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Pseudogroups and Differential Invariants

Let G be a Lie pseudogroup (group if finite-dim) acting on a
differential equation E by symmetries. In particular, G can be
the gauge group of E . The goal is to understand the quotient

Ē = E/G,

in particular to compute its dimensional characteristics.

For this we pass to (absolute scalar) differential invariants,
i.e. functions constant on (global) orbits of the action. If the group
is algebraic and transitive on M (the base of E) then the invarinats
can (and will) be assumed rational in jets.

Denoting by g the Lie algebra (sheaf) corresponding to G, the
algebra of differential invarians A = ∪kAk (k is the jet-order;
functions I ∈ Ak assumed polynomial in jets of order k ≥ k0) is:

I ∈ A ⇔ ϕ∗I = I ∀ϕ ∈ G con⇔ LXI = 0 ∀X ∈ g.
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Lie-Tresse approach

Hilbert’s nullstellensatz makes a bijective correspondence between
algebraic varieties and ideals of functions vanishing on them.
Similarly, there is a bijection between algebraic differential
equations and differential ideals, defining them.

While straightforward generalization of tools, like Gröbner basis,
may lead to uncomputable objects (infinite size), the CK theorem
guarantees finite generation of regular systems E of PDEs.

D-module structure for A is given by invariant derivarions, i.e.
vector fields on E(∞) ≡ first ord operators ∇ in total derivatives:

ϕ∗ ◦ ∇ = ∇ ◦ ϕ∗ ∀ϕ ∈ G.

Example (Invariants of curves on the plane)

M = R2(x, y), E = J∞(M, 1)
loc' J∞(R,R), G = SO(2) nR2.

k =
yxx

(1 + y2x)3/2
,
d

ds
=

1√
1 + y2x

d

dx
⇒ A =

〈
K = k2,∇ = k

d

ds

〉
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Global version: Finiteness

Consider an algebraic action of a pseudogroup G on a formally
integrable irreducible differential equation E over M = J0 such
that G acts transitively on M .

Theorem (BK & V.Lychagin “Global Lie-Tresse” 2016)

There exists a number l and a Zariski closed invariant proper
subset Sl ⊂ E l such that the algebra A of differential invariants on
E∞ separates orbits from E∞ \ π−1∞,l(Sl) and is finitely generated in
the following sense.
There exists a finite number of rational differential invariants
I1, . . . , It ∈ A and a finite number of rational invariant derivations
∇1, . . . ,∇s : A → A such that any function from A is a
polynomial of differential invariants ∇JIi, where ∇J = ∇j1 · · · ∇jr
for some multi-indices J = (j1, . . . , jr), with coefficients being
rational functions of Ii.
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Solution to the equivalence problem

In addition to the above, the orbits of Gk on Ek \ π−1k,l (Sl) are
regular, i.e. closed, have the same dimension and algebraically fiber
the space. In other words, for k ≥ l there exists a rational
geometric quotient (

Ek \ π−1k,l (Sl)
)
/Gk ' Qk.

The projective limit Q = lim
∞←k

Qk has the structure of diffiety, i.e.

locally: differential equation. This means that there are finitely
many D-relations between the generators (Ii,∇J), interpreted as
invariant differential equations, which generate all diff syzygies.

Solutions u to E , with graphs outside S, are separated so:
Consider the generting set I = (Ii,∇jIi) of cardinality N . Denote
Mu = (j∞u)(M) ⊂ J∞, and call signature of u the restriction

Iu = I|Mu .

Then u1 and u2 are G-equivalent iff their signatures Iu1 and Iu2
coincide as unparametrized submanifolds in RN .
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Counting the invariants

Number of differential invariants of order ≤ k is sk = dimYk. The
difference hk = sk − sk−1 is the number of “pure order” k
differential invariants. The Poincaré function is defined by

P (z) =

∞∑
k=0

hkz
k.

V.Arnold conjectured P (z) to be rational. This was verified for
G = Diff loc(M) by R.Sarkisyan and for general pseudogroups
satisfying GLT by BK and V.Lychagin.

Representing

P (z) =
R(z)

(1− z)d
,

for some polynomial R(z), R(1) 6= 0, the functional dimension and
functional rank for the quotient equation are expressed as follows:

d = − lim
z→1

logP (z)

log(1− z)
, c = R(1) = lim

z→1
P (z)(1− z)d.
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Example: conformal structures

For conformal structures [g] on Mn one has:

P (z) =


z3(1+z)(1+5z−8z2+3z3)

(1−z)3 , for n = 3,

(n+1)nz−2(n+z)
2z(1−z)n + n

z +
(
1 +

(
n
2

)
+ nz

)
(1− z2), for n > 3.

This means in the case n = 3:
h0 = h1 = h2 = 0, h3 = 1, h4 = 9 and hk = k2 − 4 for k ≥ 5.

In the case n > 3:
h0 = h1 = 0, h2 = n2(n2−1)

12 − n2 − 1,
h3 = 1

24n(n4 + 2n3 − 5n2 − 14n− 32) and for k ≥ 4:

hk = (
(
n+1
2

)
− 1) ·

(
n+k−1

k

)
−n ·

(
n+k
k+1

)
= n(k−1)

2

(
n+k−1
k+1

)
−
(
n+k−1

k

)
.

In particular there is precisely 1 conformal invariant of order 3 in
the case n = 3 (from Cotton tensor) and 3 conformal invariants of
order 2 in the case n = 4 (from Weyl tensor).
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Cartan approach to the equivalence problem

The Cartan method of constructing invariant coframes (with
bookkeeping the freedom) starts with a geometric structure q
recast as an EDS (first order PDE system) and it leads to the
tower of bundles

M ← P0 ← P1 ← . . .

The starting construction of 0-frames is a principal bundle, but
then the frames are principal (with abelian group) only seqentially
Pk → Pk−1 but not as bundles over M .

For structures of finite type the number of steps is finite and the
final bundle P →M carries a canonical absolute parallelism
ei ∈ D(P), i = 1, . . . ,dimP (equivariant ⇒ Cartan connection)
allowing to solve the equivalence problem:

{ei, ej} = ckijek ⇒ Diff Invariants: ckij , Inv Derivations: ek.

In general, ckij are defined not on M but on P, and are covariants.
They can be pushed down to M only for Cartan connections.
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Relation between the two approaches

The essential difference between the jet and Cartan approaches is
where the invariants live. The following commutative diagram helps:

P
ρ

��

π∗∞P

��

oo

M E∞ ⊂ J∞ππ∞
oo

Initially the Cartan invariants are functions on

π∗∞P = {(ω, q∞) ∈ P × E∞ | ρ(ω) = π∞(q∞)}

and they suffice to solve the equivalence problem.

Projecting the algebra of invariants on the Cartan bundle to the
base we obtain the algebra of absolute differential invariants
consisting of G-invariant functions on E∞. This is achieved either
by normalization of the frame or by invariantization of the
invariants on P with respect to the structure group.
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Example: pseudo-Riemannian metrics (M, g)

The Lie equation Lie(g) is Frobenius after one prolongation: the
algebraic Sternberg prolongation is so(p, q)(1) = 0. Lie(g) is
compatible iff g is flat. The invariants are derived from the
curvature tensor and its covariant derivatives by contractions.

With the jet approach, the pseudo-group G = Diff loc(M) is lifted
to the bundle S2T ∗M and prolonged. The Poincaré function is

P (z) =


z2(1−z+2z2−z3)

(1−z)2 , for n = 2,

n
z +

(
n
2

)
· (1− z2)− 1

(1−z)n ·
(
n
z −

(
n+1
2

))
, for n > 2.

(Singularity at z = 0 is inessential and is used for brevity.)

The Cartan approach builds an orthonormal frame bundle
ρ : P →M with the principal group P = O(p, q), p+ q = n. The
structure relations are as follows

dσ = ω ∧ σ, dω + ω ∧ ω = Rσ ∧ σ.

For non-flat g the compatibility d2 = 0 reduces the structure group.
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Nonholonomic structures

A sub-Riemannian structure (M,∆, g) is a Riemannian metric g
on a non-holonomic distribution ∆. In this case for q = (∆, g)
the equation E = Lie(q) is also of finite type, however even in the
most symmetric case its differential closure Ē is computed through
several prolongation-projection steps.

Example (S2n+1 ⊂ Cn+1,∆ = TS2n+1 ∩ J(TS2n+1), gFS)

For initial Lie equation E ⊂ J1(TM) on M = S2n+1 its 1-symbol
is g = co(2n) nR2n ⊂ End(TM). For the prolongation-projection
E ′ = π2,1(E(1)) its 1-symbol is g′ = cu(n) nR2n. Note that both
g and g′ have infinite type (nontrivial characteristics). Next
prolongation-projection E ′′ = π2,1(E ′(1)) has 1-symbol g′′ = u(n),
and this E ′′ is formally integrable (compatible, finite type).

On the Cartan side, to overcome this difficulty, one introduces a
filtration of the tanget space TM , changing the prolongation.
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Algebraic prolongations

Given a distribution ∆ its weak derived flag is given by

∆0 = 0, ∆1 = ∆, ∆2 = [∆,∆1], ∆3 = [∆,∆2], . . .

We assume ∆ completely non-holonomic, i.e. ∃ν: ∆ν = TM .

Further on let gi = ∆−i/∆−i−1 and m = ⊕i<0gi. At every point
x ∈M the space m(x) has a natural structure of graded nilpotent
Lie algebra (bracket induced by commutators). ∆ is called strongly
regular if the type of m = mx is independent of x ∈M .

The Tanaka algebra g = pr(m) = ⊕+∞
i=−νgi of ∆ is the graded Lie

algebra given by the rule g− = ⊕i<0gi = m, and for k ≥ 0:

gk = {u ∈
⊕
i<0

gk+i⊗g∗i : u([X,Y ]) = [u(X), Y ]+[X,u(Y )], X, Y ∈ m}.

Another possibility is to reduce g0 and prolong g = pr(m, g0) or
perform higher order reductions.

Boris Kruglikov (UiT Tromsø Norway) Lie equations: symmetries and invariants II ∗ ESI 2021



13/ 16

Tanaka theory in nutshell

Tanaka constructed a tower of fiber bundles (nonholonomic
frames)

M ← P0 ← P1 ← . . .

The starting construction of 0-frames is a principal bundle, with
Lie algebra of the structure group equal g0 (possible reduction).
Next, similar to the Cartan method, further frame bundles are
principal (with group gk, k > 0) only seqentially Pk → Pk−1 but
not as bundles over M .

Again, for structures of finite type the number of steps is finite and
the final bundle P →M carring a canonical absolute parallelism
(equivariant ⇒ Cartan connection) allowing to solve the
equivalence problem. In particular, the symmetry group is bounded
so:

dimG ≤ dim g =
∑

dim gi.

Finite type is determined by the same rank 1 condition but for the
algebra g′0 = {φ ∈ g0 : [φ, gi] = 0 ∀i < −1} (characteristics).
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Filtered Lie equations

On the jet side, the counter-part is given through the theory of
filtered jets. A filtered structure F on the manifold M is given by
a non-holonomic vector distribution ∆ and a finite number of
successive reductions of the generalized frame bundles Pk.
Filtration on TM induces pointwise filtration on the maximal ideal
in the algebra of functions, whence on diff operators and jets.

Theorem (BK 2013)

The symmetry algebra S (possibly infinite-dimensional) of a
filtered structure F has the natural filtration with the associated
grading s naturally injected into g(x) for any regular point x ∈M .
In particular,

dimG ≤ sup
M

dim g(x).

Provided F is of finite type or is analytic, we have:

dimG ≤ inf
M

dim g(x).

Boris Kruglikov (UiT Tromsø Norway) Lie equations: symmetries and invariants II ∗ ESI 2021



15/ 16

Example: N -extended Poincaré structures

Let (V, g) be a metric vector space and S be a spin module. Let
g−2 = V, g−1 = S⊕ · · · ⊕ S︸ ︷︷ ︸

N

and m = g−2 ⊕ g−1.

Then m⊕ so(V) is the N -extended Poincaré algebra.
Brackets Λ2g−1 → g−2 were classified by D.Alekseevsky-V.Cortes.

The prolongation g = pr(m) was computed by A.Altomani-A.Santi.
It equals m⊕ g0, g0 = so(V)⊕ R⊕ g′0, except for the cases
An/P2,n−1, Cn/P2, F4/P4, E6/P1,6, where the prolongation is the
corresponding semisimple Lie algebra g = g−2 ⊕ · · · ⊕ g2.

This gives the bound for the symmetry algebra of the
corresponding nonholonomic geometry.
One could also compute the submaximal symmetry dimension S:
in the parabolic case this is due to the joint work with D.The;
in non-exceptional case through the filtered deformation.
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Thanks for your attention!
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