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Group

Fix n ≥ 3. Let ν = νn = 2 cosπ/n and t = 1 + ν.
Let Gn of index (3, n,∞) be generated by

A =

(
1 t
0 1

)
, B =

(
ν 1
−1 0

)
, C =

(
−1 1
−1 0

)
,

and note that C = AB.
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The maps: Rotate until exit, translate back

Fix α ∈ [0, 1] and define

Iα := In,α = [ (α− 1)t, αt ) .

Let
Tα = Tn,α : x 7→ AkC ℓ · x ,

ℓ > 0 is minimal such that C ℓ · x /∈ Iα Rotate until exit Iα.

k = −⌊(C ℓ · x)/t + 1− α ⌋. Translate back into Iα.
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Graphs
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Figure: The graph of the
function x 7→ T3,3,0.14(x).
Each branch is given by some
x 7→ AkC · x .
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Figure: The graph of the
function x 7→ T3,3,0.86(x).
Branches agree with
x 7→ AkC 2 · x for various
values of k when
x ≥ b = bα.

Calta-Kraaikamp-S: Ergodic measures, Matching intervals,
continuity of entropy.
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2-D set up

Let R =

(
0 −1
1 0

)
. For M ∈ SL2(R) and an interval IM , let

TM(x , y) :=

(
M · x ,RMR−1 · y

)
for x ∈ IM , y ∈ R.

The measure µ on R2 given by

dµ =
dx dy

(1 + xy)2

is (locally) TM -invariant.
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Measures for measure
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Figure: The domain Ω3,0.14 plotting 100,000 points. Left:
dµ = (1 + xy)−2dx dy is invariant. Right: Lebesgue measure is invariant
for system conjugated by Z(x , y) = (x , y/(1 + xy)).

For each Tα-system, gave an explicit planar domain on which 2-D
map is bijective.
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Conjecture

Here, only have ‘eventual expansiveness’. So, define
U(x) = T k(x) with k minimal for |(T k)′(x)| > 1.

Conjecture (CKS)

For all n ≥ 3 and for all α ∈ (0, 1) we conjecture that the first
pointwise expansive power of Tn,α has its natural extension given
by the first return of the geodesic flow to a cross section in the
unit tangent bundle of the hyperbolic orbifold uniformized by Gn.

For each n, proved that this holds if and only if for any α

h(Tn,α)µ(Ωn,α) = vol(T 1 Gn\H) .

Showed for n = 3.
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Matrix geodesic flow

SL(2,R) acts transitively on the unit tangent vectors of H

Identify the unit tangent bundle of H with PSL(2,R)

Geodesic flow now

Φt(A) = A

(
et/2 0

0 e−t/2

)
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Arnoux’s transversal

Any

(
α β
γ δ

)
∈ SL(2,R) with γ > 0 is uniquely of the form

A(x , y) gt =

(
x xy − 1
1 y

)(
et/2 0

0 e−t/2

)

Can show that Liouville measure on T 1H ↔ PSL2(R) is

dx dy dt
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Flow back to transversal

Suppose T (x) = M · x =
ax + b

cx + d
.

Assume cx + d > 0 and let t0 = −2 log cx + d , then(
a b
c d

) (
x xy − 1
1 y

) (
et0/2 0

0 e−t0/2

)

=

(
M · x ∗
1 (cx + d)2y − c(cx + d)

)
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Planar extension Ω injects into T 1(G\H)

[A(x , y)]G M A(x , y) gt0 ]G

(x , y) TM(x , y)

x M · x

flow

T

T

But, is our return the first return of the flow?
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Entropy inequality (expansive setting), Arnoux-S ’14

h(T ) =

∫
I
log |T ′(x)| dν Rohlin’s formula

=

∫
I
−2 log |cx + d | dν

=

∫
Ω−2 log |cx + d | dµ

µ(Ω)
replace marginal measure

≥ vol(T 1(G\H))

µ(Ω)
. Arnoux transv., Hopf
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In summary of last

h(T )µ(Ω) =

∫
Ω
−2 log |cx + d | dµ

and

∫
Ω
−2 log |cx + d | dµ ≥ vol(T 1(Γ\H)) .

First return if and only if equality holds.

Tom Schmidt Oregon State University
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Constancy of entropy × mass allows use of α = 1

c x + d = x c x + d = x − 1

•

•••

•

•

•

• •

•

•

•

• •

(0, 0)

(0,−1)

(1,−1) = (rn−2,−1/rn−2)

(t, 0)

(t,−1/t)

(r1,−1/r1)

(rn−3,−1/rn−3)

Figure: Schematic of Ωn,1.
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Integral over square is π2/3, enter Hecke groups

Nakada’s α = 0 cf have as planar extension the square
Ω2,3,∞,α=0 = [−1, 0]× [0, 1]. Entropy formula gives∫

Ω2,3,∞,α=0

−2 log |x | dµ = π2/3 .

Now,

vol(T 1 Gn\H)− π2

3
=

2(2n − 3)π2

3n
− π2

3
=

(n − 2)π2

n

= 2π(1− 1

2
− 1

n
)π = vol(T 1(∆(2, n,∞)\H)).
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Review the bidding

c x + d = x

Integral here equals π2/3Integral here equals π2/3

Here want Hecke valueHere want Hecke value

c x + d = x − 1
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(0, 0)

(0,−1)

(t, 0)

(t,−1/t)

Figure: Schematic of Ωn,1.
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Shift from Hecke to right piece

Figure: Extension of (2, n) sent to x ≥ 1 by (x , y) 7→ (x + 1, y
−y+1 ).

[See talk.]

Lemma

For each n ≥ 3,∫
Ω3,n,∞,α=1∩{x>1}

−2 log(x − 1) dµ =

∫
Ω2,n,∞,α=1

−2 log x dµ.
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Rosen, Burton-Kraaikamp-S, Nakada

Figure: Rosen planar extension, n = 8

Theorem (Nakada 2010 (rephrased))

For Rosen’s cf of ∆(2, n,∞), the product of its entropy times the
µ-mass of its planar extension times equals 1/2 times the volume
of the unit tangent bundle.
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Symmetric Rosen
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Figure: ‘Symmetric Rosen’ planar extension, n = 8

Corollary (Arnoux-S 2014):∫
Ω2,n,∞,α=1/2

−2 log |x | dµ = vol(T 1(∆(2, n,∞)\H)).
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And ... equality holds, first return maps

Finally, as for the m = 3 setting, the integrals∫
Ω2,n,∞,α

−2 log |x | dµ are equal. Thus, α ∈ (0, 1),

h(Tn,α)µ(Ωn,α) =

∫
Ω3,n,∞,α

−2 log |cx + d | dµ

=

∫
Ω3,n,∞,α=1

−2 log |cx + d | dµ

= π2/3 + vol(T 1(∆(2, n,∞)\H))

= vol(T 1(∆(3, n,∞)\H)).

Tom Schmidt Oregon State University
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Application of [Nakada, 2010]

Corollary

Suppose f : I → I is given piecewise by elements of a zonal G
(thus determinant 1) such that

1 Legendre(f ) = Lenstra(f ) ≤ 1
2 minc∈G |c(g)|,

2 f has a ‘nice’ two dimensional extension of domain Ω(f ),

3 the constant in the definition of Lenstra(f ) is C = 1/µ(Ω(f ) ),

4

lim
n→∞

ln qn
n

= h(f ).

Then, the first expansive return of f has its natural extension given
by the first return system to a cross-section of T 1(G\H).

Tom Schmidt Oregon State University

First expansive returns and cross sections



Families of generalized α-cf of Calta-Kraaikamp-S 2-D extensions Cross section conjecture Cross section and entropy Sketch of proof

Application of [Nakada, 2010]

Corollary

Suppose f : I → I is given piecewise by elements of a zonal G
(thus determinant 1) such that

1 Legendre(f ) = Lenstra(f ) ≤ 1
2 minc∈G |c(g)|,

2 f has a ‘nice’ two dimensional extension of domain Ω(f ),

3 the constant in the definition of Lenstra(f ) is C = 1/µ(Ω(f ) ),

4

lim
n→∞

ln qn
n

= h(f ).

Then, the first expansive return of f has its natural extension given
by the first return system to a cross-section of T 1(G\H).

Tom Schmidt Oregon State University

First expansive returns and cross sections



Families of generalized α-cf of Calta-Kraaikamp-S 2-D extensions Cross section conjecture Cross section and entropy Sketch of proof

Application of [Nakada, 2010]

Corollary

Suppose f : I → I is given piecewise by elements of a zonal G
(thus determinant 1) such that

1 Legendre(f ) = Lenstra(f ) ≤ 1
2 minc∈G |c(g)|,

2 f has a ‘nice’ two dimensional extension of domain Ω(f ),

3 the constant in the definition of Lenstra(f ) is C = 1/µ(Ω(f ) ),

4

lim
n→∞

ln qn
n

= h(f ).

Then, the first expansive return of f has its natural extension given
by the first return system to a cross-section of T 1(G\H).

Tom Schmidt Oregon State University

First expansive returns and cross sections



Families of generalized α-cf of Calta-Kraaikamp-S 2-D extensions Cross section conjecture Cross section and entropy Sketch of proof

Application of [Nakada, 2010]

Corollary

Suppose f : I → I is given piecewise by elements of a zonal G
(thus determinant 1) such that

1 Legendre(f ) = Lenstra(f ) ≤ 1
2 minc∈G |c(g)|,

2 f has a ‘nice’ two dimensional extension of domain Ω(f ),

3 the constant in the definition of Lenstra(f ) is C = 1/µ(Ω(f ) ),

4

lim
n→∞

ln qn
n

= h(f ).

Then, the first expansive return of f has its natural extension given
by the first return system to a cross-section of T 1(G\H).

Tom Schmidt Oregon State University

First expansive returns and cross sections



Families of generalized α-cf of Calta-Kraaikamp-S 2-D extensions Cross section conjecture Cross section and entropy Sketch of proof

Thank you!
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