First expansive returns and cross sections

Tom Schmidt

Oregon State University

April 24, 2025

E. Schrödinger Institute

Tom Schmidt

First expansive returns and cross sections

Tom Schmidt

Oregon State University

April 24, 2025

E. Schrödinger Institute

Tom Schmidt

1 Families of generalized α -cf of Calta-Kraaikamp-S

- 2 2-D extensions
- 3 Cross section conjecture
- 4 Cross section and entropy
- 5 Sketch of proof

Tom Schmidt

Families of generalized α -cf of Calta-Kraaikamp-S $\bullet \circ \circ$	2-D extensions	Cross section conjecture O	Cross section and entropy 000000	Sketch of p

Group

Fix $n \ge 3$. Let $\nu = \nu_n = 2 \cos \pi / n$ and $t = 1 + \nu$. Let G_n of index $(3, n, \infty)$ be generated by

$$A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} \nu & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix},$$

and note that C = AB.

Tom Schmidt

The maps: Rotate until exit, translate back

Fix $\alpha \in [0, 1]$ and define

$$\mathbb{I}_{\alpha} := \mathbb{I}_{n,\alpha} = [(\alpha - 1)t, \alpha t).$$

Let

$$T_{\alpha} = T_{n,\alpha} : x \mapsto \mathbf{A}^{\mathbf{k}} \mathbf{C}^{\boldsymbol{\ell}} \cdot x,$$

• $\ell > 0$ is minimal such that $C^{\ell} \cdot x \notin \mathbb{I}_{\alpha}$ Rotate until exit \mathbb{I}_{α} .

Tom Schmidt

The maps: Rotate until exit, translate back

Fix $\alpha \in [0, 1]$ and define

$$\mathbb{I}_{\alpha} := \mathbb{I}_{n,\alpha} = [(\alpha - 1)t, \alpha t).$$

Let

$$T_{\alpha} = T_{n,\alpha} : x \mapsto A^k C^{\ell} \cdot x,$$

ℓ > 0 is minimal such that C^ℓ · x ∉ I_α Rotate until exit I_α.
 k = -[(C^ℓ · x)/t + 1 - α]. Translate back into I_α.

Tom Schmidt

Figure: The graph of the function $x \mapsto T_{3,3,0.14}(x)$. Each branch is given by some $x \mapsto A^k C \cdot x$.

Figure: The graph of the function $x \mapsto T_{3,3,0.86}(x)$. Branches agree with $x \mapsto A^k C^2 \cdot x$ for various values of k when $x \ge b = \mathfrak{b}_{\alpha}$.

Calta-Kraaikamp-S: Ergodic measures, Matching intervals, continuity of entropy.

• Let
$$R = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
. For $M \in \mathsf{SL}_2(\mathbb{R})$ and an interval \mathbb{I}_M , let

Tom Schmidt

2-D set up

• Let
$$R = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
. For $M \in \mathsf{SL}_2(\mathbb{R})$ and an interval \mathbb{I}_M , let

$$\mathcal{T}_M(x,y) := \left(M \cdot x, RMR^{-1} \cdot y
ight) \quad ext{for } x \in \mathbb{I}_M, \ y \in \mathbb{R}.$$

Tom Schmidt

2-D set up

• Let
$$R=egin{pmatrix} 0&-1\ 1&0 \end{pmatrix}$$
. For $M\in {
m SL}_2(\mathbb{R})$ and an interval $\mathbb{I}_M,$ let

$$\mathcal{T}_M(x,y) := \left(M \cdot x, RMR^{-1} \cdot y
ight) \quad ext{for } x \in \mathbb{I}_M, \ y \in \mathbb{R}.$$

 \blacksquare The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx\,dy}{(1+xy)^2}$$

is (locally)
$$\mathcal{T}_M$$
-invariant.

Tom Schmidt

Measures for measure

Figure: The domain $\Omega_{3,0.14}$ plotting 100,000 points. Left: $d\mu = (1 + xy)^{-2} dx dy$ is invariant. Right: Lebesgue measure is invariant for system conjugated by $\mathcal{Z}(x, y) = (x, y/(1 + xy))$.

For each T_{α} -system, gave an explicit planar domain on which 2-D map is bijective.

Conjecture

Here, only have 'eventual expansiveness'. So, define $U(x) = T^k(x)$ with k minimal for $|(T^k)'(x)| > 1$.

Conjecture (CKS)

For all $n \ge 3$ and for all $\alpha \in (0, 1)$ we conjecture that the first pointwise expansive power of $T_{n,\alpha}$ has its natural extension given by the first return of the geodesic flow to a cross section in the unit tangent bundle of the hyperbolic orbifold uniformized by G_n .

Conjecture

Here, only have 'eventual expansiveness'. So, define $U(x) = T^k(x)$ with k minimal for $|(T^k)'(x)| > 1$.

Conjecture (CKS)

For all $n \ge 3$ and for all $\alpha \in (0,1)$ we conjecture that the first pointwise expansive power of $T_{n,\alpha}$ has its natural extension given by the first return of the geodesic flow to a cross section in the unit tangent bundle of the hyperbolic orbifold uniformized by G_n .

For each *n*, proved that this holds if and only if for any α

 $h(T_{n,\alpha}) \mu(\Omega_{n,\alpha}) = \operatorname{vol}(T^1 G_n \setminus \mathbb{H}).$

Showed for n = 3.

Tom Schmidt

Matrix geodesic flow

 \blacksquare $\mathrm{SL}(2,\mathbb{R})$ acts transitively on the unit tangent vectors of $\mathbb H$

Tom Schmidt

• $\mathrm{SL}(2,\mathbb{R})$ acts transitively on the unit tangent vectors of $\mathbb H$

• Identify the unit tangent bundle of \mathbb{H} with $PSL(2,\mathbb{R})$

Tom Schmidt

Matrix geodesic flow

• $\operatorname{SL}(2,\mathbb{R})$ acts transitively on the unit tangent vectors of \mathbb{H}

Identify the unit tangent bundle of \mathbb{H} with $PSL(2,\mathbb{R})$

Geodesic flow now

$$\Phi_t(A) = A \left(\begin{array}{cc} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{array} \right)$$

Tom Schmidt

Arnoux's transversal

• Any
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{R})$$
 with $\gamma > 0$ is uniquely of the form

$$A(x, y) g_t = \begin{pmatrix} x & xy - 1 \\ 1 & y \end{pmatrix} \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$

Tom Schmidt

Arnoux's transversal

• Any
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{R})$$
 with $\gamma > 0$ is uniquely of the form

$$A(x, y) g_t = \begin{pmatrix} x & xy - 1 \\ 1 & y \end{pmatrix} \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$

• Can show that Liouville measure on $T^1\mathbb{H} \leftrightarrow \mathsf{PSL}_2(\mathbb{R})$ is

dx dy dt

Tom Schmidt

Flow back to transversal

Suppose
$$T(x) = M \cdot x = \frac{ax+b}{cx+d}$$
.

Assume cx + d > 0 and let $t_0 = -2 \log cx + d$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & xy - 1 \\ 1 & y \end{pmatrix} \begin{pmatrix} e^{t_0/2} & 0 \\ 0 & e^{-t_0/2} \end{pmatrix}$$

$$= \begin{pmatrix} M \cdot x & * \\ 1 & (cx+d)^2 y - c(cx+d) \end{pmatrix}$$

Tom Schmidt

Planar extension Ω injects into $T^1(G \setminus \mathbb{H})$

But, is our return the first return of the flow?

Tom Schmidt

Entropy inequality (expansive setting), Arnoux-S '14

$$h(T) = \int_{\mathbb{I}} \log |T'(x)| \, d\nu$$

Rohlin's formula

$$=\int_{\mathbb{I}}-2\log|cx+d|\,d
u$$

 $=\frac{\int_{\Omega}-2\log|cx+d|\,d\mu}{\mu(\Omega)}$

replace marginal measure

$$\geq rac{\operatorname{\mathsf{vol}}(\mathcal{T}^1(\mathcal{G}ackslash\mathbb{H}))}{\mu(\Omega)}$$

Arnoux transv., Hopf

Tom Schmidt

In summary of last

$$h(T)\mu(\Omega) = \int_{\Omega} -2\log|cx+d| d\mu$$

and

$$\int_{\Omega} -2\log|cx+d|\,d\mu \geq \operatorname{vol}(T^{1}(\Gamma \backslash \mathbb{H}))\,.$$

First return if and only if equality holds.

Tom Schmidt

Constancy of entropy \times mass allows use of $\alpha = 1$

Figure: Schematic of $\Omega_{n,1}$.

Tom Schmidt

Integral over square is $\pi^2/3$, enter Hecke groups

Nakada's $\alpha = 0$ cf have as planar extension the square $\Omega_{2,3,\infty,\alpha=0} = [-1,0] \times [0,1]$. Entropy formula gives

$$\int_{\Omega_{2,3,\infty,\alpha=0}} -2\log |x| \ d\mu = \pi^2/3 \, .$$

Tom Schmidt

Integral over square is $\pi^2/3$, enter Hecke groups

Nakada's $\alpha = 0$ cf have as planar extension the square $\Omega_{2,3,\infty,\alpha=0} = [-1,0] \times [0,1]$. Entropy formula gives

$$\int_{\Omega_{2,3,\infty,\alpha=0}} -2\log |x| \ d\mu = \pi^2/3 \,.$$

Now,

$$\begin{aligned} \operatorname{vol}(T^1 \, G_n \backslash \mathbb{H}) &- \frac{\pi^2}{3} = \frac{2(2n-3)\pi^2}{3n} - \frac{\pi^2}{3} = \frac{(n-2)\pi^2}{n} \\ &= 2\pi (1 - \frac{1}{2} - \frac{1}{n})\pi = \operatorname{vol}(T^1(\Delta(2, n, \infty) \backslash \mathbb{H})). \end{aligned}$$

Tom Schmidt

Review the bidding

Figure: Schematic of $\Omega_{n,1}$.

Tom Schmidt

Shift from Hecke to right piece

Figure: Extension of (2, n) sent to $x \ge 1$ by $(x, y) \mapsto (x + 1, \frac{y}{-y+1})$. [See talk.]

Tom Schmidt

Shift from Hecke to right piece

Figure: Extension of (2, n) sent to $x \ge 1$ by $(x, y) \mapsto (x + 1, \frac{y}{-y+1})$. [See talk.]

Lemma

For each
$$n \ge 3$$
,

$$\int_{\Omega_{3,n,\infty,\alpha=1} \cap \{x > 1\}} -2\log(x-1) \ d\mu = \int_{\Omega_{2,n,\infty,\alpha=1}} -2\log x \ d\mu.$$

Tom Schmidt

Rosen, Burton-Kraaikamp-S, Nakada

Figure: Rosen planar extension, n = 8

Tom Schmidt

Rosen, Burton-Kraaikamp-S, Nakada

Figure: Rosen planar extension, n = 8

Theorem (Nakada 2010 (rephrased))

For Rosen's cf of $\Delta(2, n, \infty)$, the product of its entropy times the μ -mass of its planar extension times equals 1/2 times the volume of the unit tangent bundle.

Tom Schmidt

Symmetric Rosen

Figure: 'Symmetric Rosen' planar extension, n = 8

Tom Schmidt

Symmetric Rosen

Figure: 'Symmetric Rosen' planar extension, n = 8

• Corollary (Arnoux-S 2014): $\int_{\Omega_{2,n,\infty,\alpha=1/2}} -2\log |x| \ d\mu = \operatorname{vol}(T^1(\Delta(2,n,\infty) \setminus \mathbb{H})).$

Tom Schmidt

And ... equality holds, first return maps

Finally, as for the m = 3 setting, the integrals $\int_{\Omega_{2,n,\infty,\alpha}} -2 \log |x| \ d\mu$ are equal. Thus, $\alpha \in (0, 1)$,

$$h(T_{n,\alpha})\,\mu(\Omega_{n,\alpha}) = \int_{\Omega_{3,n,\infty,\alpha}} -2\log|cx+d|\,d\mu$$

$$= \int_{\Omega_{3,n,\infty,\alpha=1}} -2\log|cx+d| \ d\mu$$

$$=\pi^2/3+\mathrm{vol}(T^1(\Delta(2,n,\infty)ackslash\mathbb{H}))$$

$$= \operatorname{vol}(T^1(\Delta(3, n, \infty) \setminus \mathbb{H})).$$

Tom Schmidt

Corollary

Suppose $f : \mathbb{I} \to \mathbb{I}$ is given piecewise by elements of a zonal G (thus determinant 1) such that

1 Legendre(f) = Lenstra(f) $\leq \frac{1}{2} \min_{c \in G} |c(g)|$,

Then, the first expansive return of f has its natural extension given by the first return system to a cross-section of $T^1(G \setminus \mathbb{H})$.

Tom Schmidt

Corollary

Suppose $f : \mathbb{I} \to \mathbb{I}$ is given piecewise by elements of a zonal G (thus determinant 1) such that

- 1 Legendre $(f) = Lenstra(f) \leq \frac{1}{2} \min_{c \in G} |c(g)|,$
- **2** f has a 'nice' two dimensional extension of domain $\Omega(f)$,

Then, the first expansive return of f has its natural extension given by the first return system to a cross-section of $T^1(G \setminus \mathbb{H})$.

Tom Schmidt

Corollary

Suppose $f : \mathbb{I} \to \mathbb{I}$ is given piecewise by elements of a zonal G (thus determinant 1) such that

- 1 Legendre(f) = Lenstra(f) $\leq \frac{1}{2} \min_{c \in G} |c(g)|$,
- **2** f has a 'nice' two dimensional extension of domain $\Omega(f)$,
- **3** the constant in the definition of Lenstra(f) is $C = 1/\mu(\Omega(f))$,

Then, the first expansive return of f has its natural extension given by the first return system to a cross-section of $T^1(G \setminus \mathbb{H})$.

Tom Schmidt

Corollary

4

Suppose $f : \mathbb{I} \to \mathbb{I}$ is given piecewise by elements of a zonal G (thus determinant 1) such that

- 1 Legendre(f) = Lenstra(f) $\leq \frac{1}{2} \min_{c \in G} |c(g)|$,
- **2** f has a 'nice' two dimensional extension of domain $\Omega(f)$,
- 3 the constant in the definition of Lenstra(f) is $C = 1/\mu(\Omega(f))$,

$$\lim_{n\to\infty}\frac{\ln q_n}{n}=h(f).$$

Then, the first expansive return of f has its natural extension given by the first return system to a cross-section of $T^1(G \setminus \mathbb{H})$.

Tom Schmidt

Families of generalized α -cf of Calta-Kraaikamp-S	2-D extensions	Cross section conjecture	Cross section and entropy	Sketch of p
				0000000

Thank you!

Tom Schmidt