µ1)
with differential d = µ1;

I µ2 = [·, ·] is a chain map L⊗2 → L;

I µ3 = j(·, ·, ·) is a chain homotopy
µ2 ◦ µ2 ⇒ 0;
i.e. between the usual Jacobiator
[[·, ·], ·] ◦ Punsh and the 0 map

I higher analogues...
e.g. µ4, is a second order
chain-homotopy between the two
chain homotopies [j(·, ·, ·]), ·] ◦ Punsh

and j([·, ·], ·, ·) ◦ Punsh

. . . (L⊗3)k (L⊗3)k−1

(L⊗2)k+1 (L⊗2)k (L⊗2)k−1

Lk+1 Lk Lk−1

µ1

µ2µ 3

...µ 3

µ1

µ2

µ1

µ2 µ2

µ1 µ1

Notation: Punsh = sum on all the possibile unshuffled permutation.



Symmetries in multisymplectic geometry 3

Consider a Lie algebra action v : g→ X(M) preserving the n-plectic form ω,

− symplectic case −

Def: Comoment map pertaining to v

Lie algebra morphism

f : g→ C∞(M)

such that

d f (x) = −ιvxω ∀x ∈ g .

− n-plectic case −

Def: Homotopy comoment map (HCMM)

L∞-morphism

(fk) : g→ L∞(M, ω)

such that

d f1(x) = −ιvxω ∀x ∈ g .

– Conserved quantities –

Prop: Noether Theorem

Fixed H ∈ C∞Ham(M) (g-invariant) ,

LvH f (x) = 0 ∀x ∈ g

Prop: RWZ16 Theorem

Fixed H ∈ Ωn−1
Ham(M) (g-invariant),

LvH fk(p) ∈ Bk(M) ∀p ∈ Zk(g)
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Homotopy comomentum maps 4

Consider a Lie algebra action v : g→ X(M) preserving the n-plectic form ω.

Def: Homotopy comomentum map (Callies, Fregier, Rogers, Zambon)

L∞(M, ω)

g X(M)

v

πHam
(f )

v

HCMM is an L∞-morphism (f ) : g→ L∞(M, ω)

lifting the infinitesimal action v : g→ X(M)

(acting via Hamiltonian vector fields!)

d f1(x) = −ιvxω ∀x ∈ g .

Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

(f ) =
{
fk : Λkg→ L1−k ⊆ Ωn−k(M)

∣∣ 0 ≤ k ≤ n + 1
}

fulfilling:

I f0 = 0, fn+1 = 0

I dfk(p) = fk−1( ∂ p)− (−1)
k(k+1)

2 ι(vp)ω ∀p∈Λk (g), ∀k=1,...n+1

Chevalley-Eilenberg boundary op.
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Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon) 5

HCMM is an L∞-morphism (f ) : g→ L∞(M, ω)

lifting the infinitesimal action v : g→ X(M)

L∞(M, ω)

g X(M)

v(f )

v

Lemma: HCMM unfolded [CFRZ16]

HCMM is a sequence of (graded-skew) multilinear maps:

(f ) =
{
fk : Λkg→ Lk−1 ⊆ Ωn−k ∣∣ 0 ≤ k ≤ n + 1

}
∧n+1

g
∧n

g · · ·
∧k

g
∧k−1

g · · ·
∧1

g
∧0

g = R

0 Ln−1 Lk−1 Lk−2 L0 = Ωn−1
ham 0

0 Ω0 · · · Ωn−k Ωn−k+1 · · · Ωn−1 Ωn

∂

fn+1 fn

∂

fk fk−1

∂

f1 f0

i d d d

fulfilling:

I f0 = 0, fn+1 = 0

I dfk(p) = fk−1(∂p)− (−1)
k(k+1)

2 ι(vp)ω ∀p∈Λk (g), ∀k=1,...n+1

T
A

M

Practically a HCMM is given by several multilinear maps

fi = Λig→ Li−1

satisfying:

1. df1(ξ) = −ιvξω
2.
∑
...
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0 Ω0 · · · Ωn−k Ωn−k+1 · · · Ωn−1 Ωn

∂

fn+1
ιn+1
g ω

fn

∂

fk
ιkgω

fk−1

∂

f1
ι1
gω

f0

i d d d

fulfilling:

I f0 = 0, fn+1 = 0

I dfk(p) = fk−1(∂p)− (−1)
k(k+1)

2 ι(vp)ω ∀p∈Λk (g), ∀k=1,...n+1

T
A

M

Practically a HCMM is given by several multilinear maps

fi = Λig→ Li−1

satisfying:

1. df1(ξ) = −ιvξω
2.
∑
...



EXTRA SLIDES on regular
reduction

All the credit for the next slides is to C. Blacker

Based on:

B., Reduction of multisymplectic manifolds, Lett. Math. Phys., 2021

See also:

Reduction of multisymplectic manifolds (slides) at Good Morning SFARS, 7 June
2021.

https://public.eimi.ru/~cblacker/Blacker.reduction%20of%20multisymplectic%20manifolds.pdf


The Problem of Multisymplectic Reduction 7

Reduction is a procedure that takes a space and returns a “smaller” space

Reduction theory is by no means completed. . . . Only a few instances and
examples of multisymplectic reduction are really well understood. . . so one
can expect to see more activity in this area as well.

— J. Marsden and A. Weinstein, 2001, Comments on the history, theory, and
applications of symplectic reduction

One of the most interesting problems in multisymplectic geometry is how
to extend the well-known Marsden–Weinstein reduction scheme for sym-
plectic manifolds to the case of multisymplectic structures.

— M. de León, 2018, Review of “Remarks on multisymplectic reduction” by
Echeverŕıa-Enŕıquez, Muñoz-Lecanda, and Román-Roy



The gist of: Symplectic Hamiltonian Actions 8

To specify a symplectic action G y M . . .

G M

we could describe the induced map ξ 7→ ξ . . .

g

ξ

ξ

or an assignment of Hamiltonian functions ξ 7→ fξ.

g

ξ

fξ

When this is possible1, the action is called Hamiltonian.

1
*and ξ 7→ fξ is a homomorphism of Lie algebras



Symplectic Reduction — Idea 9

ω = dx1 ∧ dy1︸ ︷︷ ︸
to be removed

+ dx2 ∧ dy2 + · · ·+ dxn ∧ dyn

x1

restrict
y1 c

quotient by ∂x1

x2, . . . , xn
y2, . . . , yn

Restrict and quotient conjugate degrees of freedom.



Symplectic Reduction — Proof 10

Action Descent Linear Symplectic Reduction

Symplectic Reduction

nondegeneracy
existence
uniqueness

closedness

1. Apply the Action Descent Lemma to Gλ y µ−1(λ) and i∗ω.

µ−1(λ)i∗ω

Mλωλ

π

2. Use Linear Symplectic Reduction to conclude that ωλ is nondegenerate.



The Action Descent Lemma 11

Lemma:

If

I G y M free and proper,

I α ∈ Ω∗(M) invariant and horizontal (ιgα = 0),

M/G

G

y
M

α

αred

then

I ∃!αred ∈ Ω∗(M/G ) such that α = π∗αred,

I dα = 0 =⇒ dαred = 0.



The Space of Moment Maps 12

I (M, ω,G , µ) Hamiltonian G -space

I φ ∈ Ωk−1(M, g∗)

Question: When is µ+ φ a moment map?

I dφ = 0, since
d(µ+ φ)ξ = ιξω ⇐⇒ dφξ = 0.

I Lξφζ = φ[ξ,ζ], as

Lξ(µ+ φ) = (µ+ φ)[ξ,ζ] ⇐⇒ Lξφ = φ[ξ,ζ].

i.e. φ is a moment map for the trivial action G y M.

The space of moment maps is an affine space modeled on {φ ∈ Ωk−1(M, g∗) | dφ = 0, Gφ = G}.



The Leibniz Condition and the Induced Action on Forms 13

I φ ∈ Ω∗(M, g∗)

I ξ ∈ g

∀ζ ∈ g : Lξφζ = φ[ξ,ζ] ⇐⇒ ∀ζ ∈ g : 0 = Lξφζ − φ[ξ,ζ]

= Lξφζ + 〈ad∗ξφ, ζ〉
= 〈Lξφ+ ad∗ξφ, ζ〉

⇐⇒ 0 = (Lξ + ad∗ξ) φ

⇐⇒ ξ ∈ gφ
in terms of the induced action G y Ω∗(M, g∗). Thus,

∀ξ, ζ ∈ g : Lξφζ = φ[ξ,ζ] ⇐⇒ G · φ = φ



Level Sets of the Moment Map 14

Rather than:

I family of moment maps {µ− φ |dφ = 0, Gφ = G}
I reduction at µ− φ = 0

We instead consider:

I fixed moment map µ

I family of levels {φ |dφ = 0, Gφ = G}
I reduction at µ = φ

φ-level set:
µ−1(φ) := {µ = φ}



Multisymplectic Reduction — Proof Idea 15

Action Descent Linear Multisymplectic Reduction

Multisymplectic Reduction

nondegeneracy
existence
uniqueness

closedness

1. Apply the Action Descent Lemma to Gφ y µ−1(φ) and i∗ω.

µ−1(φ)i∗ω

Mφωφ

π

2. Use Linear Multisymplectic Reduction to conclude that ωφ is nondegenerate.



Multisymplectic Reduction — Proof Outline 16

Two steps:

1. Gφ y M preserves µ−1(φ),

2. i∗ω is invariant and horizontal.



Multisymplectic Reduction — Proof (Step 1) 17

1. Gφ y M preserves µ−1(φ).

I µ−1(φ) = {µ− φ = 0}

I ∀ ξ, ζ ∈ gφ,

Lξ (µ− φ)ζ = (µ− φ)[ξ,ζ], by the Leibniz condition,

= 0 on µ−1(φ).



Multisymplectic Reduction — Proof (Step 2) 18

2. i∗ω is invariant and horizontal.

I invariant: Hamiltonian actions are multisymplectic.

I horizontal: For ξ ∈ gφ,

ιξ i
∗ω = i∗ιξω, since Gφ preserves µ−1(φ),

= i∗dµξ, by the Hamiltonian condition,

= i∗dφξ, since µ = φ on µ−1(φ),

= 0, as φ is closed.



Extension: Reduction of Closed Forms 19

1. The proof makes no use of the nondegeneracy or homogeneity of
ω ∈ Ωk+1(M).

2. Extends naturally to a reduction scheme for closed forms.

ω ∈ Ω∗(M) closed

φ ∈ Ω∗(M, g∗) closed

µ ∈ Ω∗(M, g∗)

dµξ = ιξω

Lξµζ = µ[ξ,ζ]
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I MW reduction as ”restriction to level sets”, C. Lessig, arXiv:1206.3302

I all slides from 7 in Appendix are due to C. Blacker, Reduction of
multisymplectic manifolds (slides) at Good Morning SFARS, 7 June 2021.

https://arxiv.org/abs/1206.3302
https://public.eimi.ru/~cblacker/Blacker.reduction%20of%20multisymplectic%20manifolds.pdf
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