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A class of low-dimensional field theories, termed super-o-models and
used to model simple geometric dynamics of extended distributions of
7,/ 27-graded charge in homogeneous spaces of Lie supergroups, shall
be reviewed, with emphasis on the supersymmetries present, both
global and local. A (super)geometrisation scheme for the classes in
the relevant supersymmetry-invariant (Cartan—Eilenberg) cohomology
of the supersymmetry group associated with the topological charge
shall be presented and basic supersymmetry-invariance and
-equivariance properties of the ensuing super-gerbes shall be
discussed. The general discussion shall be illustrated on a number of
explicit examples, whereby, in particular, asymptotic Inonii-Wigner
relations between certain physically relevant curved and flat higher
supergeometric structures shall be postulated as an integral guiding
principle of the (super)geometrisation scheme.




Goal:

Extending the gerbe-theoretic approach to the bosonic
two-dimensional o-model to (super-)c-models with homogeneous
spaces of Lie supergroups as target (super)spaces, in a manner
consistent with rigid and local supersymmetry.

Discussion based upon
1. arXiv:1706.05682
arXiv:1808.04470
arXiv:1810.00856
arXiv:1905.05235
arXiv:2002.10012

arXiv:2010.xxxxx (in writing)
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The skeleton of the talk:

I Learning from life without spin, or the higher geometry
of the 2d bosonic o-model

1. The predecessor LFT: The 2d bosonic non-linear o-model.

2. Gerbification for the sake of (pre-)QM consistency.

II Putting a spin on it, or a Z/2Z-graded higher geometry
1. Lie supergroups a la Kostant and their homogeneous spaces.
2. The sLFT of interest: The Green—Schwarz super-c-model.
3. A supergeometrisation scheme — the super-gerbes.
4. The dual sSTFT and its vacuum.
5. Higher supersymmetry, global and local.

6

. Loose ends (Inonii-Wigner contractibility, ‘accidental’
equivariance, ... ).

m Summary & Outlook.




Part I

Learning from life without spin,
or
the higher geometry
of

the 2d bosonic o-model




The predecessor LFT: The 2d bosonic non-linear c-model

Given a closed orientable 2d m_fold 2 (the worldsheet) & a metric
m_fold (M, g) (the target space) with (I;I) € Z3% (M), consider the

theory of mappings x € [X, M] determined by (the PLA for)
the Dirac—Feynman amplitudes

Apr = exp(ih SC(,NG)[-]) DX, M]—U(1)

SN x] =[x /detx*g +q Jx x*dH,

describing minimal embeddings deformed by Lorentz-type forces
sourced by a Maxwell-type 3-form field (I;I)

The triple (M, g, (I;I)) is called the o-model background.

Applications: mainly the critical bosonic string (and (mem)brane)
theory, but also the effective FT of (certain slow) collective




Problem: May need [(ISJ)]dR #+ 0 (e.g., for conformality), and so

== :dB=H
et S o o)

E.g., (M, g) = (G, Kg © (9L ® QL)) = (I;I) = )\/{g o (GL AOL A QL)

and the Cartan 3-form (Ij) generates Hy (G) for G 1-connected

But QM a la Dirac & Feynman requires that we compare amplitudes
for cobordant trajectories!

Conclusion: Need S with critical points (the EL eq"’s)
as for [(I;I)]dR = 0 buts.t. Apr is well-defined V x(X) € Zo(M).

This calls for the use of a Cheeger—Simons differential character
HOlgU) S Hom(Zz(M),U(1)) S.t. HOlg(1) o aM() = exp()li f() (I;I))




Solution: Fix an arbitrary good open cover Oy = {O;j}ics of M &
a tessellation Ay = T LI T4 LI Ty of T subordinate to it for a given
X € [X,M],ie.,st

ElLEMap(AZ,ﬂ) VTEAZ : X(T) < OL.,— )

and pull back, along X, a resolution/trivialisation of (I;I) over Oy,
i.e., use (123) = (B,',A,'j,g,'jk) E QZ(O,') x Q' (O,'j) X U(1 )ol.jk S.t.

(I;I)fof =dB;, (Bj = Bi)lo, = dAj, (A — Aik + Aj) o, = idlog gji
to write (for X, = x[.)

SMpx] = 3 /x B,+ > /x;ALpLe —i > cev 108 Gipreu, (X(V)))]
p

p ecop veode

with Apr well-defined iff dgjiy = 1, so that Db (3) [o;50)
‘_’
of

charge)

.. and Per(I;I) C 27Z (Dirac’s quantlsatlon
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Upshot: As in the Clutching Theorem, the DB 2-cocycle (b)
R 2

geometrises as a 1-gerbe G ) [Murray & Stevenson ’94-"99]

pL o pripl @ pry sl = pri sl C L, (J%L T
(2)
T
Pry2 .
el e e i
YBIM Pros Y2l YM, B
i = o SRR ——— pr, (2)
196 5
TYM
r5 — pri)B = curv(A oy H = dB M, H
(rz ~pri)g (74 M e )

with the (groupoid) product y; on fibres of L associative.

The DF amplitude acquires a rigorous interpretation

AGEMPIX] = Holgen (X()) = u(Ix*g])

: 32.
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The geometrisation prescription generalises and yields a recursive j
definition of p-gerbes G(P):

PG g(P=2) 5 G- 1) gIéP*” G- curv (gP—1) = 5%131) I(g) ~

(p+1)




The Origin of Species:




Upshot & spin-off

e geometric (pre)quantisation via cohomological transgression
[Gawedzki *87, rrS "11]

7o : HPT' (M, D(p+1)*) — H'(CoM, D(1)°),  CoM = [Cp, M]

yields a (pre)quantum bundle Hy = o1y (FLs Xcx C), where

o 0 =
(B TT-coMEge) QI =L, Az,

Urecpm &

Po =T*CoM, Q; = 001+com + 7T-T-*CPM fcp eV;“pIiIZ) = curv(éga)
for Lge) € 1p([G (P)]), and hence — classification of o-models;

e geometrisation and classification of topological defects/dualities
Fuchs et al. °07, Runkel & rrS 08, S *11-"12], igarticular. %




nal

... (pre)quantisable config"* symmetries — induced from actions

e e g Ag(m)

of (Lie) groups G, C Isom(M, g) that are generalised( Hz)—hamiltonian,
p+

VX € Lie(Gy) 38x = (T(e,)Ax: kix) € T(EMPM) @ dyfix =0,
+

so that the ; H )—twisted Vinogradov bracket
p+2

[huHimwmmxwgmM%%WWﬂm

p+2)

[, 01), 02 02)l] 1

= ([V1,V2], z(,ﬁvﬂ)g — gyzlh — %d(lwvg — Zv2U1) + a1, H )

(p+2)

closes on their set [(EMPIM) i _pam © F(ETPIM).

(p+2)
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We distinguish

— global/rigid symmetries
(set inequivalent field configurations in Apg-correspondence) ’

lift to families of p-gerbe 1-isomorphisms
DG S (D geG,

that transgress to automorphisms of #,, e.g., for p =1,

o

QE-: pr’{sx[gz]*L ®pr3,E — priE@prz, L CX s (%E
TE
2] Pry 3
Y s NSYM 3y YM = YoM
Lo
TYMOPIy

m (g, 1) compP® curv(aé%,:-) = X:B—B" M

9(2)




— local/gauge config"® symmetries

(relate equivalent descriptions of a field configuration)
Gauging of G, models descent to the orbispace M — M/G,,

Th™ (Principle of Descent) [Gawedzki, Waldorf & rrS *10]
For A : G, x M — M free and proper,
BrhP) (M/G,) = B&ehP)(M)(CGrr=0)

where the RHS is the (weak (p + 1)-)category of p-gerbes over M
with a G,-equivariant structure relative to a vanishing

ox € QPT1(G, x M) : doy = (X" - prz)(plilz).

The structure is an extension of the 0-cell G(P) to a (p + 2)-tuple
(GW@ @) =1 . TO) over N*(Gyx\M) based on a
1-isomorphism

TP . \*gP) =, b 5G(P) ®I£()l;>). —




The many faces of a G,-equivariant structure

e an extension of the (p + 1)-cocycle of HPT1 (M, D(p + 1)*) for
Gp to a (p + 1)-cocycle in an extension of the Cech-de Rham
bicomplex in the direction of G,-cohomology;

o [rrS ’12] geometric data for the topological gauge-symmetry
defect of the o-model over €, (based on [Runkel & rrS *09]).

Generically, gy, as determined by the £, for Lie(G,) = g, = @2:1 (ta),
is non-vanishing, and so we need. . .

Universal Gauge Principle
[Gawedzki & Reis *02-°03, Gawedzki, Waldorf & rrS *07-"13, xS "11-"13]

Apr admits gauging of G, via ‘minimal coupling’ of A € Q'(Pg,) ® g, if
1. [Gawedzki, Waldorf & rrS *07-13, 1S °11-°13, *19] SGA=0
= (D2, C MBS 1], ) = s

2. JGawedzki, Waldorf & rrS *07-"13] LGA=0
¥ exists a G,-equivariant structure on ng’T rel. to o).
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Applications:
e geometrisation and cohomological classification of obstructions
against gauging and of inequivalent gaugings, and hence

e natural mapping of the moduli space of o-models, with beautiful
connections to TFT (explicit constructions for ‘all’ 2d RCFTs)

e reconstruction of T-duality outside the topological context. . .




The Higher Dogmatics: The Three+ G-Sluagh-ghairms |
4 It matters iff it lifts to G.
4 4 Global symmetry is invariance of G.

44 4 Local config"® symmetry is equivariance of G.

4444 ... (Duality/top* defect is a G-bimodule etc.) ...




Part I1

Putting a spin on it,
or
a 7./27-~graded higher geometry




The goal

The higher sgeometry of a super(geometric/symmetric)-c-model of
(generalised-minimal) ‘embeddings’

[Qp, M] =7

of a (p+ 1)-dimensional riemannian worldvolume Q, ‘in” a sm_fold
M endowed with an action

e M M (7))

of a supersymmetry Lie sgroup G.

Physical motivation

Understanding the (s)geometric structure (sensu largissimo) of

superstring theory-inspired & -related FTs, with view to elucidation

of thg deep nature of the tremendously robust yet notoriously elusive
. AdS/CFT correspondence.




Sm_folds M = (JM|, Oxq) with body |[M]| € ObTopMan and
structure sheaf O : J(JM])°® — sAlgscomm,

Om ~1oc (R™, C=(,R) ® A°R") =R™",

form a category sMan with morphisms

o= (lel, ")+ (IMi],0Mm,) — (IM2],Or,),

|| € Homyopman(| M|, [Mz2]), @* 1 Opy = [0[xOm

It admits products My x Mo = (|My]| x [Ma|, Orr, @O p,).
By the Yoneda Lemma, Yon. : sMan — Presh(sMan), and so
M ~ Yonp(—) = Homgman(—, M) : sMan®® — Set,
with Yon(S) = Homgman(S, M) the set of S-points in M, and

@ ~ Yon,(—) = Homgman(—, @) = @o

with  Yon,(S) : Yonu, (S) — Yonir,(S) .
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With the help of local charts (|| € 7 (|M,]), | € {1,2})

~

1 (Ul Opy i) = U — (W, C(,R) @ A°R™) = W,

with the corresponding local coordinates (X7, 0?)(a’a)emxm, the
above yields a local description of morphisms

P12 =kpopory € Homeman(Wi, Wa) = Yony, (W)
determined (as are all Wy-points in W» in virtue of the LCTh™) by

al o? ok b.
X201, %) ~  @ia(x5%) =i, 60T o 6y ¢221a§,,,a1k (")

5200, 0) ~  ha(07) = Sl 67 6T o ()

) a1a1... 1

ao Oz2
where ¢ =0=9¢
a]a% : 2’“ 010(1 nz?’

& Homgman(£2p, M) ruled out as a candidate for-{Q2,, M].



Instead [Freed *95],
[€2p, M] = Homgpan(£2p, M) := Homgman(€2p X —, M)
€ ObPresh(sMan) ,
to be evaluated on the odd hyperplanes
Rl ({o},R[n1,n2, Al ,nN]) s N e N*,
whereupon ¢ € [Qp, M](ROV) decompose (locally) as
Pl o o I e S a1 T 77/2[%] ]
R 1 e €, T Ao

& the (&£ ) become the (s)fields of the super-o-model.

I1 12 Ik I1 12 Ik




The next fundamental issue is supersymmetry, for which we need
Lie sgroups, i.e., group objects in sMan,

(G=(|6],06), : GxG— G,Inv : GO,e : RI— G),
with body |G| € Ob LieGrp. On these, we have LI vector fields

@ o Y
LeTl(TG) : idog®L (L%
OcR®0g =

and the dual LI 1-forms. The RI objects are defined analogously.
The supersymmetry groups are to act on the (s)fields as per

A:GxM— M, andsoalso

|Al. ¢ |G| — Autgman(M) : g+— Ao (g xida) = Mg,
where g : R%% — G are the topological points.
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In sFT’s, Lie sgroups usually appear in disguise. . .
Th™[Kostant *77] sLieGrp = sHCp, j
where SHCp is the category of super-Harish-Chandra pairs G = (|G|, g, p)

|G| € ObLieGrp, g=g© @ gV c ObsLieAlg s.t. g© = Lie(|G]|)

p |G| — Endsriealg(g) st p()lg0 = TeAd.
with morphism (®,¢) : (|G1[, 81, 1) — (|Gzl, g2, p2)
® € Homyjearp (|G1,[Gz[), ¢ € Homgliealg (91,92) s.t. ¢lg0 = Te®
(p20®())) o =dopi()

Remark: = uses the Hopf-superalgebra structure on U(g) and yields

O(\G[,g,p) e HomU(g(O))7M0d<U(g)7 (o (_a R)) o o (_7 R) b2y /\. 9(1_) *
I
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Examples of Lie sgroups:

e sMink(d,1|Dgy 1) as an abstract Lie sgroup is
sMink(d, 1|Dg,1) = (RT!, C*(, R) ® /\ *RP"), Dy4 =dimSy 1,

with Sg 1 a distinguished Majorana-spinor Cliff (R%')-module.
It admits global coords {Xa,90‘}(‘376”)6070'”’Dch1 and

per (x3,0%) — (x*e1+18x% — 560 (CT?%) ,6°,6°91+186%),

Inv* : (x2,6%) — (—x2,—0%),

or, equivalently, in the S-point picture,
B ol O 16:T20,,07 ¥ 63), (x‘a,é?a)_1 = (—x2,—0%)
As a sHCp, d B

sMink(d, 1| Dy,1) = (Mink(d, 1), smint(d, 1| Dg1) = P (P @@
a=0

{Qu, Qs} = (CT?),, Pa, I Eauilel 0= (AR




e SU(2,2|4) as a sHCp with the body Lie group
|SU(2,2|4)| = Spin(4,2) x Spin(6), J

the Lie salgebra
su(2,24) = ( EB (Pa) ® EB (Par)) D <0M/:>)

(a,a/,l)e1,4xﬁx{112}

9
@( @ (Jab=—dpa) ® B (Jop = _Jb’a’>>

a,b=0 a’ ,b’=5

y P %b
{Qnar1» Qgpra} =1(=2(CT2 @ 1) 015875 P2+ (CT ® 02) yarippry ) »

+1  ifa,be0,4
[Quorr Pal = =1 (F3 ® 02)” bellis Qs 5 > [Pa Pl=egpdp> eg5=9q —1 ifabeb59 ,
0 otherwise
V35> Jegl = ag Yoo — ez Jba + Moe Yag — Mea Yae
[Quaris deg] = — 3 e Bz @1)P779 @ [P5. Jss] = ns5 Ps — mas Py
aallYzh! = T2 %2\ b aall “BB'S> @ “pe! = "ap ¢~ "M h-

and the standard spinor realisation of the former
on the GraBmann odd component of the latter.




Sgeometric data: A Nambu-Goto sbackground
M,g, H )= s5P)
(Mg b 2)) NG
of a super-c-model consists of

e asmanifold M (the starget) with an action A of a Lie sgroup
G (the supersymmetry group), inducing fundamental vector
fields

K :9g=NTG)" —TM:L— —(6"ol®idp,,) o \*;

e a G-invariant smetric g € [(7*M @™ T*M),

Y(g.X)€lGlxg ( IMZg =g AN ZPrEg= 0) :

e a G-invariant de Rham (p + 2)-scocycle ( HZ) € Z(ﬁ;r Z(M),
P+

Ygxeloixg © (Mg H, = H = A Ziex H =0);

) (P+2) (p+2)




THE sgeometry: There is a large class of 5‘31(\% with G-orbits as stargets. . .

Th™[Kostant *77, Koszul ’82, Fioresi et al. *07]:
Let G € ObsLieGrp and H its Lie sub-sgroup with sLieH = bh.
3 an ess. unique sm_fold structure on the homogeneous space

G/ H— (|G]/|H\,(’)C,/H) s.t.

Og/u() = { f € Oc(mgl () | Yinmemxn : lplh(f) = f A Ly(f) =0}

GxG x i ~ |G|
idGXﬂo/Hl LFG/H iﬂlc/m_m/m g
& e . g/EeE. = |qE

Actually, (G, 7g/u, H) is a principal H-(s)bundle with local sections

oy U= (|u|vOG/Hr|L{|) — G with body

loul = U| — |Gl, 7T|G\/|H|0|<7u| idyy -
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Dynamics with a nonlinear realisation of supersymmetry calls for
a reductive homogeneous space:

G/H for (G,H C |G|) with sLie(G) = g and Lie(H) = b s.t.

do adi ds 2
g=tah, t=tVeotd'=Cp (P)eo D (Qu), H=EP ()
a=0 o—il =1 B

is reductive, i.e., s.t. [h,t] C t.

For these, the LI g-valued Maurer—Cartan 1-sform

O =0 b, +0F @ Jy, =t

yields (a principal H-connection © = 0f ® J,. and) H-stensors
ol 761 = p(-)"5, OF -
that give rise to H-basic (cov.) stensors T = 7y, .., 01 ® 012 @ -+ - ® 01"

oh) = p(h)’:’:}, EA e

for R R e 2
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THE stensorial data: Model the starget G/H (patchwise) by

) EAle |_| oilhy), oj : Ui = (Ul Ogulpy) — G
i€y

for an open cover {|Uj|}ic» of |G|/H trivialising for the body
principal H-bundle (|G|, 7G|/, H), and subsequently pull back
an H-basic LI ‘smetric’

g = g(an) R @ 67, g=n&mg
and an H-basic LI de Rham (p + 2)-scocycle

e 1G] M2 Hp+2 Sl
A Xﬂ1#2~~~ﬂp+2 HL N 9L AT = HL ) e = WG/H H
(p+2) (o +2) (p+2)

to G/H along the oj, resp. use their precursors (g,( H).
=

+2)




Examples of reductive homogeneous spaces of Lie sgroups:

e sMink(d,1|Dy1) =sISO(d,1|Dgy1)/Spin(d, 1) for

SISO(d,1 | Dd,1) = sMink(d, 1 } Dd,1) NLdJ@SdJ Spin(d, 1),

with
g S 77ab 95 ® 91137
02 A(CT11)ap b0 (p=0)
-
) 02 A (CT oz a)ap O AT AOZ A ABP (1<p<8

the admissible (d, p, N) filling up the ‘old brane scan’

e s(AdSs x S°) = SU(2,2|4)/(Spin(4, 1) x Spin(5)), with

g =102 Q02 + 611 0F @67,

Jak= gga’l N (6?@ ® 0'3)

B6B8'J a
@) aa’l BB Vi ﬁfL




THE super-c-model

Given a closed orientable m_fold €, of dim, = p+ 1, aLie
sgroup G and a closed Lie subgroup H C |G| with (g, h) reductive,
assume given H-basic LI stensors on G:

g = &(ab) 0f ® 91? = Wé/nga X = 7TEk;/H(pIiIZ) € 4R (G)G .

(p+2)

The Green—Schwarz super-c-model in the Nambu—Goto
formulation is a theory of smappings [Qp, G/H] > £ determined by
the PLA for the DF (s)amplitudes with

SO o)) — / /det /Q '

where jip € R* is a parameter®.

*To be fixed in what follows.




General remarks:

The svacuum of the super-o-model is a ‘minimal’ sembedding
distorted by Lorentz-type sforces. Its ‘localisation’ effects

e a spontaneous breakdown H \ Hy,. of the ‘invisible’ gauge
symmetry (the isotropy group);

e a spontaneous breakdown £(0) W t$22 of the local translational

symmetry.
Implication: A need for a mechanism of restoration of supersymmetry
in the svacuum through freeze-out of the GraBmann-odd DOFs, as
dictated by

{QOH Qﬁ} 5 fm"?a sl faﬁﬁ JK')

which puts us in the context of the x-symmetry of [de Azcarraga &
Lukierski *82, Siegel "83] —
o @ ‘hidden’ symmetry, with no evident geometric.imterpretation”. ..




Physically relevant models:

(i) the original Green—Schwarz—... p-sbranes in

sMink(d, 1|NDy 1) = sISO(d, 1|NDgy 1)/Spin(d, 1), N € N*;
(ii) the Metsaev—Tseytlin sstring in

s(AdSs x S°) = SU(2,2|4)/(Spin(4, 1) x Spin(5));
(iii) the Zhou s-0-brane and sstring in

s(AdSz x S?) = SU(1,1|2)2/(Spin(1,1) x Spin(2));
(iv) the Park—Rey sstring in

s(AdSs x S%) = SU(1, 1]2)32/(Spin(2, 1) x Spin(3));
(v) the Metsaev-Tseytlin D3-brane in

s(AdSs x S°) = SU(2,2|4)/(Spin(4, 1) x Spin(5));
(vi) the M2-branes in s(AdSs x S”) and s(AdS7 x S*)...




Empirical facts:

(H) The p-sbranes in sMink(d, 1|/NDy 1) and the O-sbrane in
s(AdSz x S?) have

[x]aer =0, but [X])S‘R € CaEP™2(G) \ {0} .

(p+2) (p+2
(IW) the sstrings in s(AdSq x S9), g € {2,3,5} have
[x]& = 0 € CaE*(G),
®)
but the supersymmetric primitives

do NOT Inonii-Wigner—contract

o the sminkowskian ones.




What are the PROBLEMS with the empirical facts?

Ad (IW) Signals potential ‘ill-definedness’ of the MT/PR/Zh
super-o-models whose construction was based upon the
asymptotic correspondence with the GS super-o-model. [rrS *18]

Ad (H) The choice of the cohomology critical for the meaning of .Ag%p).

AND

Physics favours the (H-equivariant) Cartan—FEilenberg cohomology

CaE®(G)H—equiv = H&R(G)g—equiva

BUT

(How) Does CaE*(G) \ H*(G) topologise?




The Rabin-Crane-type argument/hypothesis:

Secretly, the GS super-o-model for [Qp, G/H = M)] is a theory of
smappings from [Qp, M /Tkgr] for kg C G s.t.

M/rKR Sloc. M A HdR(M)G HdR (M/FKR)

A working model

For M = sMink(d, 1|Dg.1), the sub-sgroup was identified
in [Crane & Rabin ’85] as the discrete Kostelecky-Rabin sgroup
generated by integer stranslations

(x3,8%) — (y°,€P) - (x3,6%)

with yi?ig... i €itip.. i € Z (in the S-point picture).

thp...ik




Field-theoretic consequences:

We must take into account the ['kgr-twisted sector in [Qp, G/H], ’
but then the Poisson-Lie salgebra of the Noether charges of
supersymmetry of the GS super-o-model,

{ha, he}a, = —f4g° ho + Ass,
exhibits a (classical!) wrapping anomaly [rrS *18].

Empirical fact: Some of these extensions trivialise distinguished
2-scocycles on the supersymmetry salgebra g.

Conclusion: Need to consider scentral extensions
0—3—g—g—0.

The latter is merely an (exact) (s)intuition with. ..
a rigorous cohomology story behind it. ..




Towards sgeometrisation of supersymmetric de Rham scocycles. ..

Th™: 3 an isomorphism
[ : H*(g,R) = CE*(g,R) — CaE*(G) = HR(G)°.
Th™: 3 a correspondence

CE?(g, a) k) { equivalence classes of scentral extensions of g by a },

where / \ ;

Th™: 0 — R — gj,) — 9 — 0 determined by [w] € CaE2(G)
integrates to 1 —» CX — G — G —» 1 iff Per(w) C 27Z
and £. : G x (G,w) — (G, w) has a momentum map.

«0O0>» «F» «E>»



Idea of geometrisation — building the p-sgerbe G ()
(Inspiration: extended sspacetimes of [de Azcarraga et al. *00+])

1. Look for an LI 2-scocycle w in
<Ltu1LtM2"'LtupX ’ M11M27"'aup€07d0+d1 >R'
p+2)
2.Use [(0—+a—5—>a—0=(1-A->G —G—1)
to partially reduce 7*x in CaE® (é[w]).

(P+2)

3. Repeat 1.-2. until complete reduction of 7* x is obtained
(p+2)

over an extension G — G in the corresponding CaE’(a), ie.,
3 B 0P : dp =7
(p+1) (p+1) (p+2)

4. Check that 3 descends to G/H.

(p+1)

5.Use YG := G as THE surjective submersion of g(p) & DCAF
\ a la [Murray & Stevenson '94-’99 et al.]. —




Constructive results:

Theorem I [rrS *17(’12)] Consecutive resolution, through scentral
extensions, of the various CaE 2-scocycles encountered in the
analysis of the GS (p + 2)-scocycles on sMink(d, 1|(N-)Dg 1),
induces a hierarchy of surjective submersions necessary for the
sgeometrisation of the latter, leading to the emergence of
sminkowskian Green-Schwarz p-sgerbes

(explicited for p € {0,1,2}).

Abstraction:

An H-equivariant Cartan—-Eilenberg p-sgerbe G (P) of curvature
curv (GP) = x over G

(p+2)

= ‘a p-gerbe object in sLieGrp (with an H-equivariant structure)’.




E.g., a CaE 1-sgerbe of curvature Y,
®)

Lt pripL®@prsal = prisL (& L, Z’%L I(/;) !
(2
L
Pry 2
1975

YEIG pra g Y i Y&
o prp (2
TYG

G, x

e YG 2% G and L =% YIZIG are sLieGrp extensions;

e 3 and ZﬁL are LI relative to YG and L, respectively;
(2)

e 1y isa sLieGrp isomorphism.
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Constructive results — ct?:

e The success of the sminkowskian sgeometrisation was repeated
in [rrS *18] in the setting of Zhou’s super-o-model of [Zhou *99]
for the sparticle in s(AdS, x S?).

e The celebrated Metsaev—T'seytlin super-o-model of [Metsaev &
Tseytlin *98] for the sstring in s(AdSs x S°), on the other hand,
seems problematic. There exists

an In6nii-Wigner-noncontractible trivial 1-sgerbe,

and a collection of no-go theorems. . .




Higher supersymmetry

e Global supersymmetry built in as G-invariance. 4/

e ‘Hidden’ gauge symmetry to be imposed as an H-equivariant
structure (if we tread carefully, it is automatic
— cp the construction of the super-o-model). 4/

e What about the spontaneous breakdown of (s)symmetry
by the svacuum?

Problem: x-symmetry mixes metric and topological DOFs.

We cannot change the nature of k-symmetry, yet we can change
the FT perspective. . .
(after [Hughes & Polchinski *86, Gauntlett, Itoh & Townsend 90])




THE other sgeometry: Pick up a salgebraic model of the body of the svacuum:

e = ) O — (O dimti = p+1,
with an ad-isotropy algebra
e
hvaccbvac@azbv D:®£:1 <J§>a <—le HvacCH

Assume reductivity of

[Byac, t D] C t BV, with [Byac,e@]Ce@ >, Q] A [0,e@] ¢

and unimodularity, or preservation of the body of the svacuum,

= det TeAdpl o) = 1.

V h € Hyye : detp(h) ft
Replace the NG starget

G/H — G/Hyc e N = |_| oi(Uy) — T = |_| o (U™)
ies ic ¢ :

—
w Tranquiliser: sPhysics only cares about TeAdy-classes!
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THE other stensorial data: (7g/y,,, : G — G/Hyac)

e the Hy,.-basic LI svacuum-body svolume

0 *
(pl1)! €anay...ap O NOF A+ NOP = VOl(tgag) > 7TG/Hvac(plE:P;
e the H-basic LI de Rham (p + 2)-scocycle

12 1273 Hp+2 e St vac
X/L‘IIU'Z‘“/-LP-FZ QL A\ HL ANEEEIVAN 0L = = T‘-G/HvaC( H .

(p+2) (2552

THE other sbackground: The Hughes—Polchinski sbackground

(G/Hvac, Ap dVol(t&Sg) +x = 55()‘/3) = 772‘}/ ﬁ()"’)) = g (Po) :
-

(b+2) (p+2) e +2) ()

M a parameter \p € R* to be fixed by supersymmetry. ..




THE other super-c-model

Given a closed orientable m_fold €, of dim, = p+ 1, aLie
sgroup G and closed Lie subgroups Hy,c C H C |G| with (g,b) and

(g, bvac) reductive, and the Hughes—Polchinski sbackground S%EHP),
the Green-Schwarz super-c-model in the Hughes—Polchinski
formulation is a theory of smappings [Qp, G/Hyac| > £ determined
by the PLA for the DF (s)amplitudes with

(HP) (Ap)[g] / § d- H(Ap) - Z / vac Oé\) g1 A /\p)
(p+2) (p + 2)
realPtV
p
with the last equality using a tessellation Agq, of €25 subordinate to
{Ui}je s foragiven &.
NB: The above sFT is purely topological. In fact, it is. ..

. ‘reducible to a point’.. .



Th™2[rrS *19C17)] Let(g, b, byac, t$22) and p be constrained as

above, with the following Maximal Mixing Constraint obeyed™**:
ke S dE

(Pa | Bpgeopaar * fag 700 =2,

and suppose there exists a TeAdy-invariant metric g on 0 s,

t$22 1e e(0)

The GS super-o-model in the HP formulation for (G/Hyq., X **))
(p+2)
becomes (class.) equivalent to the GS super-o-model in the NG

formulation for (G/H, g, x ) for a unique value pz(Ap) of pip
(p+2)
upon restriction of the fomer FT to field configurations satisfying

the Inverse Higgs Constraints i
(cT®oEViBE=0, ~Bic P dok
<> the EL eq"s for the Goldstone modes ¢§ (inan exp gauge).

**The restriction can be relaxed.



Upshot [rrS 20]: In the dual purely topological HP formulation, we
may impose Aovyua 4 as ‘everything in sight’ sgeometrises. Indeed. ..

e the duality occurs ‘in’ the correspondence sdistribution

(Ao)y _ M & a HP .
Corr(s%(ﬂ‘}’,)) = gLy Ker Of Ly

e supersymmetry restoration in the svacuum via restriction to

sSym(s%g‘:’,))) = Corr(s%gili))) N Ker ((1 o Pm)aﬁ 95)

fore P = P() . p() e End ¢ st. {ImPMT ImPMT} t&SZ @h;
e altogether, the EL eq”s define*** a svacuum sdistribution

() () S
Vac (5%(1{’;,)) = sSym(ﬁ‘B(H‘;)) N ﬂ 13-21 Ker 67 ;

***Undpr some mild assumptions, satisfied by the known super-c-models. -
—




Upshot [rrS *20] - ct:
e geometric consistency of the svacuum < integrability of

Vac (5%&‘?)) < closure of the modelling superspace

0 1 1
vac = tsag @D tsag @ bvac s tsag =Im P(1)T Cg
under the sbracket into the svacuum Lie salgebra
(descent to the physical supertarget G/Hy,. follows);
(Ap) )

e enhancement of gauge**** symmetry ‘in’ Corr(s‘B(HP) :

bvac /l tv ac D Ae(\cc ® (hvac ©® 0)

requires further restriction to Vac(s%EH’l’,))) for consistency,

whereupon we get the x-symmetry sdistribution

n(s%(k’;)) (5%( p)) modelledon 1) & AW @ hyye C vac

(HP) (HP)

Dependence on avac 1mphes locahty AND )‘X()‘P)

Q(HP)




Empirical fact:

(Xp)

(HP)) of the weak derived flag of n(s’B(/\; )) stays

The limit £k~ °(sB (HP)
within Vac(s’BE;\I?I’)))) whenever the latter is integrable (i.e., physical),
and then

(Ap)

(Ap)
(HP) 7))

K™ (8B o) = Vac(s%(HP) >

which is why /@(ﬁ’BE;\fl’,))) was dubbed the square root of the svacuum
in [rrS *20].

Conclusion: The Lie salgebra
g5y, = bac

; Ap ; : 3
modelling H_OO(E%EH%))) acquires the interpretation of the svacuum
gauge-symmetry salgebra.

So what about Ao~y 4 4 4 ? Benefit from topologicality!

> -

«0O0>» «F» «E>»



Restrict the extended Hughes—Polchinski p-sgerbe

s (p)
G =GP 1 Ap Vol(£2))

to the sections ¢ (LI-VaC) = formmg

/
):HP = I_Ije

and subsequently pull back to the vacuum foliation

HP HP
TR Do b )

whereby there arises the vacuum restriction

é\(P) GO é\(P)

vac — Y“yac~ y HP

that descends to the physical vacuum in G/Hy,e by construction.

Dogmatic expectation: a gs,,.-equivariant strucfure on @Vﬁz




E;?l’,))) envelops the vacuum, the latter being a

resp. of the x-symmetry sgroup (whenever 3)
/ gEvac = GVaC )

Hypothesis [rrS *20]: There exists an Hy,.-equivariant trivialisation

However, k~>°(sB

single orbit of gs,,.,

whence

R
or, equivalently, the descendant of G to G/Hy,. (indeed, to G/H)

trivialises as the volume p-sgerbe over the svacuum.

Problem: The svacuum does not possess a natural Lie-sgroup
structure, hence there seems to be no room for a supersymmetric
trivialisation. And yet. ..

& In our formalism, we may look for a sLieAlg sttadow of 7.




E.g. [rrS *20, in writing], the sminkowskian sstring trivialisation

ae=1: z,ac(@pr;é’—g—)pr’f G éa,(fgg
TE
> L HP V1 j
Y[ ]Zsialz YZV3C7 YﬁVaC B
prp (2)
AP
0 HP <
Zvac? X vac = 0
has a shadow ®)
oaz=1: Y& T@prse = prie R—e¢,Cs
pr1 2l
YBlyac Yoac, Y By ——>0
prp (2)
TYvac

o = 0
6
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Loose ends:

e Th' [rrS *19(’17)] The superminkowskian GS p-sgerbes with
p € {0, 1} are endowed with a canonical supersymmetric
AdgMink(d,1|D s )-equivariant structure.

NB: This conforms with the purely even (WZW) story.

e The GS super-o-models with curved stargets s(AdSq x S9)
(MT, PR, Zh) are constructed on the basis of an asymptotic
correspondence with their superminkowskian counterparts,

R— o0

s(AdSq x S7) —> s(AdS,(R) x SU(R)) 2= sMink(2q — 1,1|Dag_1.1) -

It is natural to gerbify the underlying In6nii-Wigner contractions

0%y — 0% (R) 22225 smint(2q — 1,1|Dag_14)

by requiring that they lift to sLieAlg shadows of Murray diagrams,
& turn it {nto an organising principle on the moduli space of super-c-models:
—

®Problems with the definition of the stringy super-o-models.
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Conclusions:

1. The physically relevant CaE (p + 2)-scocycles on
supersymmetry Lie sgroups geometrise — in an interplay of CaE
& CE cohomology — for a large class of sbackgrounds as the
H-equivariant CaE p-sgerbes of [rrS *17, "18].

2. The CaE p-sgerbes are global supersymmetry-invariant and
endowed with (the expected and) natural equivariant structures
with respect to the supersymmetries of the relevant
super-o-models amenable to gauging, in conformity with the
underlying physics and the bosonic intuition. [rrS *19]

3. r-symmetry demystified, geometrised & gerbified in the dual HP
formulation of the GS super-o-model. [11S *19, *20]

4. The construction generalises to physically relevant curved
homogeneous spaces of supersymmetry Lie supergroups, and
sometimes suggests — via gerbification of the IW contraction —

corrections to the existing sFT results. [rrS *18]
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Outlook:

Uniqueness of the construction and its relation to the approach of
Huerta, Baez, Schreiber et al. (k-symm., H-equiv., IW-contr.)?
Reconstruction of the (weak) (p + 1)-categories of p-sgerbes.

The relevance of the IW-contractibility & the ultimate fate of the
curved sbackgrounds?

The higher sgeometry and salgebra (sLieAlg shadows) of
supersymmetric defects (incl. boundary states) & their fusion.

Relation to the worldvolume supersymmetry, possibly via
Sorokin’s Superembedding Formalism.

Relation to the Gtring-structure.
The bosonisation/fermionisation defect.

T-duality via the HP formulation, also in the bosonic setting.

The gauging of the Adgmink(a,1/D, ;)-Supersymmetry and the




(Cecin’est pas) La Fin. ..




Part III

super-Xtras




1. A Lie algebroid is a quintuple (V, 7y, M, a1y, [, ]v) composed
of

e a smooth manifold M, termed the base;
e a smooth vector bundle 7y : V — M,

e a smooth vector-bundle morphism aty : V — TM, termed
the anchor map;

e alLiebracket [, -]y : [(V)*2 — (V) on the vector space
(V) of sections of V,

with the following properties:
e the induced map laty : (F(V),[-,-]v) — (T(TM),[,]) isa
Lie-algebra homomorphism;

e the Lie bracket [-, -]y obeys the Leibniz identity

Vix,v.nerwyexcempr) ;X > Ylv = [X, Y]y +amm(X)(f)> Y.




2. The Lie supergroup of the Metsaev-Tseytlin super-c-model:

SU(2,2|4) with the bod ’
B SUD 2 4)eies2)pS0(6)

and the Lie superalgebra (R-rescaled, for R € R)
w2219 = (@ (7o) @ é (Pa)) @ &) CRPY
a=0 A=

(a,af eT,#xT,4x {1,2}

GB( ED (Jab = —Jpa) ® EB (Jarpy = _Jb’a’>>

a,b=0 28 b =5

; A ab
{Qaa/,,OBB/J}zl(—Z(CI'aQb )aa’ip’y Pat+ H2 (@ ®02)aa’IBB’JJA)

g 851y +1 ifa,be0,4
[Quaryr Pal = =25 (T3 ® 02)° 5, Qppry (P2 Pl = sz ephpr =1 —1 ifabeb9
0 otherwise

(Y5> Je3l = 712a Ype — a6 Jpa t e Yaa — Tpa Ve

| = BB'J =
Quardpl = =2 655 (T @ V707, Qppru [Cadmslis=np Pe — 13 P

with the /s

inonii-Wigner asymptote su(2,2|4)(R) M%’smiuk(g, 1 |32




3. Some Lie-superalgebra cohomology. ..

Def™: A (left) g-module of an LSA g is a pair (V, £.) composed of a
K-linear superspace V =VO g V1) and aleft g-action

0 gV — 6 y) — X 1> v

consistent with the Z/2Z-gradings, X > v = X + V, and such that
for any two homogeneous elements Xy, Xo € g and v € V,

X0, )63 B v = Xot> (X > v) — (= 1% X > (X b V).

and the fundamental. . .




Def®: Let (g, [, }) be an LSA over field K and let (V, ¢) bea
g-module. A p-cochain on g with values in V is a p-linear map
@ : g*P — V that s totally super-skewsymmetric,

(P)
(SD)(X17X2a PRt )(I'717)(I'+17XI'7)(/+27 )(f+37 oI Xp)
)

= (=1 0(X, X, Xp).
(p)
They form a Z»-graded group of p-cochains on g valued in V,

CPEIV= C2(5, V) @ C°(3, V),

with p(X1, Xo,..., Xp) € V. p for ¢ € CR(g, V), composed
(p) = (p)

1 Xn
of even (n = 0) and odd (n = 1) p-cochains.

These groups form a semi-bounded complex
ax S50 . o 5= i o0
C.(/g\a V) : Co(aa V) = C1 (57 V) e Cp(aa V) e




The coboundary operators

532 Chigalaees ¢ (g V)

evaluate on the homogeneous X; € g, i € 0,p+ 1, ¢ € CP(g, V)

(p)
a8 o Xl ¢
(SRl - O X i
®) art \X,| |¢|+S(X,)
(6 (go))(xhxz,.. XL Z -1) ® x,->(ﬁ(x1,x2,.%.,xp+1)
p p j

5 DA (—1)S<X>+S‘Xk>+lx"xk‘ go)([xj,xk},xhxz,.7.,xp+1),

1<j<k<p+1 P s
ok

S(G) = 1X1- D 1%l +i—1.
fi==il

The 7Z/2Z-graded V-valued cohomology groups of g are

ker(5 GC (a,V)
m'6§,p - [

HP(g, V) := Hy(g. V) & Hi(g, V), Hp(g, V)=

ch (g, V)
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Def: Let (g, [-,-}5) and (@,[-,-}5) be LSAs over field K. A
supercentral extension of g by d is an LSA (g, [-,-};) over K
that determines a short exact sequence of LSAs

0—>a—]§—>§ﬁ—ﬁ>g—>0,

written in terms of an LSA mono j; and of an LSA epi 7, and s.t.
Ja(@) C 3(g) (the supercentre of g). Whenever 7, admits an LSA
section, i.e., there exists

o € Homgre(9,9) , i — 1da

the supercentral extension is said to split.

An equivalence of supercentral extensions g,,« € {1,2} of g by
a is represented by a commutative diagram of LSAs

0——a o g 0




The relevant one-way ticket:

Given an LSA (g, [-,-}4) and its supercommutative module a, as well
as a representative © € Z2(g, a) of a class in H3(g, a), we define

g=adg
and put on it the Lie superbracket

[-he : 9xg—3

((A1, X1), (A2, X2)) — (©(Xq, X2), [X1, Xa}g) -




4. A Lie 2-algebra is a quintuple (Vp, V4,6, [—, —],Jac) composed
of

e vector spaces Vg and Vi;

e alinearmap 0 : V4 — V4 (the differential);

e askew bilinear map [—, —] : (Vo @ V4)*2 — Vo @ Vi;

e a skew trilinear map Jac : VOX3 — V4 (the jacobiator),
with the following properties, written for R, S € V4, x,y,z € WV,
[Vi, Vil C Viy,js

o [R,S]=0;
o J[x,R] = [x,0R];
o [6R,S] =[R,5S];

[[x.y], 2] + [[z, x], y] + [y, 2], X] = dJac(x,y, Z)
Jac(éFi’,X,y) = _[[Xay]v R] i [[Xv R]ay] K [X7 [.ya R]]’

Lseptagonal’ coherence for Jac and [—, —]. =
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Th [Baez & Crans ’10] There exists a one-to-one correspondence
between isomorphism classes of skeletal Lie 1-algebras (with § = 0)
and equivalence classes of quadruples (g, V, p, x) composed of a Lie
algebra g, a vector space V, a representation p : g — End(V), and
a V-valued 3-cocycle x on g.

In particular, to a quadruple (g, V, p, x) as above, we associate a Lie
2-algebra with (Vp, V4q,Jac) = (g, V, x) and [—, —] defined as

e [ XY, [X,v] = px(v), [v,w]=0

for arbitrary X, Y € g and v,w € V.

The correspondence was subsequently generalised to higher slim L,
algebras and Lie-algebra modules with higher cocycles, and
supersised by Baez & Huerta in [Baez & Huerta *11].




	Learning from life without spin,  or  the higher geometry  of  the 2d bosonic -model
	Putting a spin on it,  or  a Z/2Z-graded higher geometry
	super-Xtras

