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Choice of states

∂U is generator of null geodesics on the past horizon.
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The acceleration of the integral lines of vH on the past horizon is
a = κ+!
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III.1 Propagators

Characteristic manifold
The principal symbol of D is the section σD ∈ C∞(T ∗M \o; End(S∗,S))
given by

σD(x, ξ) = Γ(g−1(x)ξ), (x, ξ) ∈ T ∗M \o.

Lemma

The Weyl operator D is pre-normally hyperbolic, i.e., there exists a
differential operator D′ such that (σD ◦ σD′)(x, ξ) = (ξ · g−1(x)ξ)1.

The characteristic manifold of D is defined as

Char(M) = {(x, ξ) ∈ T ∗M \o : σD(x, ξ) is not invertible}.
By the Lemma,

Char(M) = {(x, ξ) ∈ T ∗M \o : ξ · g−1(x)ξ = 0} =: N .
Its two connected components are

N± := N ∩ {(x, ξ) ∈ T ∗M \o : ±v ·ξ > 0,

∀v ∈ TxM future directed time-like}. (1)
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Propagators

An adaptation of an argument due to Dimock to the case of
general pre-normally hyperbolic operators gives the existence and
uniqueness of retarded and advanced propagators, Gret and Gadv.
Recall that Gret/adv is by definition a two-sided inverse of D (on
test sections) such that
suppGret/advv ⊂ J±(supp v), v ∈ C∞c (M ;S), where J±(K)
stands for the causal future/past of K ⊂M . The Pauli-Jordan or
causal propagator is the difference G = Gret −Gadv.
We have

(v1|Gv2)M = −(Gv1|v2)M , vi ∈ C∞c (M ;S), (2)

i.e. G∗ = −G for the pairing (·|·)M defined in (??).

Theorem (Duistermaat-Hörmander)

WF (G)′ ⊂ C = {(X1, X2) ∈ N ×N ; X1 ∼ X2}.
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Cauchy problem

If S is a space-like Cauchy surface, the Cauchy problem{
Dφ = 0,

rSφ = ϕ ∈ C∞c (S;S∗S),

where S∗S is the restriction of S∗ to S and rSφ = φ|S , has a unique
solution φ =: USϕ ∈ Solsc(M).
For all φ ∈ Solsc(M) one has:

φ(x) = −
∫
S
G(x, y)Γ(g−1ν)(y)φ(y)i∗l (dvolg)(y),

(S = Ker ν, ν ·l = 1). Choosing l = n, ν = −gn, where n the
future directed vector field normal to S, this can be rewritten as

φ(x) = −
∫
S
G(x, y)Γ(n(y))φ(y) dvolh(y),

where h is the induced Riemannian metric on S.
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Equivalent Hilbert spaces

We now recall other Hilbert spaces unitarily equivalent to
SolL2(M). Let Σ be a smooth space-like Cauchy surface.

Proposition

The following maps are unitary( C∞c (M ;S)
DC∞c (M ;S∗) , ıG

) G−−−−→
(
Sol(M), (·|·)D

) rΣ−−−−→
(
C∞c (Σ; S∗Σ), νΣ

)
,

where ϕ1 ·νΣϕ2 = ı
∫

Σ ϕ̄1 ·Γ(n)ϕ2 dvolh, ϕi ∈ C∞c (Σ; S∗Σ).

As a consequence of the Proposition we have the identities

(φ1|φ2)D = (v1|ıGv2)M = (ıGv1|v2)M , for φi = Gvi, vi ∈ C∞c (M ; S),

which extends to

(v|φ)M = (ıGv|φ)D, v ∈ C∞c (M ;S), φ ∈ SolL2(M). (3)
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III.2 Algebraic quantization of the Weyl equation

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation III



CAR algebras

Let (Y, ν) be a pre-Hilbert space. We denote by CAR(Y, ν) the
unital complex ∗-algebra generated by elements ψ(y), ψ∗(y),
y ∈ Y, with the relations

ψ(y1 + λy2) = ψ(y1) + λψ(y2),

ψ∗(y1 + λy2) = ψ(y1) + λψ∗(y2), y1, y2 ∈ Y, λ ∈ C,

[ψ(y1), ψ(y2)]+ = [ψ∗(y1), ψ∗(y2)]+ = 0,

[ψ(y1), ψ∗(y2)]+ = y1 · νy21, y1, y2 ∈ Y,

ψ(y)∗ = ψ∗(y), y ∈ Y,

where [A,B]+ = AB +BA is the anti-commutator.
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States

Definition (States)

A linear functional ω over the C∗− algebra U is defined to be
positive if

ω(A∗A) ≥ 0, ∀A ∈ U .

A positive linear functional over a C∗− algebra U with ‖ω‖ = 1 is
called a state.

Definition (Quasi-free states)

A state ω on CAR(Y, ν) is a (gauge invariant) quasi-free state if

ω
(
Πn
i=1ψ

∗(yi)Π
m
j=1ψ(y′j)

)
= 0, ifn 6= m,

ω
(
Πn
i=1ψ

∗(yi)Π
n
j=1ψ(y′j)

)
=
∑
σ∈Sn

sgn(σ)Πn
i=1ω(ψ∗(yi)ψ(y′σ(i))).
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Quasi-free states

A quasi-free state ω on CAR(Y, ν) is determined by its
covariances λ± ∈ Lh(Y,Y∗) (hermitian form on Y), defined by

ω(ψ(y1)ψ∗(y2)) =: y1·λ+y2, ω(ψ∗(y2)ψ(y1)) =: y1·λ−y2, y1, y2 ∈ Y.
A pair of Hermitian sesquilinear forms λ± on Y are the covariances
of a quasi-free state on CAR(Y, ν) iff

λ± ≥ 0, λ+ + λ− = ν.

It follows that λ± uniquely extend to the completion Ycpl of Y for
ν.

Definition

The quasi-free state ω on CAR(Y, ν) is a pure state iff there exist
projections π± on Ycpl such that

λ± = ν ◦ π±.

Note that π± are selfadjoint for ν and π+ + π− = 1.
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III.3 Hadamard states for the Weyl equation
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Spacetime covariances

A quasi-free state ω is specified a pair of spacetime covariances (or
two-point functions if one speaks of the associated Schwartz
kernels), i.e. a pair of operators

V± satisfying:

i)

V±: C∞c (M ; S)→ D′(M ; S∗) is linear continuous,

ii)

V±≥ 0,

iii)
V+ +

V−= ıG,

iv) D

V±=

V±D = 0.

Alternatively, one can define the state ω by its solution space
covariances, i.e. operators C± ∈ B(SolL2(M)) such that

C± ≥ 0, C+ + C− = 1.

C± is pure if (C±)2 = C±. By Proposition 1, the two types of
covariances are related as follows:

v̄·

V± v = (Gv|C±Gv)D, v ∈ C∞c (M ; S).
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Hadamard states

Definition (Radzikowski)

A quasi-free state ω on CAR(M) is a Hadamard state if it satisfies
(the Hadamard condition):

WF(

V±)′ ⊂ N± ×N±,

where N+ and N− are the two components of the characteristic
set defined in (1).

Here (x, ξ, y, η) ∈WF(

V

)′ ⇔ (x, ξ, y,−η) ∈WF(

V

). Recall that
WF(

V± u) ⊂ MWF(

V±)′ ∪WF(

V±)′(WF(u)), where

MΓ = {(x1, ξ1) ∈ T ∗M \ o; ∃x2 such that (x1, ξ1, x2, 0) ∈ Γ}.

Proposition

Suppose that WF((C±)
1
2φ) ⊂ N± ∀φ ∈ SolL2(M). Then the

state ω is a Hadamard state.
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Oscillatory test functions 1

Let Ω ⊂ Rn be an open set. For x ∈ Ω, q = (x, ξ) ∈ T ∗Ω \o and
χ ∈ C∞c (Ω) we denote

vλq (x) := χ(x)e−ıλx·ξ, λ ≥ 1.

We then extend the definition to manifolds by chart
diffeomorphism pullback. We will say that a function vλq of this

form is an oscillatory test function at q0 = (x0, ξ0) if vλq (x0) 6= 0.

Definition

We say that wλq is a generalized oscillatory test function at

q0 = (x0, ξ0) ∈ T ∗M \o if it is of the form wλq = A∗vλq , where

A ∈ Ψ0(M) is properly supported and elliptic at q0, and vλq is an
oscillatory test function at q0.
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Oscillatory test functions 2

Lemma

Let X ⊂ D′(M) and let Γ ⊂ T ∗M \o be closed. Then WF(u) ⊂ Γ
for all u ∈ X iff for all non-zero q0 ∈ T ∗M \ Γ there exists a
generalized oscillatory test function wλq at q0 such that for all
u ∈ X and N ∈ N,

|(wλq |u)M | ≤ Cu,Nλ−N , λ ≥ 1,

uniformly for q in a neighborhood of q0 in T ∗M \o.
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Oscillatory test functions 3

Lemma

Suppose that for any q0 ∈ N∓ there exists a generalized oscillatory
test function vλq at q0 such that if φλq = Gvλq one has

‖(C±)
1
2φλq ‖D ≤ CNλ−N , ∀N ∈ N

uniformly for q in a neighborhood of q0 in T ∗M \o. Then ω is a
Hadamard state.

Proof. It suffices to prove that WF(

V±)′ ∩∆ ⊂ N± ×N±,
where ∆ ⊂ T ∗M × T ∗M is the diagonal. If q0 ∈ N∓ and vλq are
as in the lemma, we have

v̄q
λ·

V± vλq = (φλq |C±φλq )D = ‖(C±)
1
2φλq ‖2D ∈ O(λ−N ), N ∈ N,

so (q0, q0) 6∈WF(

V±)′, which by the remark above implies that ω
is a Hadamard state.
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Proof of the proposition

Let q0 ∈ N∓ and N ∈ N. By the hypothesis we have
WF((C±)

1
2φ) ⊂ N± for all φ ∈ SolL2(M). We then use Lemma 8 to see

that there exists a generalized oscillatory test function vλq at q0 such that

supλ≥1 λ
N |(vλq |((C±)

1
2φ)M | <∞ ∀φ ∈ SolL2(M).

Applying the uniform boundedness principle to the family of linear forms

Tλ : SolL2(M) 3 φ 7→ λN (vλq |((C±)
1
2φ)M ∈ C

we obtain that

sup
λ≥1,‖φ‖D=1

λN |(vλq |((C±)
1
2φ)M | <∞.

Denoting φλq = Gvλq and using also (3) this gives

‖(C±)
1
2φλq ‖D = sup

‖φ‖D=1

|((C±)
1
2φλq |φ)D|

= sup
‖φ‖D=1

|(φλq |(C±)
1
2φ)D| = sup

‖φ‖D=1

|(vλq |(C±)
1
2φ)M | ∈ O(λ−N )

which by Lemma 9 implies that ω is a Hadamard state.
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Motivation and examples of Hadamard states

Hadamard states look microlocally like vacuum states on
Minkowski, they also permit to renormalize the quantum energy
momentum tensor.
Examples if (M, g) has time-like Killing vector field ∂t:

(1) C± = 1R±(Dt) is the vacuum w.r.t. ∂t (it is pure)

(2) C± = (1 + e∓βDt)−1 is the thermal state at temperature
T = β−1 w.r.t. ∂t (it is mixed)

One can take more general functions χ± ∈ L∞(R) such that

χ± ≥ 0, χ+ + χ− = 1, χ±(λ) ∈ O(λ−N ) inR∓,

sing suppχ± compact. The associated states are mircolocally
passive. Non existence theorems by Kay, Wald and Pinamonti,
Sanders, Verch for a Hadamard state associated to a Killing field
that is not everywhere timelike.
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Existence of the Unruh state, first version

Consider /Dφ = 0. We define a pure state on MI∪II by taking:

on H we take 1R±(−DU ) (“Kay–Wald vacuum”)
on I − we take 1R±(Dt∗) (asymptotic vacuum)

Theorem (Gérard-H-Wrochna ’20)

For |a|m−1 << 1, the so-obtained Unruh state is pure and
Hadamard in MI∪II. Its restriction to MI is asymptotically thermal
with respect to vH at the past horizon H− with temperature equal
to the Hawking temperature TH = κ+

2π .

Remark: ∂U is not Killing! Yet Hadamard condition and symmetries of the
problem impose this choice. Recall Hadamard condition:

WF(C±φ) ⊂ N± for all solutions of /Dφ = 0

Interpretation: :φ2: doesn’t blow up at H+, “smooth” extendability across H+.
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Emergence of the Hawking temperature

For β > 0, let χ±β (s) = (1 + e∓βs)−1. Let Dx = ı−1∂x acting in

L2(R),

χ±∞(Dx) := ı∗ ◦ 1R±(Dx) ◦ ı

the restriction of 1R±(Dx) to L2(R+) (ı : L2(R+)→ L2(R)
canonical embedding),

A =
1

2
(xDx +Dxx) = ı−1(x∂x +

1

2
)

the generator of dilations.

Lemma

On L2(R+) we have χ±∞(Dx) = χ±2π(A).
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Proof of the lemma

Schwartz kernel of χ±∞(Dx)

χ±∞(Dx)(x, y) = ±ı(2π)−
1
2 (x− y ± ı0)−1. (4)

The Mellin transform M diagonalizes the generator of dilations,
meaning that

χ±β (A) =M−1 ◦ χ±β (σ) ◦M, (5)

where χ±β (σ) denotes the operator of multiplication by χ±β . A brief
computation using the Mellin transform shows that the Schwartz
kernel of (5) equals

χ±β (A)(x, y) =
1

y
(M−1χ±β )

(
x
y

)
. (6)

On the other hand,

(M−1χ±2π)(x) = ±ı(2π)−
1
2 (x− 1± ı0)−1

in the sense of distributions. Plugging this into (6) and comparing
with (4) yields the result.
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Construction of the Unruh state

We restrict our discussion to block I.

In MI we construct the Unruh state on KerL2 /D by

C+ = PH− χ 2π
κ+

(i−1LH) + PI− 1R+(i−1LI ),

where PH− and PI− project to solutions that go to H− and
I −. LH and LI are Lie derivatives of spinors along the
vector fields vH and vI .

Idea : estimate WF of C+φ in terms of wavefront set on
H−, I − using reconstruction formulae :

φ(x) = −
∫
S
G(x, y)Γ(g−1ν)(y)φ(y)i∗l (dvolg)(y).

Here G is the causal propagator, TS = Ker ν, l transverse to
S, ν ·l = 1. By scattering theory this kind of formulae can be
extended to L2 solutions.
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A key proposition

Proposition

Let (M, g) be an oriented and time oriented Lorentzian manifold of
dimension n, and let S ⊂M be a null hypersurface equipped with
a smooth density dm. For u ∈ E ′(S) we define δS ⊗ u ∈ E ′(M) by:∫

M
(δS ⊗ u)ϕdvolg :=

∫
S
uϕdm, ϕ ∈ C∞c (M).

Let also X be a vector field on M , tangent to S, null, future
directed on S and suppose G ∈ D′(M ×M) satisfies
WF(G)′ ⊂ {(q, q′) ∈ N ×N : q ∼ q′}. Then for any u ∈ E ′(S)
one has the implication:

WF(u) ⊂ {(y, η) ∈ T ∗S \o : ±η ·X(y) ≥ 0}
⇒WF(G(δS ⊗ u)) ∩ π−1(M \ S) ⊂ N±.
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Application to our setting

Remark

1 If WF(G)′ has no points of the form (x1, 0, x2, ξ2), then

WF(G(v)) ⊂WF(G)′(WF(v)).

2 Recall that we have

WF(G)′ ⊂ {(q, q′) ∈ N ×N : q ∼ q′}.

3 Refinement of a strategy initiated by Moretti.

Dietrich Häfner (Université Grenoble Alpes) Dirac fields on Kerr spacetime and the Hawking radiation III



Proof of the key proposition 1

We have

WF(G(δS ⊗ u)) ⊂WF(G)′(WF(δS ⊗ u)). (7)

Denoting by i : S →M the canonical injection, we have:

WF(δS ⊗ u) ⊂ (i∗)−1(WF(u)) ∪N∗S, (8)

where N∗S = {(x, ξ) ∈ T ∗M \o : x ∈ S, ξ|TxS = 0} is the
conormal bundle to S.
Let now (x1, ξ1) ∈WF(G(δS ⊗ u)) with x1 6∈ S. By (7) there
exists (x0, ξ0) ∈WF(δS ⊗ u) such that (x1, ξ1) ∼ (x0, ξ0). Since
g|Tx0S

is positive semi-definite with kernel RX(x0), we can find
L ⊂ Tx0S space-like with Tx0S = L⊕ RX(x0). The orthogonal
L⊥ is time-like and 2-dimensional, hence contains two null lines,
RX(x0) and Rv for v ∈ Tx0M transverse to S. We can assume
that X(x0)·g(x0)v = 1 and v is future directed.
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Proof of the key proposition 2

We fix a basis (w1, . . . , wn−2) of L and denote by x = (y1, y2, y
′),

y′ ∈ Rn−2 the coordinates in the basis (v,X(x0), w1, . . . , wn−2) of
Tx0

M .
We have then

x·g(x0)x = 2y1y2 − y′ ·hy′, where h > 0,

and consequently, for ξ0 = (η1, η2, η
′) expressed in dual coordinates, we

have
ξ0 ·g(x0)−1ξ0 = 2η1η2 − η′ ·h−1η′. (9)

Since (x0, ξ0) ∈ N , we have ξ0 ·g−1(x0)ξ0 = 0. On the other hand, from
(8) either (x0, η2, η

′) ∈WF(u) or η2 = η′ = 0, i.e. (x0, ξ0) ∈ N∗S.
Since h is positive definite and the l.h.s. of (9) vanishes, η2 = 0 implies
η′ = 0. Therefore we have ξ0 = (η1, η2, η

′) with either

2η1η2 − η′ ·hη′ = 0, (x0, η2, η
′) ∈WF(u), η2 6= 0, (10)

or (x0, ξ0) ∈ N∗S.
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Proof of the key proposition 3

Let us first consider the second case. The fact that S is null is
equivalent to N∗S ⊂ N , which using the fact that N∗S is a
Lagrangian submanifold of T ∗M implies that N∗S is invariant
under the bicharacteristic flow. Therefore the null bicharacteristic
from (x0, ξ0) stays in N∗S, hence above S, and thus cannot reach
the point (x1, ξ1) which is above M \ S.
Let us now consider the first case. Since by assumption
WF(u) ⊂ {(y, η) ∈ T ∗S \o : ±η ·X(y) ≥ 0} we deduce from (10)
that ±η2 > 0 and ±η1 = 1

2η
−1
2 η′ ·hη′ > 0. Therefore

(x0, ξ0) ∈ N± hence (x1, ξ1) ∈ N± since (x1, ξ1) ∼ (x0, ξ0). This
completes the proof of the proposition.
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Choices of surfaces

Σ0

Σ̄T

Null geodesics that do not reach H− nor I − are still problematic.

I However, we can use special form χ 2π
κ+

(i−1LH) and 1R+(i−1LI ) to

control wavefront set in region where vH and vH are time-like.

I If |a|m−1 � 1, then all bad null geodesics reach a region where vH and
vI are both time-like, so we can use propagation of singularities.
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Choices of surfaces

Σ0

Σ̃T

Null geodesics that do not reach H− nor I − are still problematic.

I However, we can use special form χ 2π
κ+

(i−1LH) and 1R+(i−1LI ) to

control wavefront set in region where vH and vH are time-like.

I If |a|m−1 � 1, then all bad null geodesics reach a region where vH and
vI are both time-like, so we can use propagation of singularities.
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Summary

Definition

The Unruh state ωM is the quasi-free state on CAR(M) with solution
space covariances: C±M = S−1M

(
1R±(−ı−1∂U )⊕ 1R±(ı−1∂t∗)

)
SM.

Theorem (Gérad-H-Wrochna ’20)

1 The Unruh state ωM is a pure state.

2 The restriction ωMI
of ωM to MI has covariances

C±MI
= S−1MI

(
χ±H −(−ı−1κ+(U∂U + 1

2 ))⊕ χ±I−(ı−1∂t∗)
)
SMI

for χ±I−(λ) = 1R±(λ), χ±H −(λ) =
(
1 + e∓T

−1
H λ
)−1

, where

TH = (2π)−1κ+ is the Hawking temperature.

Theorem

There exists 0 < a0 ≤ 1 such that if |a|m−1 < a0 then the restriction
ωMI∪II of the Unruh state ωM to MI∪II is a Hadamard state.
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