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Preservation of normality by addition

Theorem (Rauzy, 1976)

For g €[0,1), the following conditions are equivalent:

» for each o normal, o+ B is still normal,

» 5 has Rauzy dimension 0.

Theorem (Rauzy, 1976)

For g €[0,1), the following conditions are equivalent:

> 3 is normal,
» [ has Rauzy dimension (#A — 1)/#A.
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Mismaches of prediction

Suppose that £ > 0 and f : A® = A are given.
For w € A*,

#{i:wi] # f(wli+1:i+ 1))}

is the number of mismatches between w[i] and f(w[i+1 :i4¢]).
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Rauzy dimensions
For w € A* and 0 < £ < |w|,

By(w) = min #{i:wli] # fwi+1:i+4])}
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Rauzy dimensions
For w € A* and 0 < ¢ < |w|,
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Rauzy dimensions

For w € A* and 0 < ¢ < |w|,

i wli] # flwli+1:i+ ()}

Be(w) := min
Fr AL A |w|
L ] £ el i 1))
() C pALSA |w|

For:UGANand€>0,
B,(z) = hrr_l)inf Be(x[1:n]) and By(x) := limsup Be(z[1 : n])
- n—0oo n—00

B(x) := }Hiloée(:”) and B(r) := Zliﬁrg(}@(x)

7(x) and ¥(x) are defined similarly using +, instead of j3,.



Examples of Rauzy dimensions

Suppose that z is ultimately periodic, that is z = uo", like
00(011)N = 0001101101101 - - -
For £ > |uv|, By(x) = 7,(x) = 0 and thus B(x) = F(z) = 0.
Suppose that z is Sturmian like
0100101001001 - - -

For each £ > 0, there are exactly £ 4 1 factors of length ¢ with
only one with two extensions to the left (to the right resp.).
Mismatches can only occur with this special factor.

Be(x)
Ye()

< frequency of the left special factor
< frequency of the right special factor



Questions

What about polynomial factor complexity, that is sequences z
such that
#(Fact(x) N AY) < P(¢)

for some polynomial P(z).

What about sub-exponential factor complexity, that is
sequences x such that, for instance,

#(Fact(z) N A%) < eVt
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Measure-theoretic entropy

Recall that |w], is the number of occurrences of u in w.

Normalized f-entropy of w € A*:
hew) = —7 3 fulogf where
== w108 fu ere fy 1=
f ¢ €At : )

Note that
quzl and 0 < hy(w) < 1.
u€ Al

Normalized entropy of x € AN:
h(x) = lizm inf hy(z) where hy(z) :=liminf hy(z[1 : n])
—00 n—oo

h(z) = ligminfﬁg(x) where  hy(x) := limsup he(z[1 : n])
— 00

n—o0



Other definitions of entropy

The entropy h has several equivalent definitions using either
» Finite state compressibility, or

» Finite state predictors/martingales.
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Function b
Let b : [0,1] — [0, 1] be the classical entropy function

h(a) := —alogga — (1 — a)logy (1l — @)

whose graph is
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Results

Here, we suppose #A = 2.

Theorem

> For every x € AV,

(z) <h(y(2)),

2y(z) < h

» These inequalities are sharp.



Visualizing the result
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Results

Reformulation of one implication of second Rauzy’s theorem:
Theorem (Rauzy, 1976)
If h(z) =1 and h(y) = 0, then h(z +y) = 1.

Theorem
For every x,y € AN,
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From the previous theorem

For every = € AY,

h(z) =0<+= B(z) =0 < y(z) =0
h(z)=0<+= B(z)=0 < 7(z)=0
hz) =1 = B(z) =3 < 1(2) = 3
hz)=1+= fz) =3 <= () =3

Quoting Rauzy, are the function 8 and v similar 7



Counter-example

Let = be a generic sequence for the following Markov chain.

B(z) = B(x) < y(z) =7(z) = 3.



A lower bound and a conjecture

Proposition

Let x be a "generic” sequence of a Markov chain with
stationary distribution w. Let 0;; be the probability of having
symbol b after state i. Then

v(x) =) mimin(fig, 6i1).
i€Q

We conjecture that

’)/(.T) = Z Ty min(ﬁw, 91"1).

1€Q
The stationary distribution 7 of the previous Markov chain is
the vector m = [%, i, 2—74, i] and
115 1+1 1+ 7 1+1 1
24 242 42 242 43 LT E



Reversing time
Reversing time in a Markov chain gives another Markov chain
whose matrix P is given by 7rzP,] = m;P;;. where 7 is the
stationnary distribution of P.
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Computing Fy(z) and ~,(x)
We suppose here that A = {0, 1}.

Lemma
Let £ >0 and let x € AN such that the frequency of u in x is
equal to o, for each u € A1, Then

Be(z) = Z min(agy, 01w)  and  y(x) = Z min (a0, Qe )-

weA? weA*
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