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Outline

Key points: the cohomology of the BV differential computes
quantum expectation values, and we give a recipe on how to
compute them.

@ Batalin-Vilkovisky Algebras

@® Finite-dimensional case ([Gwilliam])
© Homotopy Retract

O Perturbation Lemma

® Applications
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BV Algebras

A BV algebra is a graded commutative algebra (A, ) equipped
with a graded Lie bracket {—, —} of degree +1 and operator
A : A— A such that:

e for any a € A, {a,—} acts as a derivation on A,
{a,b-c} ={a, b} -c+(-1)EVPp. (4 ¢},
® A acts as a derivation for {—, —},
A{a, b} = {Aa, b} + (—1)""1{a, Ab};
e {—,—} is the failure of A being a derivation for -,

(-1)%{a,b} =A(a-b)—Aa-b—(—1)%a- Ab.
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Finite-dimensional case: toy model
[Gwilliam]
Consider S = ax?, and we want to compute

1 .
(fy = N/dx e's/h)"(x)7 where f is a polynomial.

Want to show that the cohomology of the BV differential computes this.

Graded vector space given by space of functions:

Flx,x") = f(x) + x"g(x),

__0,FOG OFOG 02
= g ax “axax’ 27 Tawax
One can define BV differential 9,

. 0 0
0:={S,-} —ihA = —axo + /hm ,

where S satisfies 1
5{5,5} — (hRAS =0.
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Finite-dimensional case: compute d-cohomology

Apply 6 on F(x,x*):

SF(x,x*) = —axg(x) + ihg'(x),

This is zero if g(x) = e~ @*/2h Lyt this is not a polynomial, so

kerd is given by g(x) = 0: kerd = {F(x,x*) = f(x)}.
We want to find the cohomology classes of x” for all n.

§(x*x™) = —ax" 4 ihnx"1

In cohomology we see that x"+1 ~ nyn—1,
For instance, with n =0, x ~ 0, and n =1, x?> ~ ih/a.
By recursion,

) { 0 for n odd
X~ ih\ 5
(?) 2(n—=1(n—-3)----- 1 for n even

This is the expectation value (x").
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Setup

Now we want quantum mechanics described by an action,

sto) = | L6, d(e. 1), b e C((tnt).

Enlarge space of dynamical variables, V = V9 ¢ V1,
VO = C([ti, tr]) » vi= NC>([t;, t])

where fields in V© denoted by ¢, anti-fields in V! denoted by ¢*.
Free theory is described by the chain complex (V, 9):

0 — VO 2y v 5 g
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BV Structure

To define BV structure, we work with functionals F[¢, ¢*],
Graded vector space given by

FV)=-—aFV)2aF(V) e F(V)°

where the grading is -[number of ¢*] in the functional.
Build the BV complex: (F(V),9).

6:=Q —ihA,

tr 5 t 0
Q= ‘/ ELOD) 55w A ‘/ W o) (D)

where EL(4(t)) = 0 are the Euler-Lagrange equations.
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Roadmap

Goal is to compute cohomology of 4.

e First, we establish a homotopy retract from (V/,0) to the
phase space (R?,0).

® This homotopy retract gives rise to a homotopy retract
(F(V), Q) — (F(R?),0), where Q is the free, classical part
of 4.

® Then we apply the perturbation lemma and we derive the
cohomology of 4.
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Homotopy Retract
Given (x;, xr) € R?, let ¢y, », be unique solution with these bcs:

(¢thf(ti)? ¢Xi7Xf(tf)) = (Xi7 Xf)

We can define the maps
i:R2 — Va (Xivxf)'—>(¢7¢*):(d)x,-,xmo)'

p:V—R> (6% — (6(t), d(tr)),

Diagramatically,

0 Vo 9, yt 0
I
0 R2 % 50 0

We have a homotopy retract if there is a map h: VI — V0,
poi=id, Jjop=id—hod.
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Homotopy Retract

Homotopy retract from (V,9) — (R?,0) gives rise to a homotopy
retract from (F(V), Q) — (F(R?),0).
Lifting to space of functionals

" F(V)— F(R?®), i*(F):=Foi.
priFRY) — F(V),  p(f)=fop.
Any function f defines a functional via
Flo,¢"] = f(p(¢,¢%)) = f(o(ti), ¢(tr)) -
We can show that
QoH(o(t)) = ¢(t) — p*i*d(t),  HQu(4*(t)) = ¢"(¢)

where ¢(t) is now viewed as functional, H is the homotopy map on
F(V), and Qg is the free part of Q, e.g. for harmonic oscillator,

L et - Pt
Qo= [ a0 + o) g5y
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The Recipe

Want to compute the normalised expectation value of F[¢, ¢*]:
Find a member of the cohomology class of F, i.e. F/' = F + 4G,
such that

Fr=I(f)=p'(f)=Ffop

where f is a function of the boundary conditions.
Then f is the normalised expectation value of F.

In operator language,

(v; tel T(F)Ix: ti)

flxy) = (vi telx; ti)

|x; ti), |y; tr) are eigenstates of ¢(t), i.e. () |x; t) = x|x; 1),
T: time ordering.
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Perturbation Lemma

Given the homotopy retract (F(V), Qo, H) — (F(R?),0), for the
free theory, we want to extend to quantum mechanics on the
interacting theory.

We view the BV-differential as a perturbed Q.
6= Qo+, n = Q —ihA

Perturbation lemma gives us the homotopy retract
(F(V),6,H') — (F(R?),0) with new projection & inclusion maps:

P'=P (-nH)", I'=1, where P=i*, | =p".
n>0
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Perturbation Lemma

We now have the homotopy retract (F(V),d, H') — (F(R?),0)
with P': F(V) — F(R?), and I' : F(R?) — F(V).
Given a functional F € F(V), let us define
f:=P'(F), F':=1'P'(F).
The homotopy retract tells us that
F—F =(@-1P)F)=6(H(F)),

so F and F’ are in the same cohomology class wrt .

For a functional F € F(V), we can find a member of its
d-cohomology class that can be written as F/ = I'(f) for a
function f on phase space R?.
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Computing Expectation Values

Now we want to show that by using P' : F(V) — F(RR?),
f := P'(F) computes the expectation value of F.

We first perturb Qg by the quantum part of d so the perturbed
projection is:
Py=P (ihAH)"
n>0

We can show that
. n ih
Py = Pn§>0(/hAH) = Pexp <2 C> ,

where
(52

C= /dtds K(t,s)m,

and K(t,s) is the Green's function.
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Relation to path integral

Now we apply the perturbation lemma a second time, with the
interacting part of the differential so that

Py=P1) (—QH)"

n>0
We find that P’ (as defined by [Doubek, Juréo, Pulmann, 2019])

Pl(F exp(iS,/h))
7 )

P'(F) = Z = P1exp(iS;/h).

is equal to P(F).

it ol by PuFep(iSi/h) o
ittty .z H=f
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Application: Harmonic Oscillator

BV-differential for harmonic oscillator
B tr - 5 1) ) 52 ]
o=, a 660+ 000 5550 + g

Define projection: p : ¢ — (¢(t;), ¢(tr)) (Dirichlet bcs).
We have the homotopy map (Dirichlet propagator):

w sinw(tr — t;) w

i i

We want to compute a two-point function for F = ¢(t)d(s).
Applying the perturbation lemma,

Flx,y) = H { sinw(r — t;) y+ sinw(tr —r) x} ihKop(t.s).

sin w(tf — t,') sin (JJ(tf — t,')

r=t,s
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Computation with Coherent States

The most general projections we consider are:
p:V —R2,
¢ — (ai(t) + bid(1), ar(tr) + br(tr)).

In this case, the boundary states change.

)+ 1)) 1x, ti) = x |x, t;);

|x, ti) is an eigenstate (a; bi#(t
tr) + bei(tr)) (v, te| = y {y. tel,

)+
(y, tf| is an eigenstate (aro(t
where 7(t) is the momentum operator at t.

Relevant for coherent states |z), which are eigenstates of the
annihilation operator a,

alz) =z|z), (z]a' =(z|z
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Computation with Coherent States
Define projection p : ¢ — (a(t;),a'(tr)), ¢* — 0, where
a(t) = /5 (6(6) + £8(1), a(e) = \/55(6(8) — Lo(r))

The homotopy map is now the Feynman propagator:

t efiw(tfs) tr eiw(tfs)
he(f)(t) = i/ dsf(s)—— + i/ dsf(s)
" " 2w

2w

With this we compute the two-point function wrt coherent states:

(W[ T(¢(t)¢(s)) |2)

(wlz)

f(w,z) =

)

where f(w,z) = —ihKEg(t,s)
+ 2i(ze—iw(t—t,-) + Weiw(t—tf))(ze—iw(s—t/) + Weiw(s—t,c)) '

Setting w = z = 0 gives us the vacuum expectation value.

18/21



Application: Unruh Effect

Given the vacuum |0) annihilated by 4 in an inertial frame,
we want to compute the expectation value of the number operator
given by annihilation/creation operators of an accelerated frame.

(Ni) = (0] Bl by |0) -

Fields now depend on time and space, so the theory is described by

0 Vo 2., i 0,

where V0 = C®([t;, t7] x R), VI = NC>®([t;, tr] x R),
and 9(¢) = (07 — 05)¢.
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Application: Unruh Effect

Want to compute the expectation value

_ o (A T(B(H)B(0)) [€)
fled)=1m, (d]c) ’

where |c) , |d) are coherent states wrt a, with eigenvals c(k), d(k).
We can determine F[¢] by expressing by, bl in terms of ¢, e.g.

by (%) /d” 'kx\/><¢+ t¢>>

The projector we want is p: V — C*°(R) x C>®(R),
p(#.¢") = (ak(t). 3] (1))

We compute f(c,d) = P1F(c,d), and with ¢ = d = 0, we obtain

£(0,0) = (e27/2 —1 /dl

7raw, _<N >
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Conclusion & Outlook

We show that the §-cohomology computes quantum
expectation values for certain types of states.

We found a recipe to pick the correct representative of the
d-cohomology depending on in and out states.

Applied formulation to harmonic oscillator and QFT in curved
spacetime (derivation of Unruh effect).

Future work: gauge theories?

Computing quantum correlation functions in cosmological
perturbation theory?

21/21



	Batalin-Vilkovisky Algebras
	Finite-dimensional case
	Homotopy Retract
	Perturbation Lemma
	Applications

