Symmetries and Reduction of Multisymplectic Manifolds Higher Structures and Field Theory

Antonio Michele Miti

MPIM, Bonn, Germany

MAX PLANCK INSTITUTE FOR MATHEMATICS

Esi, Vienna, August 2022

SymmetriesandReductionofMulti-Symplecticmanifolds

Based on:

Symmetries and Reduction of Multi Symplectic manifolds

Geometric structure providing a prescription on how to measure the area of 2-dimensional surface elements embedded in the manifold.

Based on:

Symmetries and Reduction of Multi - Symplectic manifolds

A certain higher version (involving differential forms in degree ≥ 2)

Geometric structure providing a prescription on how to measure the area of 2-dimensional surface elements embedded in the manifold.

Based on:

Keywords

Group of transformations preserving the prescribed geometric structures.

> Symmetries and Reduction of Multi - Symplectic manifolds

A certain higher version (involving differential forms in degree ≥ 2)

Geometric structure providing a prescription on how to measure the area of 2-dimensional surface elements embedded in the manifold.

Based on:

Keywords

Group of transformations preserving the prescribed geometric structures. Procedure providing another manifold of reduced dimension encoding the relevant geometrical information.

Symmetries and Reduction of Multi - Symplectic manifolds

A certain higher version (involving differential forms in degree ≥ 2)

Geometric structure providing a prescription on how to measure the area of 2-dimensional surface elements embedded in the manifold.

Based on:

"geometric approach" to mechanics

"geometric approach" to mechanics

Example: $M = T^*Q$ is symplectic

with $\omega = d\theta$ given by

$$\left. \theta \right|_{(q,p)}(v) = p(\pi_* v) \;.$$

"states".

Example: $M = T^*Q$ is symplectic

with $\omega = d\theta$ given by

$$\left. \theta \right|_{(q,p)}(v) = p(\pi_* v)$$

based on the notion of "states".

"algebraic approach" to mechanics ...

Def: Classical Observables

Unital, associative, commutative algebra $C^{\infty}(M)$.

based on the notion of "states".

"geometric approach" to mechanics "algebraic approach" to mechanics ... Def: Classical Observables Unital, associative, commutative algebra $C^{\infty}(M)$. Def: Hamiltonian vector fields Def: Symplectic Manifold $v_f \in \mathfrak{X}(M)$ such that: (M, ω) Smooth mfd. non-degenerate, closed, $\iota_{v_f}\omega = -df$ 2-form $v_f = Ham.v.f.$ pertaining to $f \in C^{\infty}(M)$. Example: $M = T^*Q$ is symplectic with $\omega = d\theta$ given by Def: Poisson Algebra of Observables $C^{\infty}(M)$ is a Poisson algebra with $\theta|_{(q,p)}(v) = p(\pi_* v) \; .$ $\{f,g\} = \iota_{v_{\sigma}}\iota_{v_{f}}\omega = \omega(v_{f},v_{g}).$

based on the notion of

"states"

"geometric approach" to mechanics "algebraic approach" to mechanics ... Def: Classical Observables Unital, associative, commutative algebra $C^{\infty}(M)$. Def: Hamiltonian vector fields Def: Symplectic Manifold $v_f \in \mathfrak{X}(M)$ such that: (M, ω) Smooth mfd. non-degenerate, closed, $\iota_{v_f}\omega = -df$ 2-form $v_f = Ham.v.f.$ pertaining to $f \in C^{\infty}(M)$. Example: $M = T^*Q$ is symplectic with $\omega = d\theta$ given by Def: Poisson Algebra of Observables $C^{\infty}(M)$ is a Poisson algebra with $\theta|_{(q,p)}(v) = p(\pi_* v) \; .$ $\{f,g\} = \iota_{v_{\sigma}}\iota_{v_{f}}\omega = \omega(v_{f},v_{g}).$

based on the notion of "measurable quantities".

symplectic forms (n = 1) \iff volume forms $(n = \dim(M) - 1)$

symplectic forms $(n = 1) \iff$ volume forms $(n = \dim(M) - 1)$

Historical motivation

Mechanics: geometrical foundations of (first-order) field theories.

mechanics	geometry	
phase space	symplectic manifold	
classical observables	Poisson algebra	
symmetries	group actions admitting comoment map	

point-like particles systems

symplectic forms $(n = 1) \quad \iff \quad$ volume forms $(n = \dim(M) - 1)$

Historical motivation

Mechanics: geometrical foundations of (first-order) field theories.

mechanics	geometry	
phase space	symplectic manifold	multisymplectic manifold
classical observables	Poisson algebra	L_∞ -algebra
symmetries	group actions admitting comoment map	group actions admitting (ho- motopy) comomentum map

point-like particles systems

field-theoretic systems

1 Introduction

2 Multisymplectic Geometry

- Multisymplectic manifolds
- Observability
- L_{∞} -algebra of Observables
- Leibniz-algebra of Observables

3 Momentum maps and regular reduction

- Regular reduction in symplectic geometry
- Regular reduction in multisymplectic geometry

4 Algebraic singular reduction

- Symplectic singular reduction
- Multisymplectic singular reduction

Discuss the singular reduction scheme in multisym. geometry.

Discuss the regular reduction scheme in multisym. geometry.

Review the basics of multisym. geometry.

Outline

1 Introduction

2 Multisymplectic Geometry

- Multisymplectic manifolds
- Observability
- L_{∞} -algebra of Observables
- Leibniz-algebra of Observables

3 Momentum maps and regular reduction

- Regular reduction in symplectic geometry
- Regular reduction in multisymplectic geometry

4 Algebraic singular reduction

- Symplectic singular reduction
- Multisymplectic singular reduction

Examples:

- n=1 \Rightarrow ω is a symplectic form
- $n = (dim(M) 1) \Rightarrow \omega$ is a volume form
- Let Q a smooth manifold, the multicotangent bundle $\Lambda^n T^*Q$ is naturally *n*-plectic. (cfr, GIMMSY construction for classical field theories)

Examples:

- $\bullet \ \ n=1 \qquad \qquad \Rightarrow \quad \omega \ \ {\rm is \ a \ \ symplectic \ form}$
- $n = (dim(M) 1) \Rightarrow \omega$ is a volume form
- Let Q a smooth manifold, the multicotangent bundle $\Lambda^n T^*Q$ is naturally *n*-plectic. (cfr, GIMMSY construction for classical field theories)

Examples:

- n=1 \Rightarrow ω is a symplectic form
- $n = (dim(M) 1) \Rightarrow \omega$ is a volume form
- Let Q a smooth manifold, the multicotangent bundle $\Lambda^n T^*Q$ is naturally *n*-plectic. (cfr, GIMMSY construction for classical field theories)

Def: Hamiltonian v.f. $\mathfrak{X}_{ham} = \{ X \in \mathfrak{X} | \iota_{x} \omega \text{ exact} \}$

Def: Multisymplectic v.f. $\mathfrak{X}_{ms} = \{ X \in \mathfrak{X} | \mathscr{L}_X \omega = 0 \}$

Def: Hamiltonian (*n*-1)-forms

$$\Omega_{ham}^{n-1} := \left\{ H \in \Omega^{n-1} \mid \exists X \in \mathfrak{X}_{ham} \\ : dH = -\iota_X \omega \right\}$$

Def: Hamiltonian v.f.

 $\mathfrak{X}_{ham} = \{ X \in \mathfrak{X} | \iota_x \omega \text{ exact} \}$

Def: Multisymplectic v.f.

 $\mathfrak{X}_{ms} = \{ X \in \mathfrak{X} | \ \mathscr{L}_X \omega = 0 \}$

ef: Hamiltonian (*n*-1)-forms

$$\Omega_{ham}^{n-1} := \left\{ H \in \Omega^{n-1} \mid \begin{array}{c} \exists X \in \mathfrak{X}_{ham} \\ \vdots \quad dH = -\iota_X \omega \end{array} \right\}$$

Global symmetries

Def: Multisym. (Lie group) action Smooth action θ : $G \sim (M, \omega)$ s.t. $(\Phi_g)_* \omega = \omega \qquad \forall g \in G$. Infinitesimal symmetries

Def: Multisym. (Lie algebra) action Lie algebra hom. $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ s.t. $\mathscr{L}_{\mathcal{E}}\omega = 0 \qquad \forall \xi \in \mathfrak{g}$. Def: Hamiltonian v.f.

 $\mathfrak{X}_{ham} = \{ X \in \mathfrak{X} | \iota_x \omega \text{ exact} \}$

Def: Multisymplectic v.f.

 $\mathfrak{X}_{ms} = \{ X \in \mathfrak{X} | \ \mathscr{L}_X \omega = 0 \}$

ef: Hamiltonian (*n*-1)-forms
$$\Omega_{ham}^{n-1} := \left\{ H \in \Omega^{n-1} \mid \exists X \in \mathfrak{X}_{ham} \\ : dH = -\iota_X \omega \right\}$$

Global symmetries

Def: Multisym. (Lie group) action Smooth action θ : $G \curvearrowright (M, \omega)$ s.t.

 $(\Phi_{\sigma})_*\omega = \omega \quad \forall g \in G.$

Def: Multisym. (Lie algebra) action
$$\gamma(M)$$

Infinitesimal symmetries

Lie algebra hom. $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ s.t.

$$\mathscr{L}_{\underline{\xi}}\omega = 0 \qquad \forall \xi \in \mathfrak{g} \,\,.$$

Def: Hamiltonian (n-1)-forms $\Omega_{ham}^{n-1}(M,\omega) := \left\{ \sigma \in \Omega^{n-1}(M) \mid \exists v_{\sigma} \in \mathfrak{X}(M) : d\sigma = -\iota_{v_{\sigma}}\omega \right\}$

Thm: Observables L_{∞} -algebra $\Omega_{ham}^{n-1}(M, \omega)$ endowed with $\{\sigma_1, \sigma_2\} = -\iota_{v_1}\iota_{v_2}\omega$ can be "completed" to a L_{∞} - algebra.

Thm: Observables L_{∞} -algebra

$$\begin{split} \Omega^{n-1}_{ham}(M,\omega) \text{ endowed with} \\ \{\sigma_1,\sigma_2\} = & -\iota_{v_1}\iota_{v_2}\omega \\ \text{can be "completed" to a} \\ & L_{\infty} - algebra. \end{split}$$

- ✓ Skew-symmetric;
- × multiplication of observables;
- X Jacobi equation;
- Sacobi equation up to homotopies.

Thm: Observables L_{∞} -algebra

$$\begin{split} \Omega^{n-1}_{ham}(M,\omega) \text{ endowed with} \\ \{\sigma_1,\sigma_2\} = -\iota_{v_1}\iota_{v_2}\omega \\ \text{can be "completed" to a} \\ L_\infty - algebra. \end{split}$$

- ✓ Skew-symmetric;
- X multiplication of observables;
- X Jacobi equation;
- Jacobi equation up to homotopies.

Thm: Observables Leibniz algebra

 $\Omega_{ham}^{n-1}(M,\omega)$ endowed with

$$\llbracket \sigma_1, \sigma_2 \rrbracket = \mathscr{L}_{v_1} \sigma_2 \; .$$

forms a Leibniz algebra.

Thm: Observables L_{∞} -algebra

$$\begin{split} \Omega^{n-1}_{ham}(M,\omega) \text{ endowed with} \\ \{\sigma_1,\sigma_2\} = -\iota_{v_1}\iota_{v_2}\omega \\ \text{can be "completed" to a} \\ L_\infty - algebra. \end{split}$$

- ✓ Skew-symmetric;
- × multiplication of observables;
- × Jacobi equation;
- Jacobi equation up to homotopies.

Thm: Observables Leibniz algebra

 $\Omega_{ham}^{n-1}(M,\omega)$ endowed with

$$[\![\sigma_1,\sigma_2]\!] = \mathscr{L}_{v_1}\sigma_2 \ .$$

forms a Leibniz algebra.

- X Skew-symmetric;
- × multiplication of observables;
- Jacobi equation;
- Skew-symmetric up to homotopies.

Let be (M, ω) a *n*-plectic manifold.

Def:
$$L_{\infty}$$
-algebra of observables (Rogers) [Rog12]
 $L_{\infty}(M, \omega)$ is given by:
• a cochain-complex $(L, \{\cdot\}_1)$
 $0 \rightarrow L^{1-n} \xrightarrow{\{\cdot\}_1} \dots \xrightarrow{\{\cdot\}_1} L^{2-k} \xrightarrow{\{\cdot\}_1} \dots \xrightarrow{\{\cdot\}_1} L^{-1} \xrightarrow{\{\cdot\}_1} \dots L^0 \longrightarrow 0$
 $\downarrow j$
 $\Omega^0(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n+1-k}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n-2}(M) \xrightarrow{d} \Omega^{n-1}_{ham}(M, \omega)$

Let be (M, ω) a *n*-plectic manifold.

$$\sigma_1 \otimes \cdots \otimes \sigma_k \longmapsto (-)^{k+1} \iota_{v_{\sigma_1}} \cdots \iota_{v_{\sigma_k}} \omega$$

Reminder: L_{∞} Algebras

 L_{∞} -algebra is the notion that one obtains from a Lie algebra when one requires the Jacobi identity to be satisfied only up to a higher coherent chain homotopy.

Def:
$$L_{\infty}$$
-algebra (Lada, Markl) [LM95]
 \mathbb{Z} -Graded vector space $L = \bigoplus_{i \in \mathbb{Z}} L_i$
 $(L, \{\mu_k\}_{k \in \mathbb{N}})$ Family of homogenous skew-multilinear maps
(multi-brackets) $\mu_k : \wedge^k L \to L[k-2]$
satisfying "Higher Jacobi" relations ($\forall m \ge 1$ and x_i homogeneous elements in L)
 $0 = \sum_{\substack{i+j=m+1\\ \sigma \in ush(i,m-i)}} (-)^{\sigma} \epsilon(\sigma; x) \mu_j \left(\mu_i \left(x_{\sigma_1}, \dots, x_{\sigma_i}\right), x_{\sigma_{i+1}}, \dots, x_{\sigma_m}\right)$

Reminder: L_{∞} Algebras

 L_{∞} -algebra is the notion that one obtains from a Lie algebra when one requires the Jacobi identity to be satisfied only up to a higher coherent chain homotopy.

Def:
$$L_{\infty}$$
-algebra (Lada, Markl) [LM95]
 \mathbb{Z} -Graded vector space $L = \bigoplus_{i \in \mathbb{Z}} L_i$
 $(L, \{\mu_k\}_{k \in \mathbb{N}})$ Family of homogenous skew-multilinear maps
(multi-brackets) $\mu_k : \wedge^k L \to L[k-2]$
satisfying "Higher Jacobi" relations ($\forall m \ge 1$ and x_i homogeneous elements in L)
 $0 = \sum_{\substack{i+j=m+1\\\sigma \in ush(i,m-i)}} (-)^{\sigma} \epsilon(\sigma; \times) \mu_j \left(\mu_i \left(x_{\sigma_1}, \dots, x_{\sigma_i} \right), x_{\sigma_{i+1}}, \dots, x_{\sigma_m} \right)$

Thm: Rogers [Rog12]

The higher observable algebra $L_{\infty}(M, \omega)$ forms an honest L_{∞} algebra.

Take $\mu_1 = d$, $\mu_k = {\dots }_k$, L is a shifted truncation of the de Rham complex.

Def: Leibniz algebra of observables

 $Leib(M, \omega)$ is given by:

• the vector space

$$\Omega_{ham}^{n-1}(M,\omega)$$

• with the binary bracket

$$\begin{bmatrix} \cdot, \dots, \cdot \end{bmatrix} : \quad \left(\Omega_{ham}^{n-1}(M, \omega)\right)^{\otimes 2} \longrightarrow \Omega_{ham}^{n-1}(M, \omega)$$

$$\sigma_1 \otimes \sigma_2 \longmapsto \mathscr{L}_{v_{\sigma_1}} \sigma_2$$
Def: Leibniz algebra of observables

 $Leib(M, \omega)$ is given by:

• the vector space

$$\Omega_{ham}^{n-1}(M,\omega)$$

• with the binary bracket

$$\begin{bmatrix} \cdot, \dots, \cdot \end{bmatrix} : \quad \left(\Omega_{ham}^{n-1}(M, \omega)\right)^{\otimes 2} \longrightarrow \Omega_{ham}^{n-1}(M, \omega)$$
$$\sigma_1 \otimes \sigma_2 \longmapsto \mathscr{L}_{v_{\sigma_1}} \sigma_2$$

Prop:

i.
$$v_{\llbracket lpha, eta
rbracket} = [v_lpha, v_eta]$$

ii.
$$\llbracket \sigma, \llbracket \alpha, \beta \rrbracket \rrbracket = \llbracket \llbracket \sigma, \alpha \rrbracket, \beta \rrbracket + \llbracket \alpha, \llbracket \sigma, \beta \rrbracket \rrbracket$$

$$\text{iii.} \ \llbracket \alpha, \beta \rrbracket + \llbracket \beta, \alpha \rrbracket = \textit{d} \left(\iota_{v_{\alpha}} \beta + \iota_{v_{\beta}} \alpha \right)$$

Outline

1 Introduction

2 Multisymplectic Geometry

- Multisymplectic manifolds
- Observability
- L_{∞} -algebra of Observables
- Leibniz-algebra of Observables

3 Momentum maps and regular reduction

- Regular reduction in symplectic geometry
- Regular reduction in multisymplectic geometry

4 Algebraic singular reduction

- Symplectic singular reduction
- Multisymplectic singular reduction

Consider $\theta : G \curvearrowright M$ symplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

11

Consider θ : $G \curvearrowright M$ symplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def: Equivariant moment map

Smooth map

$$\mu: M \to \mathfrak{g}^*$$

$$\begin{split} \text{i. } & d\langle \mu,\xi\rangle = -\iota_{\underline{\xi}}\omega \qquad \text{, } \forall \xi\in\mathfrak{g} \\ \text{ii. } & \mu\circ\theta_g = Ad_g^*\circ\mu \qquad \text{, } \forall g\in \mathsf{G} \end{split}$$

Consider θ : $G \curvearrowright M$ symplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def: Equivariant moment map

Smooth map

$$\mu: M \to \mathfrak{g}^*$$

such that:

$$\begin{split} \text{i. } & d\langle \mu,\xi\rangle = -\iota_{\underline{\xi}}\omega \qquad \text{, } \forall \xi\in\mathfrak{g} \\ \text{ii. } & \mu\circ\theta_{g} = Ad_{g}^{*}\circ\mu \qquad \text{, } \forall g\in \textit{G} \end{split}$$

Def: Comoment map

Linear map

$$\widetilde{\mu}:\mathfrak{g}
ightarrow C^\infty(M,\omega)$$

$$\begin{split} &\text{i. } d\widetilde{\mu}(\xi) = -\iota_{\underline{\xi}}\omega \qquad, \forall \xi \in \mathfrak{g} \\ &\text{ii. } \widetilde{\mu}([\xi,\eta]) = \{\widetilde{\mu}(\xi),\widetilde{\mu}(\eta)\} \text{ , } \forall \xi,\eta \in \mathfrak{g} \end{split}$$

Consider θ : $G \curvearrowright M$ symplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def:	Equivariant	moment	тар
------	-------------	--------	-----

Smooth map

$$\mu: M \to \mathfrak{g}^*$$

such that:

$$\begin{split} \text{i. } & d\langle \mu,\xi\rangle = -\iota_{\underline{\xi}}\omega \qquad \text{, } \forall\xi\in\mathfrak{g} \\ \text{ii. } & \mu\circ\theta_g = Ad_g^*\circ\mu \qquad \text{, } \forall g\in G \end{split}$$

Def: Comoment map

Linear map

$$\widetilde{\mu}:\mathfrak{g}
ightarrow\mathcal{C}^\infty(M,\omega)$$

$$\begin{split} &\text{i. } \ d\widetilde{\mu}(\xi) = -\iota_{\underline{\xi}}\omega \qquad, \forall \xi \in \mathfrak{g} \\ &\text{ii. } \ \widetilde{\mu}([\xi,\eta]) = \{\widetilde{\mu}(\xi),\widetilde{\mu}(\eta)\} \ , \forall \xi,\eta \in \mathfrak{g} \end{split}$$

Consider $\theta : G \curvearrowright M$ symplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def: Equivariant moment map	Def: Comoment map	
Smooth map	Linear map	
$\mu: \textit{\textsf{M}} \to \mathfrak{g}^*$	$\widetilde{\mu}:\mathfrak{g} ightarrow C^{\infty}(M,\omega)$	
such that:	such that:	
i. $d\langle \mu,\xi angle=-\iota_{\xi}\omega$, $orall\xi\in\mathfrak{g}$	i. $d\widetilde{\mu}(\xi)=-\iota_{\underline{\xi}}\omega$, $orall \xi\in \mathfrak{g}$	
ii. $\mu \circ heta_{g} = Ad_{g}^{+} \circ \mu$, $orall g \in G$	ii. $\widetilde{\mu}([\xi,\eta])=\{\widetilde{\mu}(\xi),\widetilde{\mu}(\eta)\}$, $orall\xi,\eta\in\mathfrak{g}$	

Upshot: Duality $\mu(\mathbf{x}): \boldsymbol{\xi} \mapsto \widetilde{\mu}(\boldsymbol{\xi})\big|_{\mathbf{x}}$ "duality wrt. the currying operation"

Symplectic reduction:

Procedure associating to any (suitably regular) pair of symplectic manifold and Hamiltonian action another symplectic manifold of smaller dimension.

Symplectic reduction:

Procedure associating to any (suitably regular) pair of symplectic manifold and Hamiltonian action another symplectic manifold of smaller dimension.

Thm: Marsden-Weinstein reduction [MW74]Given: (M, ω) symplectic
 $G \cap M$ symplectic with equivariant momap. $\mu : M \to \mathfrak{g}^*$ Assume: $\phi \in \mathfrak{g}^*$ regular value of μ
 $G_{\phi} \cap \mu^{-1}(\phi) \hookrightarrow M$ smooth embedding)
 $G_{\phi} \cap \mu^{-1}(\phi)$ free and properThen: $\exists !$ symplectic structure ω_{ϕ} in $M_{\phi} := \mu^{-1}(\phi)/G_{\phi}$
s.t. $\pi^*\omega_{\phi} = j^*\omega$ with $j : \mu^{-1}(\phi) \hookrightarrow M$ and $\pi : \mu^{-1}(\phi) \twoheadrightarrow M_{\mu}$

Symplectic reduction:

Procedure associating to any (suitably regular) pair of symplectic manifold and Hamiltonian action another symplectic manifold of smaller dimension.

Thm: Marsden-Weinstein reduction [MW74]Given: (M, ω) symplectic
 $G \curvearrowright M$ symplectic with equivariant momap. $\mu : M \to \mathfrak{g}^*$ Assume: $\phi \in \mathfrak{g}^*$ regular value of μ
 $G_{\phi} \curvearrowright \mu^{-1}(\phi) \hookrightarrow M$ smooth embedding)
 $(\Rightarrow \mu^{-1}(\phi)/G_{\phi}$ smooth manifold)Then: $\exists !$ symplectic structure ω_{ϕ} in $M_{\phi} := \mu^{-1}(\phi)/G_{\phi}$
s.t. $\pi^* \omega_{\phi} = j^* \omega$ with $j : \mu^{-1}(\phi) \hookrightarrow M$ and $\pi : \mu^{-1}(\phi) \twoheadrightarrow M_{\mu}$

In mechanics:

it embodies the process of restricting the dynamics of the system to the level sets of the conserved quantities pertaining to the symmetry group.

(e.g. restricting to studying a point-like particle in a central potential by studying it in radial coordinates)

Consider $\theta : G \curvearrowright M$ multisymplectic, $: : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Consider θ : $G \curvearrowright M$ multisymplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def: Equivariant moment map

Smooth map

$$\mu: M \to \mathfrak{g}^* \otimes \Lambda^{n-1} T^* M$$

such that:

i. $d\langle \mu, \xi \rangle = -\iota_{\underline{\xi}}\omega$, $\forall \xi \in \mathfrak{g}$ ii. $\mu \circ \theta_g = (Ad_g^* \otimes \theta_g^*) \circ \mu$, $\forall g \in G$ iii. $\mu \in \Omega^{n-1}(M, \mathfrak{g}^*)$

Consider $\theta : G \curvearrowright M$ multisymplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Def: Equivariant moment map

Smooth map

$$\mu: M \to \mathfrak{g}^* \otimes \Lambda^{n-1} T^* M$$

such that:

i. $d\langle \mu, \xi \rangle = -\iota_{\underline{\xi}}\omega$, $\forall \xi \in \mathfrak{g}$ ii. $\mu \circ \theta_g = (Ad_g^* \otimes \theta_g^*) \circ \mu$, $\forall g \in G$ iii. $\mu \in \Omega^{n-1}(M, \mathfrak{g}^*)$ Def: Comoment map

Linear map

$$\widetilde{\mu}:\mathfrak{g}
ightarrow extsf{Leib}(M,\omega)$$

i.
$$d\widetilde{\mu}(\xi) = -\iota_{\underline{\xi}}\omega$$
 , $\forall \xi \in \mathfrak{g}$

ii.
$$\widetilde{\mu}([\xi,\eta]) = \llbracket \widetilde{\mu}(\xi), \widetilde{\mu}(\eta) \rrbracket$$
, $\forall \xi, \eta \in \mathfrak{g}$

Consider $\theta : G \curvearrowright M$ multisymplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

 $\begin{array}{c|c} \hline \text{Def: Equivariant moment map} \\ \hline \text{Smooth map} \\ \mu: M \to \mathfrak{g}^* \otimes \Lambda^{n-1} T^* M \\ \text{such that:} \\ i. \ d\langle \mu, \xi \rangle = -\iota_{\underline{\xi}} \omega \\ \text{ii. } \mu \circ \theta_g = (Ad_g^* \otimes \theta_g^*) \circ \mu \\ \text{iii. } \mu \in \Omega^{n-1}(M, \mathfrak{g}^*) \end{array} \begin{array}{c} \hline \text{Def: Comment map} \\ \hline \text{Def: Comment map} \\ \hline \text{Linear map} \\ \mu: \mathfrak{g} \to \text{Leib}(M, \omega) \\ \text{such that:} \\ i. \ d\widetilde{\mu}(\xi) = -\iota_{\underline{\xi}} \omega \\ \text{ii. } \widetilde{\mu}([\xi, \eta]) = \llbracket \widetilde{\mu}(\xi), \widetilde{\mu}(\eta) \rrbracket, \forall \xi, \eta \in \mathfrak{g} \\ \text{iii. } \widetilde{\mu}([\xi, \eta]) = \llbracket \widetilde{\mu}(\xi), \widetilde{\mu}(\eta) \rrbracket, \forall \xi, \eta \in \mathfrak{g} \end{array}$

Upshot: $\tilde{\mu}$ as a lift $\begin{array}{c} Leib(M,\omega) \\ & \downarrow^{\psi} & \downarrow^{\psi} \\ g & \stackrel{\gamma}{\longrightarrow} \mathfrak{X}(M) \end{array}$ "it is a lift (in the Leibniz category) of the infinitesimal action by the assignment of hamiltonian v.fields."

Consider $\theta : G \curvearrowright M$ multisymplectic, $\underline{\cdot} : \mathfrak{g} \to \mathfrak{X}(M)$ infinitesimal action.

Upshot: Duality

$$\mu(\mathbf{x}): \xi \mapsto \widetilde{\mu}(\xi) \big|_{\mathbf{x}}$$

"duality wrt. the currying operation" Upshot: $\widetilde{\mu}$ as a lift $Leib(M, \omega)$ $\mathfrak{g} \xrightarrow{\widetilde{\mu}} \mathcal{X}(M)$ "it is a lift (in the Leibniz seture) of the infinitesi

"it is a lift (in the Leibniz category) of the infinitesimal action by the assigment of hamiltonian v.fields." Let (M, ω) be *n*-plectic. Consider an action $G \curvearrowright M$ with moment map μ .

Let (M, ω) be *n*-plectic. Consider an action $G \curvearrowright M$ with moment map μ .

Def: Regular value of μ

Closed differential form $\phi \in \Omega^{n-1}(M, \mathfrak{g}^*)$, such that

$$\mu^{-1}(\phi) = \{ x \in M \mid \mu(x) = \phi(x) \}$$

is a smoothly embedded into M.

Let (M, ω) be *n*-plectic. Consider an action $G \curvearrowright M$ with moment map μ .

Def: Regular value of μ

Closed differential form $\phi \in \Omega^{n-1}(M, \mathfrak{g}^*)$, such that

$$\mu^{-1}(\phi) = \{ x \in M \mid \mu(x) = \phi(x) \}$$

is a smoothly embedded into M.

Thm: Mi	ultisymplectic regular reduction [Bla21]
Given:	(M,ω) <i>n</i> -plectic
	$G \curvearrowright M$ multisymplectic with equivariant momap. $\mu \in \Omega^{n-1}(M, \mathfrak{g}^*)$
Assume:	$\phi \in \Omega^{n-1}(M,\mathfrak{g}^*)$ regular value of μ $(\mu^{-1}(\phi) \hookrightarrow M$ embedding)
	$G_\phi \curvearrowright \mu^{-1}(\phi)$ free and proper $(\mu^{-1}(\phi)/G_\phi$ smooth manifold)
Then:	$\exists ! { m pre-n-plectic} { m structure} \omega_{\phi} { m in} M_{\phi} := \mu^{-1}(\phi)/\mathcal{G}_{\phi}$
	s.t. $\pi^*\omega_\phi = j^*\omega$ with $j: \mu^{-1}(\phi) \hookrightarrow M$ and $\pi: \mu^{-1}(\phi) \twoheadrightarrow M_\mu$

Outline

1 Introduction

2 Multisymplectic Geometry

- Multisymplectic manifolds
- Observability
- L_{∞} -algebra of Observables
- Leibniz-algebra of Observables

3 Momentum maps and regular reduction

- Regular reduction in symplectic geometry
- Regular reduction in multisymplectic geometry

4 Algebraic singular reduction

- Symplectic singular reduction
- Multisymplectic singular reduction

The gist of singular reduction

- when μ is singular (i.e. $\mu^{-1}(0)$ is not a mfd.), the (geometrically) reduced space may not exist.
- a *singular reduction scheme* is a procedure to construct a "reduced" algebra of observable out of the given data
- such that it corresponds to the algebra of observable of the reduced manifold in the regular case.

The gist of singular reduction

- when μ is singular (i.e. $\mu^{-1}(0)$ is not a mfd.), the (geometrically) reduced space may not exist.
- a *singular reduction scheme* is a procedure to construct a "reduced" algebra of observable out of the given data
- such that it corresponds to the algebra of observable of the reduced manifold in the regular case.

Thm: S	Sniatycki-Weinstein reduction [ŚW83]	
Given:	(M,ω) symplectic $\mathcal{G} \curvearrowright M$ symplectic with equivariant momap. $\mu: M o \mathfrak{g}^*$	
Then:	$\left[C^{\infty}(M)/I_{\mu}\right]^{G}$ admits a Poisson algebra structure it agrees with the M–W reduction in the regular case.	
I_{μ} = associative ideal generated by $\widetilde{\mu}(\mathfrak{g})$		

Data:

- ► A constraint set N (possibly singular),
- An infinitesimal action preserving N.

Data:

- ► A constraint set N (possibly singular),
- An infinitesimal action preserving N.

Goal:

Obtain a "reduced" observables algebra out of the data.

Data:

- ► A constraint set N (possibly singular),
- An infinitesimal action preserving N.

Goal:

Obtain a "reduced" observables algebra out of the data.

Strategy:

- 1. Define smooth fields/forms tangent to N,
- 2. define smooth fields/forms vanishing along N,
- 3. define reducible fields requiring the preservation of the vanishing objects,
- 4. define *reducible forms* requiring their conservation w.r.t. the infinitesimal action,
- 5. define reducible and vanishing observables,
- 6. quotient

Consider N closed subset of M.

Consider N closed subset of M.

Def:

 I_N = ideal of smooth functions vanishing over N.

Consider N closed subset of M.

Def:

 I_N = ideal of smooth functions vanishing over N.

Def: v.f tangent to N $\mathfrak{X}_{N}(M) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_{v}(I_{N}) \subseteq I_{N} \right\}$

Def: v.f vanishing on N

$$I_{\mathfrak{X}}(N) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_{v}(C^{\infty}(M)) \subseteq I_{N} \right\}$$

Consider N closed subset of M.

Def:

 I_N = ideal of smooth functions vanishing over N.

Def: v.f tangent to N

$$\mathfrak{X}_N(M) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_v(I_N) \subseteq I_N \right\}$$

Def: v.f vanishing on N

$$I_{\mathfrak{X}}(N) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_{v}(C^{\infty}(M)) \subseteq I_{N} \right\}$$

Vector field tangent to N

Lem: If *N* is smoothly embedded, $\mathfrak{X}(N) \cong X_N(M)/I_{\mathfrak{X}}$.

Consider N closed subset of M.

Def:

 I_N = ideal of smooth functions vanishing over N.

Def: v.f tangent to N

$$\mathfrak{X}_N(M) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_v(I_N) \subseteq I_N \right\}$$

Def: v.f vanishing on N

$$I_{\mathfrak{X}}(N) := \left\{ v \in \mathfrak{X}(M) \mid \mathscr{L}_{v}(C^{\infty}(M)) \subseteq I_{N} \right\}$$

Vector field tangent to N

Lem: If *N* is smoothly embedded, $\mathfrak{X}(N) \cong X_N(M)/I_{\mathfrak{X}}$.

Def: Differential form vanishing on N

$$I_{\Omega(N)} := \begin{cases} \alpha \in \Omega^k(M \mid k \ge 0, \\ \alpha(u_1, \dots, u_k) \in I_N \quad \forall u_i \in \mathfrak{X}_N(M) \end{cases}$$

Consider $\mathfrak{g} \curvearrowright M$ by vector fields tangent to N

 $\begin{array}{lll} \text{Denote by}: & \underline{\mathfrak{g}} \subseteq \mathfrak{X}_N(M) \text{ the fundamental distribution,} \\ & \overline{\mathfrak{X}}_g \text{ the } C^\infty \text{-module generated by } \mathfrak{g}. \end{array}$

Def: Reducible v.fields

$$\mathfrak{X}(M)_{[N]} := \left\{ v \in \mathfrak{X}(M) \mid \begin{array}{c} \mathscr{L}_v(I_N) \subseteq I_N \\ \mathscr{L}_v(\mathfrak{X}_g) \subseteq \mathfrak{X}_g + I_\mathfrak{X} \end{array}
ight\}$$

Consider $\mathfrak{g} \curvearrowright M$ by vector fields tangent to N

Denote by : $\mathfrak{g} \subseteq \mathfrak{X}_N(M)$ the fundamental distribution, $\dot{\mathfrak{X}}_{g}$ the C^{∞} -module generated by \mathfrak{g} .

Def: Reducible v.fields

$$\mathfrak{X}(M)_{[N]} := \begin{cases} v \in \mathfrak{X}(M) & \mathscr{D}_v(I_N) \subseteq I_N \\ \mathscr{D}_v(\mathfrak{X}_g) \subseteq \mathfrak{X}_g + I_{\mathfrak{X}} \end{cases}$$

Def: Reducible forms

$$\Omega(M)_{[N]} := \left\{ \alpha \in \Omega(M) \mid \begin{array}{c} \mathscr{L}_{\underline{\xi}} \alpha \in I_{\Omega(N)} \\ \iota_{\underline{\xi}} \alpha \in I_{\Omega(N)} \\ \end{array} \forall \xi \in \mathfrak{g} \end{array} \right\}$$

Consider $\mathfrak{g} \curvearrowright M$ by vector fields tangent to N

Denote by :

 $\underline{\mathfrak{g}} \subseteq \mathfrak{X}_N(M)$ the fundamental distribution, $\overline{\mathfrak{X}}_g$ the C^{∞} -module generated by \mathfrak{g} .

Def: Reducible v.fields

$$\mathfrak{X}(M)_{[N]} := \begin{cases} v \in \mathfrak{X}(M) & \mathscr{D}_v(I_N) \subseteq I_N \\ \mathscr{D}_v(\mathfrak{X}_g) \subseteq \mathfrak{X}_g + I_{\mathfrak{X}} \end{cases}$$

Def: Reducible forms

$$\Omega(M)_{[N]} := \begin{cases} \alpha \in \Omega(M) & \mathcal{L}_{\underline{\xi}} \alpha \in I_{\Omega(N)} \\ \iota_{\underline{\xi}} \alpha \in I_{\Omega(N)} & \forall \xi \in \mathfrak{g} \end{cases}$$

Def: Reducible Hamiltonian forms

$$(\Omega(M)_{ham}^{n-1})_{[N]} := \left\{ \alpha \in \Omega(M)_{ham}^{n-1} \right\}$$

 α is a reducible form v_{α} is a reducible v.field

Def/Prop: Reducible L_{∞} -observables Is the L_{∞} -subalgebra of $L_{\infty}(M, \omega)$ given by

$$L_{\infty}(M,\omega)_{[N]}^{k} := \begin{cases} \Omega^{n-1-k}(M)_{[N]} & (\text{reducible forms}) & \text{if } n-1 \leq k < 0\\ (\Omega(M)_{ham}^{n-1})_{[N]} & (\text{reducible hamiltonians}) & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

Def/Prop: Vanishing L_{∞} -observables

Is the L_{∞} -ideal of $L_{\infty}(M,\omega)_{[N]}$ given by

$$I_{L_{\infty}(M,\omega)} := \begin{cases} \alpha \in L_{\infty}(M,\omega)_{[N]} & \alpha(v_1,\ldots,v_k) \in I_N \quad \forall v_i \in \mathfrak{X}_N & \text{if } \alpha \in \Omega^k \\ v_\alpha \in \mathfrak{X}_{\mathfrak{g}} + I_{\mathfrak{X}} & \text{if } \alpha \in \Omega^{n-1} \end{cases}$$

Def/Prop: Reducible L_{∞} -observables Is the L_{∞} -subalgebra of $L_{\infty}(M, \omega)$ given by

$$L_{\infty}(M,\omega)_{[N]}^{k} := \begin{cases} \Omega^{n-1-k}(M)_{[N]} & (\text{reducible forms}) & \text{if } n-1 \leq k < 0\\ (\Omega(M)_{ham}^{n-1})_{[N]} & (\text{reducible hamiltonians}) & \text{if } k = 0\\ 0 & \text{if } k > 0 \end{cases}$$

Def/Prop: Vanishing L_{∞} -observables

Is the L_{∞} -ideal of $L_{\infty}(M,\omega)_{[N]}$ given by

$$I_{L_{\infty}(M,\omega)} := \begin{cases} \alpha \in L_{\infty}(M,\omega)_{[N]} \\ v_{\alpha} \in \mathfrak{X}_{\mathfrak{g}} + I_{\mathfrak{X}} \end{cases} \quad \text{if } \alpha \in \Omega^{k} \\ \text{if } \alpha \in \Omega^{n-1} \end{cases}$$

Def: Reduced L_{∞} -algebra of observables		
Is the L_∞ -quotient :	$\frac{L_{\infty}(M,\omega)_{[N]}^{k}}{I_{L_{\infty}(M,\omega)}}$	

• Consider $N = \mu^{-1}(0)$ to be regular (smooth embedding)

Multisymplectic	Multisymplectic	
regular	\equiv	singular
reduction		reduction
• Consider $N = \mu^{-1}(0)$ to be regular (smooth embedding)

Multisymplectic	Multisymplectic	
regular	\equiv	singular
reduction		reduction

• Consider ω to be 1-plectic

Multisymplectic		Sniaticky–Weinstein
singular	\neq	singular
reduction		reduction

(but \exists a canonical Poisson algebra morphism)

• Consider $N = \mu^{-1}(0)$ to be regular (smooth embedding)

Multisymplectic	Multisymplectic	
regular	\equiv	singular
reduction		reduction

• Consider ω to be 1-plectic

Multisymplectic		Sniaticky–Weinstein
singular	¥	singular
reduction		reduction

(but ∃ a canonical Poisson algebra morphism)

Thank you for your attention!

Supplementary Material

MS geometry and classical field mechanics

Consider a smooth manifold Y,

Multicotangent bundle $\bigwedge = \bigwedge^n T^* Y$ is naturally *n*-plectic

MS geometry and classical field mechanics

Consider a smooth manifold Y,

Multicotangent bundle $\bigwedge = \bigwedge^n T^* Y$ is naturally *n*-plectic

Def: Tautological *n*-form

 $\theta \in \Omega^n(\Lambda)$ such that:

$$\begin{split} [\iota_{u_1 \wedge \ldots \wedge u_n} \theta]_{\eta} &= \iota_{(\mathcal{T}\pi)_* u_1 \wedge \ldots \wedge (\mathcal{T}\pi)_* u_n} \eta \\ &= \iota_{u_1 \wedge \ldots \wedge u_n} \pi^* \eta \qquad \forall \eta \in \Lambda, \ \forall u_i \in \mathcal{T}_{\eta} \Lambda \end{split}$$

Def: Tautological (multisymplectic) (n+1)-form $\omega := d heta$

Claim: ω is not degenerate.

MS geometry and classical field mechanics

Consider a smooth manifold Y,

Multicotangent bundle $\bigwedge = \bigwedge^n T^* Y$ is naturally *n*-plectic

Def: Tautological *n*-form

 $\theta \in \Omega^n(\Lambda)$ such that:

$$\begin{split} [\iota_{u_1 \wedge \ldots \wedge u_n} \theta]_{\eta} &= \iota_{(T\pi)_* u_1 \wedge \ldots \wedge (T\pi)_* u_n} \eta \\ &= \iota_{u_1 \wedge \ldots \wedge u_n} \pi^* \eta \qquad \forall \eta \in \Lambda, \ \forall u_i \in T_{\eta} \Lambda \end{split}$$

Def: Tautological (multisymplectic) (n+1)-form $\omega := d heta$

Claim: ω is not degenerate.

ls	point-particles mechanics	$\sim \rightarrow$	classical fields mechanics
orc	symplectic	$\sim \rightarrow$	multisymplectic
syw	Observables (Poisson) algebra	$\sim \rightarrow$	Observables $L-\infty$ algebra
Å	Co-moment map	$\sim \rightarrow$	Homotopy co-momentum map

Unwrapping the higher Jacobi equations

Slogan: Jacobi identity satisfied up to an higher coherent homotopy

Higher Jacobi implies:

Underlying chain-complex (L, μ₁) with differential d = μ₁;

•
$$\mu_2 = [\cdot, \cdot]$$
 is a chain map $L^{\otimes 2} \to L$;

- $\mu_3 = j(\cdot, \cdot, \cdot)$ is a chain homotopy $\mu_2 \circ \mu_2 \Rightarrow 0$; i.e. between the usual Jacobiator $[[\cdot, \cdot], \cdot] \circ P_{unsh}$ and the 0 map
- higher analogues... e.g. μ₄, is a second order chain-homotopy between the two chain homotopies [j(·, ·, ·]), ·] ∘ P_{unsh} and j([·, ·], ·, ·) ∘ P_{unsh}

Notation: $P_{unsh} = sum$ on all the possibile unshuffled permutation.

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω ,

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω ,

- symplectic case -

Def: Comoment map pertaining to v Lie algebra morphism $f : \mathfrak{g} \to C^{\infty}(M)$ such that $d f(x) = -\iota_{v_{v}}\omega \quad \forall x \in \mathfrak{g}$.

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω ,

- symplectic case -

Def: Comoment map pertaining to v Lie algebra morphism

$$f:\mathfrak{g}\to C^\infty(M)$$

such that

 $d f(x) = -\iota_{v_x}\omega \qquad \forall x \in \mathfrak{g} .$

- n-plectic case -

Def: Homotopy comoment map (HCMM) L_{∞} -morphism $(f_k) : \mathfrak{g} \to L_{\infty}(M, \omega)$ such that $d f_1(x) = -\iota_{v_{\infty}}\omega \quad \forall x \in \mathfrak{g}$.

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω ,

- symplectic case -

Def: Comoment map pertaining to v Lie algebra morphism

$$f:\mathfrak{g}\to C^\infty(M)$$

such that

 $d f(x) = -\iota_{v_x}\omega \qquad \forall x \in \mathfrak{g} .$

- n-plectic case -

Def: Homotopy comoment map (HCMM) L_{∞} -morphism $(f_k): \mathfrak{g} \to L_{\infty}(M, \omega)$

such that

$$d f_1(x) = -\iota_{v_x}\omega \qquad \forall x \in \mathfrak{g} .$$

- Conserved quantities -

Prop: Noether TheoremFixed $H \in C^{\infty}_{Ham}(M)$ (g-invariant) , $\mathscr{L}_{v_H} f(x) = 0$ $\forall x \in \mathfrak{g}$

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω ,

- symplectic case -

Def: Comoment map pertaining to v Lie algebra morphism

$$f:\mathfrak{g}\to C^\infty(M)$$

such that

 $d f(x) = -\iota_{v_x}\omega \qquad \forall x \in \mathfrak{g} .$

- n-plectic case -

Def: Homotopy comoment map (HCMM) L_{∞} -morphism

$$(f_k):\mathfrak{g}
ightarrow L_\infty(M,\omega)$$

such that

$$d f_1(x) = -\iota_{v_x}\omega \qquad \forall x \in \mathfrak{g} .$$

- Conserved quantities -

Prop: Noether Theorem

Fixed
$$H\in C^\infty_{{\sf Ham}}(M)$$
 (${rak g} ext{-invariant})$,

$$\mathscr{L}_{v_H}f(x) = 0 \qquad \forall x \in \mathfrak{g}$$

Prop: RWZ16 Theorem

Fixed $H \in \Omega^{n-1}_{Ham}(M)$ (g-invariant),

$$\mathscr{L}_{v_H}f_k(p)\in B^k(M)\qquad \forall p\in Z_k(\mathfrak{g})$$

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

$$(f) = \left\{ f_k : \Lambda^k \mathfrak{g} \to L^{1-k} \subseteq \Omega^{n-k}(M) \mid 0 \le k \le n+1 \right\}$$

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

$$(f) = \left\{ f_k : \Lambda^k \mathfrak{g} \to L^{1-k} \subseteq \Omega^{n-k}(M) \mid 0 \le k \le n+1 \right\}$$

•
$$f_0 = 0, f_{n+1} = 0$$

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

$$(f) = \left\{ f_k : \Lambda^k \mathfrak{g} \to L^{1-k} \subseteq \Omega^{n-k}(M) \mid 0 \le k \le n+1 \right\}$$

►
$$f_0 = 0, f_{n+1} = 0$$

► $df_k(p) = f_{k-1}(\partial p) - (-1)^{\frac{k(k+1)}{2}} \iota(v_p) \omega \quad \forall p \in \Lambda^k(\mathfrak{g}), \forall k=1,...n+1$

Consider a Lie algebra action $v : \mathfrak{g} \to \mathfrak{X}(M)$ preserving the *n*-plectic form ω .

Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

$$(f) = \left\{ f_k : \ \Lambda^k \mathfrak{g} \to L^{1-k} \subseteq \Omega^{n-k}(M) \ \big| \ 0 \le k \le n+1 \right\}$$

Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon)

 $\begin{array}{ll} \text{HCMM is an } L_{\infty}\text{-morphism} & (f): \mathfrak{g} \to L_{\infty}(M, \omega) \\ \text{lifting the infinitesimal action} & v: \mathfrak{g} \to \mathfrak{X}(M) \\ & \mathfrak{g} \xrightarrow{(f) \\ v \longrightarrow \mathfrak{X}(M)} \end{array}$

Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon)

HCMM is an L_{∞} -morphism $(f): \mathfrak{g} \to L_{\infty}(M, \omega)$ $L_{\infty}(M, \omega)$ lifting the infinitesimal action $v: \mathfrak{g} \to \mathfrak{X}(M)$ $\stackrel{(f)}{\underset{v}{\longrightarrow}} \mathfrak{I}(M)$ $\mathfrak{g} \xrightarrow{v}{\longrightarrow} \mathfrak{X}(M)$ $\mathfrak{g} \xrightarrow{v}{\longrightarrow} \mathfrak{X}(M)$

Practically a HCMM is given by several multilinear maps

 $f_i = \Lambda^i \mathfrak{g} \rightarrow L_{i-1}$ satisfying: 1. $df_1(\xi) = -\iota_{v_{\xi}} \omega$ 2. $\sum \dots$

AM

Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon)

 $L_\infty(M,\omega)$ HCMM is an L_{∞} -morphism $(f) : \mathfrak{g} \to L_{\infty}(M, \omega)$ $\mathfrak{g} \xrightarrow{(f)} \mathfrak{X}(M)$ lifting the infinitesimal action $v : \mathfrak{g} \to \mathfrak{X}(M)$ Lemma: HCMM unfolded [CFRZ16] HCMM is a sequence of (graded-skew) multilinear maps: $(f) = \{f_k : \Lambda^k \mathfrak{g} \to L_{k-1} \subseteq \Omega^{n-k} \mid 0 \le k \le n+1\}$ $\bigwedge^{n+1} \mathfrak{g} \xrightarrow{\partial} \bigwedge^{n} \mathfrak{g} \longrightarrow \cdots \longrightarrow \bigwedge^{k} \mathfrak{g} \xrightarrow{\partial} \bigwedge^{k-1} \mathfrak{g} \longrightarrow \cdots \longrightarrow \bigwedge^{1} \mathfrak{g} \xrightarrow{\partial} \bigwedge^{0} \mathfrak{g} = \mathbb{R}$ $0 \longrightarrow \Omega^{0} \longrightarrow \Omega^{n-k} \longrightarrow \Omega^{n-k-1} \longrightarrow \Omega^{n-1} \longrightarrow \Omega^{n-1}$ fulfilling: ▶ $f_0 = 0, f_{n+1} = 0$ $\bullet df_k(p) = f_{k-1}(\partial p) - (-1)^{\frac{k(k+1)}{2}} \iota(v_p) \omega \qquad \forall p \in \Lambda^k(\mathfrak{g}), \forall k=1,\dots,n+1$

Practically a HCMM is given by several multilinear maps

$$f_i = \Lambda^i \mathfrak{g} \to L_{i-1}$$

AM⁻ satisfying:

1.
$$df_1(\xi) = -\iota_{v_{\xi}}\omega$$

2 Σ

EXTRA SLIDES on regular reduction

All the credit for the next slides is to C. Blacker

Based on:

B., Reduction of multisymplectic manifolds, Lett. Math. Phys., 2021

See also:

Reduction of multisymplectic manifolds (slides) at Good Morning SFARS, 7 June 2021.

Reduction is a procedure that takes a space and returns a "smaller" space

Reduction theory is by no means completed.... Only a few instances and examples of multisymplectic reduction are really well understood... so one can expect to see more activity in this area as well.

- J. Marsden and A. Weinstein, 2001, Comments on the history, theory, and applications of symplectic reduction

One of the most interesting problems in multisymplectic geometry is how to extend the well-known Marsden–Weinstein reduction scheme for symplectic manifolds to the case of multisymplectic structures.

— M. de León, 2018, Review of "Remarks on multisymplectic reduction" by Echeverría-Enríquez, Muñoz-Lecanda, and Román-Roy

 $[\]mathbf{1}_{*}$ and $\xi \mapsto f_{\xi}$ is a homomorphism of Lie algebras

Restrict and quotient conjugate degrees of freedom.

1. Apply the Action Descent Lemma to $G_{\lambda} \curvearrowright \mu^{-1}(\lambda)$ and $i^*\omega$.

2. Use Linear Symplectic Reduction to conclude that ω_{λ} is nondegenerate.

Question: When is $\mu + \phi$ a moment map?

i.e. ϕ is a moment map for the trivial action $G \curvearrowright M$.

The space of moment maps is an affine space modeled on $\{\phi \in \Omega^{k-1}(M, \mathfrak{g}^*) \mid d\phi = 0, \ G_{\phi} = G\}.$

 $\bullet \ \phi \in \Omega^*(M, \mathfrak{g}^*)$ $\bullet \ \xi \in \mathfrak{g}$

$$\begin{aligned} \forall \zeta \in \mathfrak{g} : \quad \mathscr{L}_{\xi} \phi_{\zeta} = \phi_{[\xi,\zeta]} & \iff \forall \zeta \in \mathfrak{g} : \qquad \mathbf{0} = \mathscr{L}_{\xi} \phi_{\zeta} - \phi_{[\xi,\zeta]} \\ & = \mathscr{L}_{\xi} \phi_{\zeta} + \langle \mathrm{ad}_{\xi}^{*} \phi, \zeta \rangle \\ & = \langle \mathscr{L}_{\xi} \phi + \mathrm{ad}_{\xi}^{*} \phi, \zeta \rangle \\ & \iff \qquad \mathbf{0} = (\mathscr{L}_{\xi} + \mathrm{ad}_{\xi}^{*}) \phi \\ & \iff \qquad \xi \in \mathfrak{g}_{\phi} \end{aligned}$$
in terms of the induced action $G \curvearrowright \Omega^{*}(M, \mathfrak{g}^{*})$. Thus,

$$\forall \xi, \zeta \in \mathfrak{g} : \mathscr{L}_{\xi} \phi_{\zeta} = \phi_{[\xi, \zeta]} \quad \Longleftrightarrow \quad G \cdot \phi = \phi$$

Rather than:

- family of moment maps $\{\mu \phi | d\phi = 0, G_{\phi} = G\}$
- ▶ reduction at $\mu \phi = 0$

We instead consider:

- fixed moment map μ
- family of levels $\{\phi \mid d\phi = 0, \ G_{\phi} = G\}$
- reduction at $\mu = \phi$

 ϕ -level set:

$$\mu^{-1}(\phi) := \{\mu = \phi\}$$

1. Apply the Action Descent Lemma to $G_{\phi} \curvearrowright \mu^{-1}(\phi)$ and $i^*\omega$.

2. Use Linear Multisymplectic Reduction to conclude that ω_{ϕ} is nondegenerate.

Two steps:

- 1. $G_{\phi} \curvearrowright M$ preserves $\mu^{-1}(\phi)$,
- 2. $i^*\omega$ is invariant and horizontal.

1. $G_{\phi} \curvearrowright M$ preserves $\mu^{-1}(\phi)$.

•
$$\mu^{-1}(\phi) = \{\mu - \phi = 0\}$$

- 2. $i^*\omega$ is invariant and horizontal.
- **invariant:** Hamiltonian actions are multisymplectic.
- ▶ horizontal: For $\xi \in \mathfrak{g}_{\phi}$,

$$\begin{split} \iota_{\xi} i^* \omega &= i^* \iota_{\xi} \omega, & \text{since } G_{\phi} \text{ preserves } \mu^{-1}(\phi), \\ &= i^* \mathrm{d} \mu_{\xi}, & \text{by the Hamiltonian condition,} \\ &= i^* \mathrm{d} \phi_{\xi}, & \text{since } \mu &= \phi \text{ on } \mu^{-1}(\phi), \\ &= 0, & \text{as } \phi \text{ is closed.} \end{split}$$

- 1. The proof makes no use of the nondegeneracy or homogeneity of $\omega \in \Omega^{k+1}(M).$
- 2. Extends naturally to a reduction scheme for closed forms.

 $egin{aligned} &\omega\in\Omega^*(M) ext{ closed} \ &\phi\in\Omega^*(M,\mathfrak{g}^*) ext{ closed} \ & \displaystylerac{\mu\in\Omega^*(M,\mathfrak{g}^*)}{\mathrm{d}\mu_\xi=\iota_\xi\omega} \ & \mathcal{L}_\xi\mu_\zeta=\mu_{[\xi,\zeta]} \end{aligned}$

Casey Blacker.

Reduction of multisymplectic manifolds. Letters in Mathematical Physics, 111(3):64, jun 2021.

Martin Callies, Yaël Frégier, Christopher L. Rogers, and Marco Zambon. Homotopy moment maps. Adv. Math. (N. Y)., 303:954–1043, nov 2016.

- F. Cantrijn, Alberto Ibort, and M. De León.
 On the geometry of multisymplectic manifolds.
 Journal of the Australian Mathematical Society, 66(3):303–330, jun 1999.
- Tom Lada and Martin Markl. Strongly homotopy lie algebras. Communications in Algebra, 23(6):2147–2161, 1995.

Jerrold Marsden and Alan Weinstein. Reduction of symplectic manifolds with symmetry. *Reports on Mathematical Physics*, 5(1):121–130, feb 1974.

Christopher L. Rogers.

 I_{∞} -algebras from multisymplectic geometry. Letters in Mathematical Physics, 100(1):29–50, apr 2012.

Jędrzej Śniatycki and Alan Weinstein.

Reduction and quantization for singular momentum mappings. *Letters in Mathematical Physics*, 7:155–161, 3 1983.

Pictures - Credits I

- ▶ MW reduction as "restriction to level sets", C. Lessig, arXiv:1206.3302
- all slides from 7 in Appendix are due to C. Blacker, Reduction of multisymplectic manifolds (slides) at Good Morning SFARS, 7 June 2021.