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Def: Symplectic Manifold
(M Tw ) o Smooth mfd.
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with w = d6 given by

9|(q,p) (V) = p(?T*V) :

based on the notion of
"states”.




Symplectic geometry (mechanics flavour) 2

"geometric approach” to mechanics . ..

"algebraic approach” to mechanics . ..

Def: Classical Observables

Unital, associative, commutative alge-
bra C>°(M).

.

Def: Symplectic Manifold

(M Tw ) o Smooth mfd.

non-degenerate, closed,
2-form.

rExample: M = T*Q is symplectic

with w = d6 given by

Ol (V) = P(7v) .

based on the notion of
"states”.




Symplectic geometry (mechanics flavour) 2

"geometric approach” to mechanics . ..

"algebraic approach” to mechanics . ..

Def: Classical Observables

Unital, associative, commutative alge-
bra C>°(M).

Def: Symplectic Manifold

(M Tw ) o Smooth mfd.

non-degenerate, closed,
2-form.

.

rExample: M = T*Q is symplectic
with w = d6 given by

Ol (V) = P(7v) .

Def: Hamiltonian vector fields
vr € X(M) such that:

by,w = —df

v = Ham.v.f. pertaining to f € C*°(M).

based on the notion of
"states”.

Def: Poisson Algebra of Observables
C>°(M) is a Poisson algebra with

{fag} = bygloW = W(Uf,vg) .




Symplectic geometry (mechanics flavour) 2

"geometric approach” to mechanics . ..

"algebraic approach” to mechanics . ..

Def: Classical Observables

Unital, associative, commutative alge-
bra C>°(M).

Def: Symplectic Manifold
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with w = d6 given by

Ol (V) = P(7v) .

Def: Hamiltonian vector fields
vr € X(M) such that:

by,w = —df

v = Ham.v.f. pertaining to f € C*°(M).

based on the notion of
"states”.

Def: Poisson Algebra of Observables
C>°(M) is a Poisson algebra with

{fag} = bygloW = W(Uf,vg) .

based on the notion of
"measurable quantities”.
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Scope of the talk 4

Introduction

Review the basics of

Multisymplectic Geometry multisym. geometry.

o Multisymplectic manifolds

o Observability

o [ -algebra of Observables

o Leibniz-algebra of Observables

Discuss the regular reduction

Momentum maps and regular reduction scheme in multisym. geometry.

o Regular reduction in symplectic geometry
e Regular reduction in multisymplectic geometry

Algebraic singular reduction
e Symplectic singular reduction

o Multisymplectic singular reduction Discuss the singular reduction

scheme in multisym. geometry.
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Multisymplectic Geometry
o Multisymplectic manifolds
o Observability
o [ -algebra of Observables
o Leibniz-algebra of Observables
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Def: n-plectic manifold (Cantrijn, Ibort, De Ledn) [CID99]
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Examples:
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Multisymplectic manifolds

Def: n-plectic manifold (Cantrijn, Ibort, De Leén) [CID99]

(M Kw@ Smooth Mfd.
non-degenerate, closed, (n + 1)-form.

Def: Non-degenerate (n + 1)-form

b. nT*
The w” (flat) bundle map is w:TM — A"T*M
injective. (x,u) — (X, tuws)

Examples:
en=1 = w is a symplectic form

o n=(dim(M)—-1) = wisa volume form

e Let @ a smooth manifold, the multicotangent bundle A" T*Q is naturally
n-plectic.  (cfr, GIMMSY construction for classical field theories)


https://arxiv.org/abs/physics/9801019
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Def: Hamiltonian v.f. Def: Hamiltonian (n-1)—forms
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n—1._ n—1
Def: Multisymplectic v.f. Lham '_{H €Q

X e %ham
s dH = —ixw

Xms = {X € X| Zxw = 0}
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Special classes of smooth objects

Def: Hamiltonian v.f. Def: Hamiltonian (n-1)—forms
Xham = {X € X| txw exact}
n—1 ,__ n—1 X e xham

Def: Multisymplectic v.f. Qham '_{H €Q : dH = —wa}
Xms = {X € X| &xw =0}

Global symmetries Infinitesimal symmetries
Def: Multisym. (Lie group) action Def: Multisym. (Lie algebra) action
Smooth action 0 : G ~ (M, w) s.t. Lie algebra hom. - : g — X(M) s.t.

(Pg)w =w VgeG. Zew =0 VEeg.

Hierarchy of conserved quantities
strictly conserved Zxa =0
a €Q°® globally conserved along X € X & Zxa € B (exact)
locally conserved Zxa € Z (closed)




Observables in n-plectic geometry
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ham
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Hamilton-DeDonder-Weyl

Def: Hamiltonian (n — 1)-forms equation
-
QLM w) :_{a € Q" Y(Mm) ‘ Jv, € X(M) : do = —1,,w }

ham

Thm: Observables L..-algebra Thm: Observables Leibniz algebra
Q) 1(M,w) endowed with Q) 1(M,w) endowed with
{o1,02} = —ty,L0,w [o1,00] = 2,02 .
can be "completed” to a forms a Leibniz algebra.
L., — algebra.
X Skew-symmetric;
Skew-symmetric; X multiplication of observables;
X multiplication of observables; Jacobi equation;
X Jacobi equation; Skew-symmetric up to homotopies.

Jacobi equation up to homotopies.
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Loo-algebra of Observables (higher observables) 8

Let be (M, w) a n-plectic manifold.

(Def: L..-algebra of observables (Rogers) [Rogl2]
Loo(M,w) is given by:
e a cochain-complex (L,{-}1)
0— (1-n Iy th
If U I If |
QM) L Gartk(vy - L QM) L QY (M w)!

e with n (skew-symmetric) multibrackets (2 < k < n+ 1)

{~,...,-}k : (Qn_l(M,w))®k N Qn+1—k(M)

ham
1R Qo —> (7)k+1 l’vo'l . Lvﬂkw
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Lo-algebra is the notion that one obtains from a Lie algebra when one requires
the Jacobi identity to be satisfied only up to a higher coherent chain homotopy.

[Def: L.-algebra (Lada, Markl) [LM95]
Z-Graded vector space L= @ L;

( L ) i€z
s At ken Family of homogenous skew-multilinear maps
(multi-brackets) gy : A¥L — L[k — 2]

satisfying "Higher Jacobi” relations ( Vm > 1 and x; homogeneous elements in L)

0= Z (7),-(/,1)(,)09(0; X) W (,u,- (x(,l, L. ,xai),xol.H, L. 7xam)

i+j=m+1
o €ush(i,m—i)
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Lo-algebra is the notion that one obtains from a Lie algebra when one requires
the Jacobi identity to be satisfied only up to a higher coherent chain homotopy.

[Def: L.-algebra (Lada, Markl) [LM95]
Z-Graded vector space L= @ L;

( L ) i€z
s At ken Family of homogenous skew-multilinear maps
(multi-brackets) gy : A¥L — L[k — 2]

satisfying "Higher Jacobi” relations ( Vm > 1 and x; homogeneous elements in L)

0= Z (7),-(/,1)(,)05((7;@ 1 (,u,- (x(,l,...,xal.),x(,i+17 L. 7xam)

i+j=m+1
o €ush(i,m—i)

\.

(Thm: Rogers [Rog12] \

The higher observable algebra L..(M,w) forms an honest L., algebra.

K Take p1 =d, pug = {... }k, L is a shifted truncation of the de Rham complex. /
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Def: Leibniz algebra of observables
Leib(M,w) is given by:

e the vector space

e with the binary bracket

QLM w)

ham

Lol s (M) — Q0 (M, w)

ham
LRIl N a— 3’%1 o)
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(Def: Leibniz algebra of observables
Leib(M,w) is given by:

e the vector space

e with the binary bracket

[y--oye] : (Q

Qfom(M, w)
n— ®2 n—
han}/(Mvw)) - Qhaml(M7w)

LRIl N a— 3’001 o)

Prop:

i Va,8] = [vaavﬁ]

i. [o, e, 811 = o, all, 8] + [, [o, 8]
iii. Jon, Bl 4 [8,0] = d (to. B+ tu,)
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Momentum maps and regular reduction
e Regular reduction in symplectic geometry
o Regular reduction in multisymplectic geometry
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Def: Equivariant moment map Def: Comoment map
Smooth map Linear map
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such that: such that:
id(p, &) = —tew ,Veeg idp(§) = —ew W VEeg
i. polg=Ad;opn  ,VgeG i Al nl) = {A(€), a(n)} . V€, m € g

Upshot: 1 as a lift

Upshot: Duality C*(M,w)
PR
u(x) - € 0], 2
"duality wrt. the currying opera- g %’ X(m)
tion”

"it is a lift (in the Lie category) of the infinitesimal
action by the assigment of hamiltonian v.fields.”
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Symplectic reduction:
Procedure associating to any (suitably regular) pair of symplectic manifold and
Hamiltonian action another symplectic manifold of smaller dimension.

/Thm: Marsden-Weinstein reduction [MW74] \

Given: (M, w) symplectic
G ~ M symplectic with equivariant momap. p: M — g*

Assume: ¢ € g* regular value of p (= p~Y(#) = M smooth embedding)
Gy ~ u=1(¢) free and proper (= ;' (¢)/G, smooth manifold)
Then: 3! symplectic structure wy in My := u=(4)/ Gy
K st. Twe = jfw with j: p71(¢) = M and 7w : p=1(¢) — M, /
/jﬂ In mechanics:
R { 4 it embodies the process of restricting the dynamics of
K L J . the system to the level sets of the conserved
e quantities pertaining to the symmetry group.

( e.g. restricting to studying a point-like particle in a

TR _ Lo _ _
1 \/ central potential by studying it in radial coordinates)
- T°Q
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such that: such that:
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Let (M, w) be n-plectic. Consider an action G ~ M with moment map .

Def: Regular value of
Closed differential form ¢ € Q"1(M, g*), such that

P o) = {x € M| u(x) = ¢(x)}
is a smoothly embedded into M.

/Thm: Multisymplectic regular reduction [Bla21] \

Given: (M, w) n-plectic
G ~ M multisymplectic with equivariant momap. p € Q"~(M, g*

Assume: ¢ € Q" 1(M, g*) regular value of p (u~1(¢) = M embedding)
Gy ~ () free and proper (1=1(¢)/G, smooth manifold)
Then: 3! pre-n-plectic structure wg in My, := p~1(¢)/ Gy

\ st Twg = jw with j : p=1(¢) < M and 7 : p=1(¢) - M, /
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Algebraic singular reduction
e Symplectic singular reduction
e Multisymplectic singular reduction
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The gist of singular reduction

- when p is singular (i.e. ©7(0) is not a mfd.), the (geometrically) reduced
space may not exist.

- a singular reduction scheme is a procedure to construct a "reduced” algebra
of observable out of the given data

- such that it corresponds to the algebra of observable of the reduced manifold
in the regular case.
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The gist of singular reduction

- when p is singular (i.e. ©7(0) is not a mfd.), the (geometrically) reduced
space may not exist.

- a singular reduction scheme is a procedure to construct a "reduced” algebra
of observable out of the given data

- such that it corresponds to the algebra of observable of the reduced manifold
in the regular case.

[Thm: Sniatycki-Weinstein reduction [SW83] \
Given: (M, w) symplectic
G ~ M symplectic with equivariant momap. p: M — g*

Then: [Cm(M)/l“]G admits a Poisson algebra structure
it agrees with the M—W reduction in the regular case.

\ 1,, = associative ideal generated by fi(g)
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Data:
> A constraint set N (possibly singular),

» An infinitesimal action preserving N.
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Data:
> A constraint set N (possibly singular),

» An infinitesimal action preserving N.

Goal:
» Obtain a "reduced” observables algebra out of the data.

Strategy:

1.

o o

Define smooth fields/forms tangent to N,

2. define smooth fields/forms vanishing along N,
3.
4. define reducible forms requiring their conservation w.r.t. the infinitesimal

define reducible fields requiring the preservation of the vanishing objects,

action,

define reducible and vanishing observables,

. quotient
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Def:
Iy = ideal of smooth functions vanishing over N.
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AT
SEEEEEESELsy)

7
s
!
N

Def: v.f tangent to N
Xn(M) = {v € X(M) ‘ Z,(In) € IN}

Def: v.f vanishing on N

Ix(N) := {v € x(M) ‘ Z,(C=(M)) C /N}

S AAAANT
jjaaa)))ﬂ 77
NAAA B I I AT AR
PR b AN
AN AP x
NN AP
A H
2

4

4
¥
¥
A
i+

P02
/)
PN
334
s
FAAA
PR
L

SN

T,
i

e,

bl

S

7y

AR
CEEN

gy,
Frrry,
by
bhrrwy
13
x
x

7
27
A7
r
1

3y

£
3
3
>
3
TrFIAIuY

yoxrx
yoxn A7
B
v

x
4k
L
L
IS

3
>
>
>
>

T
o
eaeS

i
IR DR
«
<
<
<
<
<
>
v
Y
Y
L&

L

KRR K4 &

RERE S ¢4

KKK g ¢

KX Ff ¢

FYt

Xy

v

EESSSEA
AL
DA AR 2 2
AR,
A .

AL

5

AAAA S >

K R

PDDPRERN NN
FAT I rRRRR R RN
N APPPPRPRERR NN



Smooth objects on a singular set

17

Consider N closed subset of M.

Def:

Iy = ideal of smooth functions vanishing over N.

Vector field tangent to N
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Lem: If N is smoothly embedded, X(N) = Xy(M)/Ix.




Smooth objects on a singular set 17

Consider N closed subset of M.

Def:
Iy = ideal of smooth functions vanishing over N.

\.

Vector field tangent to N

SIS oA
- S
Def: v.f ta ngen tto N \sgy\nw\w»ﬂaaaf‘;;;;/‘ 7
)

En(M) = {v e x(M) | L)  In} 2%

v
v
v
-
+
+
v
¥
¥
¥
N
N
N
N
N\
SN

S
S
5

Chkrwry
Chrciy

R R
i
e

<

Def: v.f vanishing on N
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Ix(N) := {v € x(M) ‘ Z,(C=(M)) C /N}

Lem: If N is smoothly embedded, X(N) = Xy(M)/Ix.

Def: Differential form vanishing on N

._ K k >0,
o) = {a € (M ’ aur,...,uk) € Iy Yu; € Xy(M)




Reducible smooth objects  (w.r.t. N and g ~ M)

18

Consider g ~ M by vector fields tangent to N

Denote by : g C Xy(M) the fundamental distribution,
Xg the C°°-module generated by g.

Def: Reducible v.fields

xuy = {ve x| 2

|
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Reducible smooth objects  (w.r.t. N and g ~ M)

18

Consider g ~ M by vector fields tangent to N

Denote by : g C Xy(M) the fundamental distribution,
Xg the C°°-module generated by g.

(Def: Reducible v.fields

xuy = {vex | 2O

[Def: Reducible forms
fi”éa S IQ(N)

Q(M)[N] = {Oé S Q(M) LEOZ c IQ(N) V§ €g }

[Def: Reducible Hamiltonian forms

e n— « is a reducible form
(@M = { o € QUMY

v IS a reducible v.field

|




Singular reduction 19
Def/Prop: Reducible L.,-observables
Is the L..-subalgebra of L..(M,w) given by

QK (M) (reducible forms) ifn—1<k<0

Loo(M, @)y := { (UM )w  (reducible hamiltonians)
0

if k=0
if k>0
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Singular reduction 19
Def/Prop: Reducible L.,-observables
Is the L..-subalgebra of L..(M,w) given by
QK (M) (reducible forms) ifn—1<k<0
Loo(M,w)fyy = { (UM  (reducible hamiltonians) — if k =0
0 if k>0

Def/Prop: Vanishing L..-observables
Is the Loo-ideal of Loo(M,w)n) given by

alv, ...,
ILOQ(M,w) = {O[ S Loo(M;W)[N] Ui 16 xg + Ix

vk) Ely Vv € Xy ifaeQF

if e Q1

Def: Reduced L..-algebra of observables
K
Loo (M, w)iy,

Is the L,-quotient :
I (M)

\.
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» Consider N = 1~1(0) to be regular (smooth embedding)

Multisymplectic
regular
reduction

Multisymplectic
singular
reduction
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» Consider N = 1~1(0) to be regular (smooth embedding)

Multisymplectic Multisymplectic
regular = singular
reduction reduction

» Consider w to be 1-plectic

Multisymplectic Sniaticky—Weinstein
singular = singular
reduction reduction

(but 3 a canonical Poisson algebra morphism)

Thank you for your attention!
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Consider a smooth manifold Y/,

Multicotangent bundle \ = \" T*Y

is naturally n-plectic

Def: Tautological n-form
6 € Q"(A) such that:

[Lul/\“./\u,,oL7 = UTm)emr A A(TT)wcun

_ *
- Lul/\.../\u,,ﬂ- 77

vn e N, Vu; € Ty)A

Def: Tautological (multisymplectic) (n+1)-form

w = db

[ Claim: w is not degenerate. ]

point-particles mechanics

classical fields mechanics

symplectic

multisymplectic

Observables (Poisson) algebra

Observables L — oo algebra

keywords

Co-moment map

$1818]8

Homotopy co-momentum map




Unwrapping the higher Jacobi equations 2

Slogan: Jacobi identity satisfied up to an higher coherent homotopy

Higher Jacobi implies:

» Underlying chain-complex (L, p1)
with differential d = py;

» i» = [-,-] is a chain map L®2 — [;

(L%3) =2 (L%®)kq

» s =j(-,,-) is a chain homotopy '
12 0 1z = 0 @ Luz e
i.e. between the usual Jacobiator (L)1 - (L) —5 (L%)ka
[[;-], -] © Punsh and the 0 map lm lﬂa lm

H1

Licy1 £ Ly Ly—1
» higher analogues...

e.g. [, is a second order

chain-homotopy between the two

chain homotopies [j(*,,-]), ] © Punsh

and J([7 ']7 y ) o ’Dunsh

Notation: Pynsh = sum on all the possibile unshuffled permutation.
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Consider a Lie algebra action v : g — X(M) preserving the n-plectic form w,

— symplectic case —

— n-plectic case —

Def: Comoment map pertaining to v
Lie algebra morphism

fig— C®(M)
such that

df(x)=—-,w Vxeg.

\.

Def: Homotopy comoment map (+cvm)
L oo-morphism

(fk) ‘g — LOO(M,CU)
such that

d fi(x) = —t,w Vxeg.

— Conserved quantities —

Prop: Noether Theorem

Fixed H € Cg;,(M) (g-invariant) ,

Zuf(x)=0 Vx €g

Prop: RWZ16 Theorem

Fixed H € Q-1(M) (g-invariant),

Ham

Zofi(p) € B (M) Vp € Zi(g)
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Consider a Lie algebra action v : g — X(M) preserving the n-plectic form w.
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Homotopy comomentum maps 4

Consider a Lie algebra action v : g — X(M) preserving the n-plectic form w.

[ Def: Homotopy comomentum map (Callies, Fregier, Rogers, Zambon)

Loo(M, w) HCMM is an Loo-morphism () : g — Loo(M,w)

o o lifting the infinitesimal action v :g— X(M)
f) .7
( 2/ ffHam(M,w)
/// ! (acting via Hamiltonian vector fields!)
g ——— %(M) d fi(x) = —,w Vx € g.

[Lemma: HCMM unfolded (CFRZ16)

HCMM is a sequence of (graded-skew) multilinear maps:

(F)={fi: Mg L""FCQ (M) |0<k<n+1}
fulfilling:

> f, =0, f,,+1 =0 Chevalley-Eilenberg boundary op.
k(k+1)

> dfi(p) = fk—1( O p) = (—1) "2 t(vp)w  Vpen (g), Vk=1,...n+1
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Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon)

HCMM is an Lo-morphism  (f) : g = Loo(M,w) I;OO(MaW)
lifting the infinitesimal action v : g — X(M) (fr),/” lv
g (M)

(Lemma: HCMM unfolded [CFRZ16]
HCMM is a sequence of (graded-skew) multilinear maps:
()={fi: Ng—> L1 CQ ¥ |0<k<n+1}

A B ANg— - —=ANagBANTg— - — ANlg—2= Ag=R

S

ﬁ Los L Lia Lo=Qp E
OﬁQOT)A“HQn—k?Qn—k+1 ”‘*’QFIT’Q"
fulfilling:

| 4 fb:O, fn+1:0

Practically a HCMM is given by several multilinear maps

s fi=Ng—Liy
'<_E satisfying:

1. dfi(§) = —1,w

2. 5.




Homotopy co-moment maps (Callies, Fregier, Rogers, Zambon)

HCMM is an Lo-morphism  (f) : g = Loo(M,w) I;OO(MaW)
lifting the infinitesimal action v : g — X(M) (fr),/” lv
g (M)

(Lemma: HCMM unfolded [CFRZ16]
HCMM is a sequence of (graded-skew) multilinear maps:
()={fi: Ng—> L1 CQ ¥ |0<k<n+1}

A B ANg— - —=ANagBANTg— - — ANlg—2= Ag=R

i f fl %
[\ L L\ b
L1

Li_s Lo=Qp 1 0
N\ | [
Ly Qnk 7} Qn—k+1 ey -1 v Qn

fulfilling:
| 4 fo =0, fn+1 =0
> dfi(p) = fi_1(0p) — (—1)W2H) (Vp)w  VpeAt(g), Vk=1,..n+1

Practically a HCMM is given by several multilinear maps

s fi=Ng—Liy
'<_E satisfying:

1. dfi(§) = —1,w

2. 5.




EXTRA SLIDES on regular

reduction

All the credit for the next slides is to C. Blacker

Based on:
B., Reduction of multisymplectic manifolds, Lett. Math. Phys., 2021

See also:
Reduction of multisymplectic manifolds (slides) at Good Morning SFARS, 7 June
2021.


https://public.eimi.ru/~cblacker/Blacker.reduction%20of%20multisymplectic%20manifolds.pdf

The Problem of Multisymplectic Reduction

Reduction is a procedure that takes a space and returns a “smaller” space

Reduction theory is by no means completed. ... Only a few instances and
examples of multisymplectic reduction are really well understood. . . so one
can expect to see more activity in this area as well.

— J. Marsden and A. Weinstein, 2001,

One of the most interesting problems in multisymplectic geometry is how
to extend the well-known Marsden—Weinstein reduction scheme for sym-
plectic manifolds to the case of multisymplectic structures.

— M. de Ledn, 2018,



The gist of: Symplectic Hamiltonian Actions

To specify a symplectic action G —~ M ...
— M
R > D
we could describe the induced map &+ ¢ ...

g e = R I
— Y —

S

or an assignment of Hamiltonian functions £ > f;.

S

the action is called Hamiltonian.

—

¢
S

When this is possible!,

Land € f¢ is a homomorphism of Lie algebras



Symplectic Reduction — Idea

w= dxg Ady; + dxo Ady, +
——

to be removed

<o 4 dx, Ady,
X2,...,Xp

restrict

X1

Y2,-+-5Yn

Restrict and quotient conjugate degrees of freedom.



Symplectic Reduction — Proof

10

‘ Linear Symplectic Reduction

existence

uniqueness nondegeneracy
closedness

’ Symplectic Reduction ‘

1. Apply the Action Descent Lemma to Gy ~ p~1()\) and i*w.
w o pHN)

W

2. Use Linear Symplectic Reduction to conclude that w) is nondegenerate.



The Action Descent Lemma

11

(Lemma:
If
» G ~ M free and proper,
» o € Q*(M) invariant and horizontal (vqc = 0),

(%
e v A v R o S o S A o
I o S o N N o S o S o 4
A A e e e &
M
Qred

>+ > > > > > MG
then

> Jlayeg € Q*(M/G) such that o = T tyeq,
» dao =0 — daygeq = 0.




The Space of Moment Maps 12

» (M,w, G, 1) Hamiltonian G-space
> ¢ Q (M, g")

Question: When is 4+ ¢ a moment map?

» d¢ — 0, since
d(p + (25)5 = 1w <= do¢¢ =0.

> Ledc = Qe )y as

Ze(p+¢) =1+ e, <= Zed = Ppq-

i.e. ¢ is a moment map for the trivial action G ~ M.

The space of moment maps is an affine space modeled on {¢ € QK~1(M, g*) | d¢ =0, G4 = G}.



The Leibniz Condition and the Induced Action on Forms

> ¢ Q*(M,g*)
> {cg
Ve g Zepe = d’[&,(] <~ V(eg: 0=t — d)[&q
= Zed¢ + (adg 9, ()
= (Zed + ad 9, ()

= 0= (yg =+ adz) ¢

in terms of the induced action G ~ Q*(M, g*). Thus,

VECEea: Zede =P G- ¢9=9



Level Sets of the Moment Map

14

Rather than:
» family of moment maps {x —¢|d¢p =0, Gy = G}
» reductionat p— ¢ =0

We instead consider:
» fixed moment map u

> family of levels {¢|d¢ =0, G=-—61}

» reduction at u = ¢

¢-level set:

W) = {1 = ¢}



Multisymplectic Reduction — Proof Idea 15

Action Descent

existence

uniqueness nondegeneracy

closedness

‘ Multisymplectic Reduction ‘

1. Apply the Action Descent Lemma to G, ~ pu~1(¢) and i*w.
*w o p(9)

We



Multisymplectic Reduction — Proof Outline

16

Two steps:
1. G, ~ M preserves u=1(o),

2. i*w is invariant and horizontal.



Multisymplectic Reduction — Proof (Step 1)

17

1. G, ~ M preserves i~ 1(¢).

> uHp) ={pn—¢=0}

> V&, CE gy
Ze(p— o) = (1 — D)e.qs by the Leibniz condition,
=0 on u~H(9).



Multisymplectic Reduction — Proof (Step 2) 18

2. i*w is invariant and horizontal.

» invariant: Hamiltonian actions are multisymplectic.

> horizontal: For £ € g4,
tel*w = i"Lew,
= i"dpue,

= i"d¢y,
= 0’

since G, preserves 1~ (),
by the Hamiltonian condition,

since jt = ¢ on (),
as ¢ is closed.



Extension: Reduction of Closed Forms 19

1. The proof makes no use of the nondegeneracy or homogeneity of
w € QFY(M).

2. Extends naturally to a reduction scheme for closed forms.

w € Q*(M) closed
¢ € Q*(M, g*) closed
pe (M, g")
dpe = tew
Zelie = pe.q)
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» MW reduction as "restriction to level sets”, C. Lessig, arXiv:1206.3302

» all slides from 7 in Appendix are due to C. Blacker, Reduction of
multisymplectic manifolds (slides) at Good Morning SFARS, 7 June 2021.


https://arxiv.org/abs/1206.3302
https://public.eimi.ru/~cblacker/Blacker.reduction%20of%20multisymplectic%20manifolds.pdf
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