Rauzy dimension and entropy

Verónica Becher¹ <u>Olivier Carton</u>² Santiago Figueira¹

 $^1 \mathrm{Universidad}$ de Buenos Aires & CONICET

²IRIF, Université Paris Cité & CNRS & IUF

^{1,2}Supported by LIA SINFIN

Uniform Distribution of Sequences - ESI

Measure-theoretic entropy

Results

Preservation of normality by addition

Theorem (Rauzy, 1976)

For $\beta \in [0,1)$, the following conditions are equivalent:

- for each α normal, $\alpha + \beta$ is still normal,
- $\blacktriangleright \beta$ has Rauzy dimension 0.

Theorem (Rauzy, 1976)

For $\beta \in [0,1)$, the following conditions are equivalent:

 $\triangleright \beta$ is normal,

▶ β has Rauzy dimension (#A - 1)/#A.

Outline

Rauzy dimensions

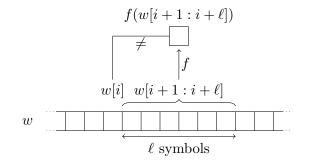
Measure-theoretic entropy

Results

Mismaches of prediction

Suppose that $\ell \ge 0$ and $f : A^{\ell} \to A$ are given. For $w \in A^*$, $\#\{i : w[i] \neq f(w[i+1:i+\ell])\}$

is the number of mismatches between w[i] and $f(w[i+1:i+\ell])$.

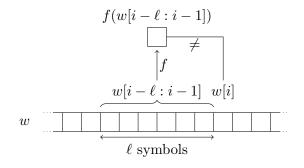


For $w \in A^*$ and $0 \leq \ell \leq |w|$, $\beta_{\ell}(w) := \min_{f: A^{\ell} \to A} \frac{\#\{i: w[i] \neq f(w[i+1:i+\ell])\}}{|w|}$ $f(w[i+1:i+\ell])$ ¥ $w[i] \ w[i+1:i+\ell]$

w ℓ symbols

For $w \in A^*$ and $0 \leq \ell \leq |w|$,

$$\beta_{\ell}(w) := \min_{f:A^{\ell} \to A} \frac{\#\{i:w[i] \neq f(w[i+1:i+\ell])\}}{|w|}$$
$$\gamma_{\ell}(w) := \min_{f:A^{\ell} \to A} \frac{\#\{i:w[i] \neq f(w[i-\ell:i-1])\}}{|w|}$$



ŀ

For $w \in A^*$ and $0 \leq \ell \leq |w|$,

$$\beta_{\ell}(w) := \min_{f:A^{\ell} \to A} \frac{\#\{i: w[i] \neq f(w[i+1:i+\ell])\}}{|w|}$$
$$\gamma_{\ell}(w) := \min_{f:A^{\ell} \to A} \frac{\#\{i: w[i] \neq f(w[i-\ell:i-1])\}}{|w|}$$

For $x \in A^{\mathbb{N}}$ and $\ell \ge 0$, $\underline{\beta}_{\ell}(x) := \liminf_{n \to \infty} \beta_{\ell}(x[1:n])$ and $\overline{\beta}_{\ell}(x) := \limsup_{n \to \infty} \beta_{\ell}(x[1:n])$ $\underline{\beta}(x) := \lim_{\ell \to \infty} \underline{\beta}_{\ell}(x)$ and $\overline{\beta}(x) := \lim_{\ell \to \infty} \overline{\beta}_{\ell}(x)$

 $\underline{\gamma}(x)$ and $\overline{\gamma}(x)$ are defined similarly using γ_{ℓ} instead of β_{ℓ} .

| | | | |[|]

Examples of Rauzy dimensions

Suppose that x is ultimately periodic, that is $x = uv^{\mathbb{N}}$, like

$$00(011)^{\mathbb{N}} = 00011011011011\cdots$$

For $\ell \ge |uv|, \overline{\beta}_{\ell}(x) = \overline{\gamma}_{\ell}(x) = 0$ and thus $\overline{\beta}(x) = \overline{\gamma}(x) = 0$.

Suppose that x is Sturmian like

$0100101001001 \cdots$

For each $\ell \ge 0$, there are exactly $\ell + 1$ factors of length ℓ with only one with two extensions to the left (to the right resp.). Mismatches can only occur with this special factor.

 $\overline{\beta}_{\ell}(x) \leq \text{frequency of the left special factor}$ $\overline{\gamma}_{\ell}(x) \leq \text{frequency of the right special factor}$

$$\overline{\beta}(x) = \overline{\gamma}(x) = 0$$

Questions

What about polynomial factor complexity, that is sequences x such that

$$\#(\operatorname{Fact}(x) \cap A^{\ell}) \leqslant P(\ell)$$

for some polynomial P(x).

What about sub-exponential factor complexity, that is sequences x such that, for instance,

 $\#(\operatorname{Fact}(x) \cap A^{\ell}) \leqslant e^{\sqrt{\ell}}$

Measure-theoretic entropy

Results

Measure-theoretic entropy

Recall that $|w|_u$ is the number of occurrences of u in w.

Normalized ℓ -entropy of $w \in A^*$:

$$h_{\ell}(w) \coloneqq -\frac{1}{\ell} \sum_{u \in A^{\ell}} f_u \log f_u \quad \text{where} \quad f_u \coloneqq \frac{|w|_u}{|w| - |u| + 1}$$

Note that

$$\sum_{u \in A^{\ell}} f_u = 1 \quad \text{and} \quad 0 \leqslant h_{\ell}(w) \leqslant 1.$$

Normalized entropy of $x \in A^{\mathbb{N}}$:

$$\underline{h}(x) := \liminf_{\ell \to \infty} \underline{h}_{\ell}(x) \quad \text{where} \quad \underline{h}_{\ell}(x) := \liminf_{n \to \infty} h_{\ell}(x[1:n]) \\ \overline{h}(x) := \liminf_{\ell \to \infty} \overline{h}_{\ell}(x) \quad \text{where} \quad \overline{h}_{\ell}(x) := \limsup_{n \to \infty} h_{\ell}(x[1:n])$$

II F

Other definitions of entropy

The entropy h has several equivalent definitions using either

- ▶ Finite state compressibility, or
- ► Finite state predictors/martingales.

Outline

Rauzy dimensions

Measure-theoretic entropy

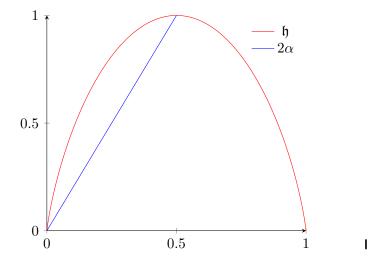
Results

Function \mathfrak{h}

Let $\mathfrak{h}:[0,1]\to [0,1]$ be the classical entropy function

$$\mathfrak{h}(\alpha) := -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha)$$

whose graph is



ŀ

Results

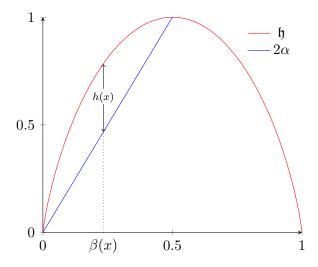
Here, we suppose #A = 2. Theorem

For every $x \in A^{\mathbb{N}}$,

$$\begin{split} & 2\underline{\gamma}(x) \leqslant \underline{h}(x) \leqslant \mathfrak{h}(\underline{\gamma}(x)), \\ & 2\overline{\gamma}(x) \leqslant \overline{h}(x) \leqslant \mathfrak{h}(\overline{\gamma}(x)), \\ & 2\underline{\beta}(x) \leqslant \underline{h}(x) \leqslant \mathfrak{h}(\underline{\beta}(x)), \\ & 2\overline{\beta}(x) \leqslant \overline{h}(x) \leqslant \mathfrak{h}(\underline{\beta}(x)). \end{split}$$

▶ These inequalities are sharp.

Visualizing the result



| | | |

Results

Reformulation of one implication of second Rauzy's theorem:

Theorem (Rauzy, 1976)
If
$$\underline{h}(x) = 1$$
 and $\overline{h}(y) = 0$, then $\underline{h}(x+y) = 1$.

Theorem

For every $x, y \in A^{\mathbb{N}}$,

$$\underline{h}(x) - \overline{h}(y) \leq \underline{h}(x+y) \leq \underline{h}(x) + \overline{h}(y),$$

$$\overline{h}(x) - \overline{h}(y) \leq \overline{h}(x+y) \leq \overline{h}(x) + \overline{h}(y).$$

Outline

Rauzy dimensions

Measure-theoretic entropy

Results

From the previous theorem

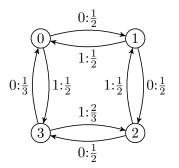
For every $x \in A^{\mathbb{N}}$,

$$\underline{\underline{h}}(x) = 0 \iff \underline{\beta}(x) = 0 \iff \underline{\gamma}(x) = 0$$
$$\overline{\overline{h}}(x) = 0 \iff \overline{\overline{\beta}}(x) = 0 \iff \overline{\gamma}(x) = 0$$
$$\underline{\underline{h}}(x) = 1 \iff \underline{\beta}(x) = \frac{1}{2} \iff \underline{\gamma}(x) = \frac{1}{2}$$
$$\overline{\overline{h}}(x) = 1 \iff \overline{\overline{\beta}}(x) = \frac{1}{2} \iff \overline{\gamma}(x) = \frac{1}{2}$$

Quoting Rauzy, are the function β and γ similar ?

Counter-example

Let x be a generic sequence for the following Markov chain. $\underline{\beta}(x) = \overline{\beta}(x) < \underline{\gamma}(x) = \overline{\gamma}(x) = \frac{11}{24}.$



A lower bound and a conjecture

Proposition

Let x be a "generic" sequence of a Markov chain with stationary distribution π . Let $\theta_{i,b}$ be the probability of having symbol b after state i. Then

$$\gamma(x) \ge \sum_{i \in Q} \pi_i \min(\theta_{i,0}, \theta_{i,1}).$$

We conjecture that

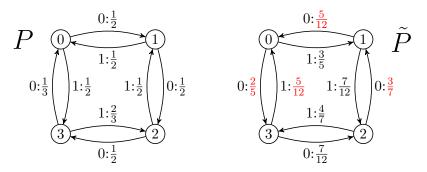
$$\gamma(x) = \sum_{i \in Q} \pi_i \min(\theta_{i,0}, \theta_{i,1}).$$

The stationary distribution π of the previous Markov chain is the vector $\pi = \begin{bmatrix} 5\\ 24, \frac{1}{4}, \frac{7}{24}, \frac{1}{4} \end{bmatrix}$ and

$$\frac{11}{24} = \frac{5}{24} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} + \frac{7}{24} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{3}$$

Reversing time

Reversing time in a Markov chain gives another Markov chain whose matrix \tilde{P} is given by $\pi_i \tilde{P}_{i,j} = \pi_j P_{j,i}$. where π is the stationnary distribution of P.



The stationnary distribution is the same: $\pi = \begin{bmatrix} \frac{5}{24}, \frac{1}{4}, \frac{7}{24}, \frac{1}{4} \end{bmatrix}$.

$$\frac{5}{12} = \frac{5}{24} \cdot \frac{2}{5} + \frac{1}{4} \cdot \frac{5}{12} + \frac{7}{24} \cdot \frac{3}{7} + \frac{1}{4} \cdot \frac{5}{12}$$

Computing $\beta_{\ell}(x)$ and $\gamma_{\ell}(x)$

We suppose here that $A = \{0, 1\}$.

Lemma

Let $\ell \ge 0$ and let $x \in A^{\mathbb{N}}$ such that the frequency of u in x is equal to α_u for each $u \in A^{\ell+1}$. Then

$$\beta_{\ell}(x) = \sum_{w \in A^{\ell}} \min(\alpha_{0w}, \alpha_{1w}) \quad and \quad \gamma_{\ell}(x) = \sum_{w \in A^{\ell}} \min(\alpha_{w0}, \alpha_{w1}).$$

ℓ	$\beta_{\ell}(x)$	$\gamma_\ell(x)$	
1	$\frac{11}{24}$	$\frac{11}{24}$	
2	$\frac{11}{24}$	$\frac{11}{24}$	
3	$\frac{11}{24}$	$\frac{11}{24}$	
4	$\frac{11}{24}$	$\frac{11}{24}$	
5	$\frac{11}{24}$	$\frac{11}{24}$	
6	$\frac{9503}{20736}$	$\frac{11}{24}$	