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Outline
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BV Algebras

A BV algebra is a graded commutative algebra (A, ·) equipped
with a graded Lie bracket {− ,−} of degree +1 and operator
∆ : A→ A such that:

• for any a ∈ A, {a ,−} acts as a derivation on A,

{a, b · c} = {a, b} · c + (−1)(a+1)bb · {a, c} ;

• ∆ acts as a derivation for {− ,−},

∆{a, b} = {∆a, b}+ (−1)a+1{a,∆b} ;

• {− ,−} is the failure of ∆ being a derivation for ·,

(−1)a{a, b} = ∆(a · b)−∆a · b − (−1)aa ·∆b .
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Finite-dimensional case: toy model
[Gwilliam]
Consider S = 1

2ax
2, and we want to compute

〈f 〉 =
1

N

∫
dx e iS/~f (x) , where f is a polynomial .

Want to show that the cohomology of the BV differential computes this.
Graded vector space given by space of functions:

F (x , x∗) = f (x) + x∗g(x) ,

{F ,G} :=
∂rF

∂x∗
∂G

∂x
− ∂F

∂x

∂lG

∂x∗
, ∆ = − ∂2

∂x∗∂x
.

One can define BV differential δ,

δ := {S , ·} − i~∆ = −ax ∂

∂x∗
+ i~

∂2

∂x∂x∗
, δ2 = 0 .

where S satisfies
1

2
{S ,S} − i~∆S = 0 .
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Finite-dimensional case: compute δ-cohomology
Apply δ on F (x , x∗):

δF (x , x∗) = −axg(x) + i~g ′(x) ,

This is zero if g(x) = e−iax
2/2~, but this is not a polynomial, so

kerδ is given by g(x) = 0: kerδ = {F (x , x∗) ≡ f (x)}.
We want to find the cohomology classes of xn for all n.

δ(x∗xn) = −axn+1 + i~nxn−1

In cohomology we see that xn+1 ∼ i~n
a xn−1.

For instance, with n = 0, x ∼ 0, and n = 1, x2 ∼ i~/a.
By recursion,

xn ∼

{
0 for n odd(
i~
a

) n
2 (n − 1)(n − 3) · · · · · 1 for n even

This is the expectation value 〈xn〉.
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Setup

Now we want quantum mechanics described by an action,

S [φ] =

∫ tf

ti

dt L(φ(t), φ̇(t), t) , φ ∈ C∞([ti , tf ]) .

Enlarge space of dynamical variables, V = V 0 ⊕ V 1,

V 0 ≡ C∞([ti , tf ]) , V 1 ≡ ΠC∞([ti , tf ])

where fields in V 0 denoted by φ, anti-fields in V 1 denoted by φ∗.
Free theory is described by the chain complex (V , ∂):

0 −→ V 0 ∂−→ V 1 −→ 0

6 / 21



BV Structure

To define BV structure, we work with functionals F [φ, φ∗],
Graded vector space given by

F(V ) = · · · ⊕ F(V )−2 ⊕F(V )−1 ⊕F(V )0

where the grading is -[number of φ∗] in the functional.
Build the BV complex: (F(V ), δ).

δ := Q − i~∆ ,

Q = −
∫ tf

ti

dt EL(φ(t))
δ

δφ∗(t)
, ∆ = −

∫ tf

ti

dt
δ

δφ(t)δφ∗(t)
,

where EL(φ(t)) = 0 are the Euler-Lagrange equations.
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Roadmap

Goal is to compute cohomology of δ.

• First, we establish a homotopy retract from (V , ∂) to the
phase space (R2, 0).

• This homotopy retract gives rise to a homotopy retract
(F(V ),Q0)→ (F(R2), 0), where Q0 is the free, classical part
of δ.

• Then we apply the perturbation lemma and we derive the
cohomology of δ.
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Homotopy Retract
Given (xi , xf ) ∈ R2, let φxi ,xf be unique solution with these bcs:

(φxi ,xf (ti ), φxi ,xf (tf )) = (xi , xf )

We can define the maps

i : R2 −→ V , (xi , xf ) 7−→ (φ, φ∗) = (φxi ,xf , 0) .

p : V −→ R2 , (φ, φ∗) 7−→ (φ(ti ), φ(tf )) ,

Diagramatically,

0 V 0 V 1 0

0 R2 0 0

∂

p 0

0

We have a homotopy retract if there is a map h : V 1 → V 0,

p ◦ i = id , i ◦ p = id− h ◦ ∂ .
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Homotopy Retract
Homotopy retract from (V , ∂)→ (R2, 0) gives rise to a homotopy
retract from (F(V ),Q0)→ (F(R2), 0).
Lifting to space of functionals

i∗ : F(V ) −→ F(R2) , i∗(F ) := F ◦ i .

p∗ : F(R2) −→ F(V ) , p∗(f ) = f ◦ p .
Any function f defines a functional via

F [φ, φ∗] = f (p(φ, φ∗)) = f (φ(ti ), φ(tf )) .

We can show that

Q0H(φ(t)) = φ(t)− p∗i∗φ(t) , HQ0(φ∗(t)) = φ∗(t)

where φ(t) is now viewed as functional, H is the homotopy map on
F(V ), and Q0 is the free part of Q, e.g. for harmonic oscillator,

Q0 =

∫ tf

ti

dt(φ̈(t) + ω2φ(t))
δ

δφ∗(t))
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The Recipe

Want to compute the normalised expectation value of F [φ, φ∗]:
Find a member of the cohomology class of F , i.e. F ′ = F + δG ,
such that

F ′ = I (f ) = p∗(f ) = f ◦ p

where f is a function of the boundary conditions.

Then f is the normalised expectation value of F .

In operator language,

f (x , y) =
〈y ; tf |T (F )|x ; ti 〉
〈y ; tf |x ; ti 〉

|x ; ti 〉, |y ; tf 〉 are eigenstates of φ̂(t), i.e. φ̂(t) |x ; t〉 = x |x ; t〉,
T : time ordering.
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Perturbation Lemma

Given the homotopy retract (F(V ),Q0,H)→ (F(R2), 0), for the
free theory, we want to extend to quantum mechanics on the
interacting theory.

We view the BV-differential as a perturbed Q0.

δ = Q0 + η , η = QI − i~∆

Perturbation lemma gives us the homotopy retract
(F(V ), δ,H ′)→ (F(R2), 0) with new projection & inclusion maps:

P ′ = P
∑
n≥0

(−ηH)n , I ′ = I , where P = i∗ , I = p∗ .
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Perturbation Lemma

We now have the homotopy retract (F(V ), δ,H ′)→ (F(R2), 0)
with P ′ : F(V )→ F(R2), and I ′ : F(R2)→ F(V ).
Given a functional F ∈ F(V ), let us define

f := P ′(F ) , F ′ := I ′P ′(F ) .

The homotopy retract tells us that

F − F ′ = (1− I ′P ′)(F ) = δ(H ′(F )) ,

so F and F ′ are in the same cohomology class wrt δ.

For a functional F ∈ F(V ), we can find a member of its
δ-cohomology class that can be written as F ′ = I ′(f ) for a
function f on phase space R2.
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Computing Expectation Values

Now we want to show that by using P ′ : F(V )→ F(R2),
f := P ′(F ) computes the expectation value of F .

We first perturb Q0 by the quantum part of δ so the perturbed
projection is:

P1 = P
∑
n≥0

(i~∆H)n

We can show that

P1 = P
∑
n≥0

(i~∆H)n = P exp

(
i~
2
C

)
,

where

C =

∫
dtds K (t, s)

δ2

δφ(t)δφ(s))
,

and K (t, s) is the Green’s function.
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Relation to path integral

Now we apply the perturbation lemma a second time, with the
interacting part of the differential so that

P2 = P1

∑
n≥0

(−QIH)n

We find that P ′ (as defined by [Doubek, Jurčo, Pulmann, 2019])

P ′(F ) =
P1(F exp(iSI/~))

Z
, Z = P1 exp(iSI/~) .

is equal to P2(F ).

〈y ; tf |F [φ]|x ; ti 〉
〈y ; tf |x ; ti 〉

=
P1(F exp(iSI/~))

Z
= P ′(F ) = f
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Application: Harmonic Oscillator

BV-differential for harmonic oscillator

δ =

∫ tf

ti

dt

[(
φ̈(t) + ω2φ(t)

) δ

δφ∗(t)
+ i~

δ2

δφ∗(t)δφ(t)

]
.

Define projection: p : φ→ (φ(ti ), φ(tf )
)

(Dirichlet bcs).
We have the homotopy map (Dirichlet propagator):

h(f ) =

∫ t

ti

ds f (s)
sinω(t − s)

ω
− sinω(t − ti )

sinω(tf − ti )

∫ tf

ti

ds f (s)
sinω(tf − s)

ω
.

We want to compute a two-point function for F = φ(t)φ(s).
Applying the perturbation lemma,

f (x , y) =
∏
r=t,s

{
sinω(r − ti )

sinω(tf − ti )
y +

sinω(tf − r)

sinω(tf − ti )
x

}
− i~KDD(t, s) .
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Computation with Coherent States

The most general projections we consider are:

p : V −→ R2 ,

φ 7−→ (aiφ(ti ) + bi φ̇(ti ), af φ(tf ) + bf φ̇(tf )) .

In this case, the boundary states change.

|x , ti 〉 is an eigenstate
(
ai φ̂(ti ) + bi π̂(ti )

)
|x , ti 〉 = x |x , ti 〉;

〈y , tf | is an eigenstate
(
af φ̂(tf ) + bf π̂(tf )

)
〈y , tf | = y 〈y , tf |,

where π̂(t) is the momentum operator at t.

Relevant for coherent states |z〉, which are eigenstates of the
annihilation operator a,

a |z〉 = z |z〉 , 〈z | a† = 〈z | z .
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Computation with Coherent States
Define projection p : φ→ (a(ti ), a

†(tf )) , φ∗ → 0, where

a(t) =
√

ω
2~
(
φ(t) + i

ω φ̇(t)
)
, a†(t) =

√
ω
2~
(
φ(t)− i

ω φ̇(t)
)
.

The homotopy map is now the Feynman propagator:

hF (f )(t) = i

∫ t

ti

dsf (s)
e−iω(t−s)

2ω
+ i

∫ tf

t
dsf (s)

e iω(t−s)

2ω

With this we compute the two-point function wrt coherent states:

f (w , z) =
〈w |T (φ(t)φ(s)) |z〉

〈w |z〉
,

where f (w , z) = −i~KF (t, s)

+ ~
2ω

(
ze−iω(t−ti ) + we iω(t−tf )

)(
ze−iω(s−ti ) + we iω(s−tf )

)
.

Setting w = z = 0 gives us the vacuum expectation value.
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Application: Unruh Effect

Given the vacuum |0〉 annihilated by âk in an inertial frame,
we want to compute the expectation value of the number operator
given by annihilation/creation operators of an accelerated frame.

〈Nk〉 ≡ 〈0| b̂†k b̂k |0〉 .

Fields now depend on time and space, so the theory is described by

0 V 0 V 1 0 ,∂

where V 0 = C∞([ti , tf ]× R), V 1 = ΠC∞([ti , tf ]× R),
and ∂(φ) = (∂2t − ∂2x )φ.
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Application: Unruh Effect
Want to compute the expectation value

f (c , d) = lim
t̃→0

〈d |T
(
b̂†k(t̃)b̂k(0)

)
|c〉

〈d |c〉
,

where |c〉 , |d〉 are coherent states wrt ak with eigenvals c(k), d(k).

We can determine F [φ] by expressing bk , b
†
k in terms of φ, e.g.

bk(t̃) =

∫
dx̃ e−ikx̃

√
Ωk

4π~

(
φ+

i

Ωk
∂t̃φ

)
,

The projector we want is p : V → C∞(R)× C∞(R),

p(φ, φ∗) = (ak(ti ), a
†
l (tf )) .

We compute f (c, d) = P1F (c , d), and with c = d = 0, we obtain

f (0, 0) = (e2πk/a − 1)−1
∫ ∞
−∞

dl
1

2πaωl
= 〈Nk〉 .
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Conclusion & Outlook

• We show that the δ-cohomology computes quantum
expectation values for certain types of states.

• We found a recipe to pick the correct representative of the
δ-cohomology depending on in and out states.

• Applied formulation to harmonic oscillator and QFT in curved
spacetime (derivation of Unruh effect).

• Future work: gauge theories?

• Computing quantum correlation functions in cosmological
perturbation theory?
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