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0. Introduction



IKKT matrix model

Ishibashi-Kawai-Kitazawa-Tsuchiya,
Nucl.Phys.B 498 (1997) 467, hep-th/9612115 [hep-th]

® a nonperturbative formulation of superstring theory
“lattice gauge theory” of everything (matter, force and space-time)

1
S, = —4792 tr([Au, Av][AF, AY])

1
Sf = —ngtr(%(cr“)a@[flu,wﬁ])

N x N Hermitian matrices S0O(9,1) symmetry

-,9) Lorentz vector
.,16) Majorana-Weyl spinor

Lorentzian metric n = diag(—1,1,---,1)
IS used to raise and lower indices.

® This action can be obtained by taking the zero-volume limit of
supersymmetric Yang-Mills theory in 10 dimensions.



the Euclidean IKKT model

Aoki-lso-Kawai-Kitazawa-Tada ('98)
(o M . V4 *
Wick rotation” : Ag = —1A1qp Hotta-JN-Tsuchiya ('98)

Ze = / dA dw e~ (So+5r) — / dA e=Sb PFM(A)

Sp ox tr (F,W)2 positive semi-definite!

Euclidean model is well defined without any cutoff.
Krauth-Nicolai-Staudacher ("98), Austing-Wheater ('01)

PfM(A) : complex valued

» Fluctuation of the phase becomes milder
for lower dimensional configs.

A possible mechanism for SSB of SO(10) J.N.-Venizzi ('00)

Emergence of 3d space suggested by complex Langevin simulation.
Anagnostopoulos, et al. JHEP 06 (2020) 069, arXiv: 2002.07410 [hep-th]



Partition function of the Lorentzian IKKT model

Kim-JN-Tsuchiya Phys.Rev.Lett. 108 (2012) 011601,
1108.1540 [hep-th]

partition function

zL= [ da d\lf: [ daei pra(a)

This seems to be natural from the
connection to the worldsheet theory.

) S = [y (L X2 4 ST X )

fO — _i€2 The worldsheet coordinates should
also be Wick-rotated.

We will show that this model, after an appropriate regularization,
has surprising properties due to the Lorentz symmetry,
which forms a non-compact group.
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1.How to make the Lorentzian model
well-defined



Regularizing the Lorentzian model

® Unlike the Euclidean model,
the Lorentzian model is NOT well defined as it is.

7, = / dA dW ¢! (SoF56) — / dAleM(A)

pure phase factor polynomial in A
real valued unlike Euclidean

® Introducing convergence factor

1
Sb = Z N {—2 tI’(FOZ')Q + tl’(F,;j)z}

s = %N {—2e7 " tr(Fp:)? + € tr(Fy)?}

3, -
— —1xE
This corresponds to deforming the contour as Ao = e_l 4:40
T i Az' = ezﬁgA@-
g = > <—> Euclidean
37 T
(O(Ap, A;))L = (O(e_@?WAO, ez%Ai))E due to Cauchy’s theorem

(Yuhma Asano ’19, private communication)



Confirmation of the equivalence by CL simulation

10D bosonic model

(trap?) =E8) r(3p?)

0.3 f 25 . o A
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The emergent space-time is complex and has Euclidean signature!

Can we regularize the Lorentzian IKKT model
in a different manner?

;




Introducing a Lorentz invariant mass term

Anagnostopoulos-Azuma-Hatakeyama-

— /dA e’i(Sb‘i'Sm)PfM (A) Hirasawa-J.N.-Papadoudis-Tsuchiya,

work in progress

Sim = 2 N {€)er (40~ Dtr(4)?)

convergence factor
1 _ .
Cf) Slgg) = Z N {—QG_ZEtI’(FOZ')Q + et tr(Fw)Q}
contour deformation to a model with SO(D)

v <0 e — —0 O
v > 0 e — —+0 X (leads to unbounded action)

By choosing v > O, we can define the Lorentzian IKKT model
in such a way that it is inequivalent to the Euclidean IKKT model.

Indeed, we will see surprising properties of the model for v > O,




Classical solutions

e i(A4+'YA2) A, =/ A
Z /dAe H 1h/| a Classical solutions

/dAei’YQ(A4+A~2) Ve o dominate at large |~|.

h

Hatakeyama-Matsumoto-J.N.-
PR v _
Eg. of motion: [A”,[Ay, Au]] —vAL =0 Tsuchiya-Yosprakob,

PTEP 2020 (2020) 4, 043B10

® A, =0 is always a solution. 07
(trivial saddle) 06 | ]

® Typical Hermitian A, solutions 0.5 - .

show expanding behavior for v > 0

R(t)

Not true for v < 0 ! 037 I

0.2 i

® Space-time dimensionality 01 L i
cannot be determined classically. 0 ‘ ‘ ‘

-1 —0.5 0 0.5 1

Non-trivial saddle point with expanding behavior may dominate the
path integral due to its large entropy inthe N — oo, v — O limits.



A historical remark

Mass term is introduced to obtain interesting classical solutions.

® H. C. Steinacker, Gravity as a quantum effect on quantum space-time,
Phys. Lett. B 827 (2022) 136946, [arXiv:2110.03936].

® H. C. Steinacker, Cosmological space-times with resolved Big Bang
in Yang-Mills matrix models, JHEP 02 (2018) 033,
[arXiv:1709.10480].

® S.-W. Kim, J. Nishimura, and A. Tsuchiya, Expanding universe as a classical solution
in the Lorentzian matrix model for nonperturbative superstring theory, Phys. Rev.
D86 (2012) 027901, [arXiv:1110.4803].

® S.-W. Kim, J. Nishimura, and A. Tsuchiya, Late time behaviors of the expanding
universe in the IIB matrix model, JHEP 10 (2012) 147, [arXiv:1208.0711].

® H. C. Steinacker, Quantized open FRW cosmology from Yang-Mills matrix models,
Phys. Lett. B782 (2018) 176—180, [arXiv:1710.11495].

® M. Sperling and H. C. Steinacker, Covariant cosmological quantum space-time,
higher-spin and gravity in the IKKT matrix model, JHEP 07 (2019) 010,
[arXiv:1901.03522].



2. Surprising properties
due to noncompact symmetry



Rotational v.s. Lorentzian symmetries

® Gaussian integrals with rotational or Lorentz symmetry
A— /d.ﬁC e’L"}/(.CCl—I— _I_CUD 1+:CD) ,Y—D/Q

. TQ = —1Tp
A /d.’L’ 617(55%4"”4'1%_1—33%) o ,Y—D/Q

Wick rotation

® One might think that the two symmetries are not very different.
However, this is actually NOT the case !

7 = / /dD k(@i +teh_tep-1) _ 5vols_D | < o0

Contour deformation
Sp_1 ={$ERD|ZE%+"'+$2D_1+332D: 1) is not possible !

Z = / /dD;ce““(m%Jf +oh 16 1)—2vo|H,g)1=oo 0

Hidy ={zeRP a3+ 423 ; —2f=1)

hyperboloid of one sheet



Lorentz invariant IKKT model with a mass term

7 = / dA ¢ (SotSmIprag(A)
convergence factor

Sm = %N*}/ {tr(Ao)2 _tr(A,,;)Q}

contour deformation to an SO(D) model

v <O e — —0 O
v > 0 E — 0 X (leads to unbounded action)

According to the previous discussion, it is suggested that

v <0 mm) 7 < oo
v >0 M) <00 or Z =00

We will show that the partition function indeed diverges for v > O
in the simplest case of N = 2 bosonic model.




3. Confirmation in the N=2 bosonic model
~numerical simulation



Classical solutions for N=2 bosonic model

For N=2, we can obtain all the solutions up to symmetries.

classical EOM : [A",[Av, Au]l] —vAu =0

_ \/70‘& pw=1,2,3 _ VYo n=1,2
i > 0 Ap =0 { otherwise Ap = { 0 otherwise
(trivial solution) (Pauli solution) (squashed Pauli solution)
remaining symmetries
SO(9,1) x SU(2) diagonal subgroup of diagonal subgroup of
unbroken SO(3) x SU(2) SO(2) x U(1)

Nontrivial solutions exist only for v+ > O .




Numerical simulation around the Pauli solution

2
introduced to regularize the divergence
due to Lorentz symmetry

z=[daeotsm sy =2 Ny {Dr(a0)? - tr(4)?)

® initial configuration :

2 —
A, = {\060“’ uth 1’2_’3 (Pauli solution)
otherwise

® results obtained by the generalized Lefschetz thimble method :

(sample configurations only on the thimble associated with the Pauli solution)

1 C
2ir (A 2>N_ ¢~ 14.7
(tr(40)?) ~ ¢

3
c= ED =15 (1/D expansion)

1 2, 1 N2\ (fini N§
(—tr (40)2 + 1t (4)?) = (finite) ~ 7y (at large 7)

The divergence due to Lorentz symmetry is clearly confirmed.




Diverging behaviors for Pauli and squashed Pauli

- =
60;<%U(AO)2> ¢ PRELIMINARY
! D=10,N=2% =1 Pauli
S0t 14.7
I g
40}
é’ ® pauli
E 30 squash pauli ]
¢ |
20¢
10 .46
| €
0; ..........................
0 1 > 3 A 5 1
1 g

Pauli has faster diverging behavior than squashed Pauli.



The divergence of partition function
<%tr (AO)2> ~ —%Iogz

<%tr(z40)2> Ng » Z ~e €

Pauli c~ 14.7 Partition function diverges

faster for the Pauli thimble !
squashed Pauli c~ 4.6

This implies that Pauli thimble dominates
in the N = 2 bosonic model at v > 0.

Note: This does not mean that the model is ill defined.
E.g., the expectation value (tr (A, A")) is finite.



3. Confirmation in the N=2 bosonic model
~ 1/D expansion



1/D expansion

Used in the Euclidean model

N2-1
AH — Z Afb t9 ha,b ~ AZAMb without the mass term
a=1 Hotta-J.N.-Tsuchiya ("98)

7 = /dA ei(A4+’7/A2)

/ dh f dA (WP HhAZ 47 A%)

ih2—Ljogdet K _ 1
/dhe > ) =

/ dh e%ﬂf[m

D appears here only as a parameter.

At large D with fixed ~,
OSesf[h] ~ e
5%; =0 W) h4iK 1=0




Large D saddles for N=2 bosonic model
largeDSPE:  h+iK 1 =0

For N=2, we can obtain all the relevant saddle points up to symmetries.

’Y<0 h=ovt)1

>0 h=01 h = o)1 h = ~diag (11;—2)
o) = TEN ZQ kil Note that these are complex saddles !
remaining symmetries
SU(2) SU(2) U(1)
identification
trivial solution Pauli solution squashed Pauli solution

SO(9,1) x@ diagonal subgroup of diagonal subgroup of
unbroken SO(3) @ SO(2) x@



Singularity on the real axis

B=U(_)1 E:fu(_l_)]_
vi)saddle (A=0) vitisaddle (Pauli)

original integration contour

sing —

=
N | =21

1 singularity

This simply reflects the fact that a model like Z = /dA ¢'” is not
well defined because the integral is NOT absolutely convergent.

Also true for the SO(D) invariant case !



The case of SO(D) invariant model
obtained by replacing Ag =iAp

I —1€ oo AN\ 2D
Sm = —5 Nve {t"(AD)Q + tr(Az')Q} Z(w) ~ e80T (%) (large D)
E:fu(_)]_ E:U(+)1
vt saddle (a=0) vi*) saddle (Pauli)

L E

The v(+) saddle becomes relevant and

the associated partition function becomes finite in the € — 0 limit.

For 5 < 0, the v(+) saddle becomes irrelevant

since the singularity is shifted in the opposite direction.
consistent with the existence of the Pauli solution only for ¥ > O.



The case of Lorentz invariant model

3
1 . , o ~\ =D
Sm = EN’y{els 'tl’(Ao)2 —e 'F tl’(Ai)Q} Z(’l)(+)) ~ e—%sz}/Q (%)2 (Iarge D)
BZ’U(_)]_ TII’U(_'_)]_
v saddle (A=0) vit)saddle (Pauli)

~

Convergence factor acts on
space and time differently.

new saddle point appears near fsing = %1

Znew ™~ 8_%iD’72(5@_%D (large D)
diverges as ¢ — 0O
The new saddle point dominates in the ¢ — 0 limit.



J—

~—

Transition at finite ¢

~ 3D
Z(’U(_I_)) ~ e—%iD’?Q (1)2
2

3.0~ 3 »
Znew ~ e 807 (v 5)_§D

-

| Znew| > |Z(v(T))

~

2
for v < Ac = \ﬁ (large D)
o & J

Probing this transition by calculating observables

1 21 0O
——tr (A, A" — —log Z
<\/E (A )> ND O~ J
3~
RN
Zf}/@i}y
1 py\ — _ 3 . 3
Im<\/5tr (AuLA )> 55 — 2%

> for the v{(1+) saddle
~ for the new saddle

atﬁ"/m\@



Results for the Pauli thimble

Im <Ltr (AMA”)>

vD
] \ PRELIMINARY ® cata
2- \ D=1O,N:21€=0_3 2y .
R 2
7 h 3 W g
Nl\:- 1 ~ _ 25 (v saddle)
< - - _ _
5 - — -4 _ ¥ N |
] S —
s A e - 2
g -1 { Ge=\>=258
: (for e = 0.3)
_o} .
—— (new saddle
Qe (new )
_3}

v

The transition is clearly confirmed by the thimble calculations.



What is this transition ?



time-like configs.

V.

s. space-like configs.

R <0 time-like config.
R > 0 space-like config.

PRELIM
D=10,N=

INARY

2.€=0.3

{

space-like

® data

configurations

time-like
configurations

~ 2
S

(for e = 0.3)

0 i

2

v

3

4

5

The divergence is caused by time-like configs !




No divergence for space-like configs.

(tr (40)%) 5=1

Pauli_-

60}

50F PRELIM[NARY

D=10,N=2, ¥y = 1

N
(-

----- 1/D gxpansion [1—5+C]
E

result(22% 41 128)
E

® Numerical

Re{<Tr Ay%>}
W
()

N
o

~ congst.

—_—
o
ot

For ¥ = oo, we expect to see <%tr (A0)2> — const. as € — 0.



The interpretation of the transition

4,

—

non-compactness
— of Lorentz sym.
causes divergence

time-like configs.

non-compactness
of Lorentz sym.
does NOT cause

. . . .
. » - u »
. x . » »
. " - x u
. » . . .
. x - 0 3
. » . » 0
. ] . ] Ll
. ] . L] Ll
. o . - o
. ¥ . » ¥
. U . ¥ U
. 0 . 0 0
. . . . N N
. A \J ¥ &~
. . o LS -
. e e D
* @ > *
di
===

Pauli Pauli’ Pauli”

\ A 4

Lorentz tr. Lorentz tr.

space-like configs.®

transition
at 32 =2
(large D)

e — 0 makes time-like configs dominate.

v — oo Mmakes space-like configs dominate.



4. Summary



summary

® Lorentzian IKKT matrix model is not well defined as it is
unlike the Euclidean version studied earlier.

® A naive regularization makes it equivalent to the Euclidean model.

® We have proposed a regularization using a Lorentz invariant
mass term, which makes it inequivalent to the Euclidean model.

® In the N=2 bosonic model, the partition function for the Pauli
thimble diverges due to the non-compact Lorentz transformations
of time-like configurations.

® As a result, the Pauli thimble dominates forany v > 0,

® The SO(D) symmetric model obtained by replacing Ag = iAp
does not have these properties, which are, hence, of genuine
Lorentzian nature.



Future prospects
® SUSY case

1/D expansion cannot be applied (SUSY cannot be respected),
but numerical simulation is doable. N=2 case is on-going.

® |arger N

The computational cost of the generalized Lefschetz thimble method
grows with N as O(N®). But we may still do N=4,8,16,...
‘@ Numerical solutions of the classical equation of motion )

Expanding behavior is obtained generically for v > O.
The number of expanding directions is arbitrary.

\\ Hatakeyama-Matsumoto-J.N.-Tsuchiya-Yosprakob, PTEP 2020 (2020) 4, 043B10 J

® Numerical simulation based on the complex Langevin method

The bosonic model simulation suggests (1+1)D expanding space-time.
Pfaffian suppresses configs. with not more than 2 extended directions.

Kostas Anagnostopoulos’ talk
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