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Extensive and intensive parameters
and
(Multi-)critical point



extensive and intensive variables

extensive variable (parameters) 0 oc V1

| | | o V:ivolume
intensive variable O <V

Example moleculesin a box

® @

extensive var. intensive var. ® o ©

V:volume p: pressure ° o

N: # of molecules p: chemical pot.

E: total energy T: temperature

5: total entropy n = —: number density

& = —: enerygy density

Nlmg | =



extensive parameters as fundamental parameters

Some of the variables are averaged quantities that
appear only in a large system limit V' = oo.

(ex.) S, p, u, T

From microscopic point of view, extensive parameters
are more fundamental:

microcanonical ensemble p « 5(ﬁ — E) 6([\7 — N)

On the other hand, intensive parameters are easy to
handle although not fundamental:

N LI

o [ fen)
~N|=

canonical ensemble pxXe Te



Tuning of intensive parameters without fine tuning

Suppose: Extensive parameters are controlled.
U
Corresponding intensive parameters are on a (multi-)

critical point of first order phase transition with a
non-zero probability.

Example molecules in a box with constant pressure
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The mapping E — T isnot 1: 1.

In order to reach one of the critical points,

if we control T, we need one parameter fine tuning
suchthatT =T or T5.

If we control E, we do not need fine tuning but tuning
to finite domainsuchthat £y < E < E, or E3 < E <
E,.

To reach one of the first-order phase transition points,
fine tuning is not necessary if the extensive
parameters are controlled.



Example 2 Two control parameters V, E
molecules in a box with fixed N

V1 DY

GLS\GL >
S LS\ | G
> E > T

In order to obtain the coexisting phases,
need fine tunings in terms of intensive parameters,
do not need them in terms of extensive parameters.

Even the triple point can be realized with a finite probability
if the extensive parameters are controlled.



In statistical mechanics, there are two ways to control
the system for each parameter.

extensive parameter & micro-canonical ensemble
intensive parameter <> canonical ensemble

If the intensive parameters are controlled, we need to
tune the parameters to realize a (multi-)critical point
of first-order phase transition.

In other words, if the intensive parameters are
probabilistically distributed uniformly, the probability
of a critical point being realized is zero.

On the other hand, if the extensive parameters are
probabilistically distributed uniformly, the probability
of a critical point being realized is finite.

Multicritical Point Principle (MPP)

|II

“Multi-critical point is natura




Generalized QFT
and
Multicritical Point Principle



Analogous situation in QFT (or QM)?

Ordinary QFT (canonical QFT)

[
(t2,q21t1,q1) = jDCI e 75l "’ze r

. a(tz) = q2 n
I tempting a(ty) = 4,

microcanonical QFT fl)q 5(S|q] — A4) ~2 S(E, — E)

Generalized QFT f@OIf(S[OI] —A)

We will see that under some circumstances they are
equivalent in the large volume limit.

Furthermore, the naturalness problem is absent in
the microcanonical or generalized QFT.



In fact, we can show

MPP of Bennett Froggatt and Nielsen:
“ Coupling constants are fixed such that the
vacuum is at a (multi-) critical point.”

U Consider the time evolution
of universe.

Generalized MPP
“Coupling constants are fixed to such values that
significantly change the history of universe when

they are changed.”



SM Higgs is close to MPP.

non-renormalizable coupling
¢Rh? with £~10.

1 1060 | o 1121710796V

- — 1f=1710798GeV

In the Einstein frame the
effective potential becomes

8y 10%+ M= 17108006V
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Motivation
of
Generalized QFT



multiverse and baby universes in MM

Universe arises from matrices.

By considering block diagonal configuration, multiverse
appears naturally.

In terms of the WKB approximation of GR, topology
change can be described by connecting Lorentzian and

Euclidian signature. /AV
QM _/ \ §
—)
ravi
Lorentzian \(v
Lorentzian

Euclidian



For macroscopic universes topology change is highly
suppressed, because the transition probability is
proportional to exp(—classical Euclidean action).

On the other hand, if one of the universes is small
(baby universe), topology change becomes
Important.

What we should consider is emission and absorption
of BU’s by multiverse.

A




For the large universe, emission or

absorption of BU looks like an insertion /

of a local operator.

Therefore, the emission and subsequent absorption of
a BU modify the effective action as

S_)S_I_Zi,jcijSiSjr F
S
where S; is a space-time integral

S; = J d*x/—g(x) 0;(x)
of a scalar operator O; such as

1,R, Ry R*¥ , Eyy FFY pyFD o+ .

Each S; has a form of local action.



Furthermore, bifurcated BU’s contribute to the effective
action as S;

S-S5+ Zi,j,k CiijiSj Sk .
5i ;

Sk

Thus the low energy effective theory of QG / MM
is not a simple local action but a generalized QFT:

Seff — f(Sl'SZJ )



Other possibilities of generalized QFT

(1) microcanonical QFT

ordinary matrix model
Z=[dAdy e iSielAY]

microcanonical matrix model
Z = [ dAdy 5(S;5[4,9] - 1)

A priori, we don’t know which is more fundamental.

(2) M.C. simulation of dynamical triangulation of QG

# of D-simplexes
SA Jaopsmses . ufoeis -

discretized version of Microcanonical C.C.




Equivalence of canonical and
microcanonical ensembles



Equivalence of canonical and microcanonical ensembles

Two ensembles are equivalent in the V' — oo [imit.

eSEV) .= ¥ §(E,—E) S:entropy from micr. ens.

basic assumption S(E,V)~ Vs( ) for large V

_En
= ), e T F:free energy from can. ens.
E

=andE6(E —E)e T

E
_ V(- —+S(g)) « ¢ =— Saddle point
B Vfde € V' dominates.

E
= o THSEV) <—Z—S:l forV —» o

~| ™

o~



Another view of equivalence

“A small subsystem of a large system is described by

canonical ensemble.”

Etot o En
AlE, B

“total system” very large DOF
E;,;: total energy, fixed

micricanonical ensemble
p < 6(H —E¢y)

A : subsystem, small compared with the total system
B:= (total system) — A >> A (DOF)

basic assumption E;,; = E4 + Eg « energy conservation

P,: probability that A takes a microstate n with energy E,



P, o« # of the microstates of B with energy E¢p¢ — Ej,
0’ eSB(Etot_En)

0Sp 1972
Sg(Etor — En) = Sp(Etor) — (Etot)E T3 > 3E2 (Etot)Ez
T T T
ovy) oW ov—h
aSE

As a function of E,, , we have
En En
Sg(E¢p: — E;) = const. — (1+0 (7)).

_En
Thus we have P, = const.e T inthelarge V limit.

? (Etot)

“The canonical ensemble is an effective theory of
small subsystems of a large system.”

The FT counterpart:

ordinary path integral underlying large system
(Schrodinger equation) (Boltzmann entropy)



Are generalized QFT equivalent to the
ordinary QFT?



Ordinary QFT (canonical QFT)
| .
(t2 q2)t1, q1) = qu , slal “’ZE‘T

a(tz) = q; n
a(ty) = q4

microcanonical QFT fl)q 3(S|q] — 4) ~2 S(E,, — E)

Generalized QFT fﬂq f(Silgl —Ap)
S; = | d*xy—g(x) 0;(x)

0; = 1,R,Ry,R* Ey, F¥, y*Dap , -+

Under what circumstances are they equivalent?



microcanonical QFT
J Dq 6(Slql = A)
= [Dq [ da e'*Glal=4)
= [da e”@ [Dqei*Sldl

Generalized QFT
I Dq f(Silq]l — A)
= | Dq indaif(a) el 2i @i (Silal-4;)
= le daiW(C()U Dq el aiSilql ]

B _ Ordinary FT with coupling
W(C() - f(a) e~ ! 2 aid constants «a; .



Generalized QFT = superposition of ordinary QFT

Z = [Iljda; w(a)Z(a)
Z(a) = f@q eiZi aiSilal < S = [d*x/—g(x) 0;(x)
w(@) = f(a) e~ Ziut

(1) Does one point in the a space, a; = ai(o), dominate

the integral? Then the theory is equivalent to the
(0)

ordinary QFT with coupling constants a; .

(2) If it is the case, are al.(o) good values so as to solve

the naturalness problem?



A model — Microcanonical mass term



Scalar field with microcanonical mass term

Instead of the ordinary path integral for massive free
scalar field

mZ
Z(m?) = [ d¢ ol 4% Ga“"’a“‘l) _T"’Z)

canonical mass term

we consider m2: intensive

0(A) = [ dgp et ] 4**30u0"d 5(f d*x > % — A )

microcanonical mass term
A: extensive

We examine
e whether they are equivalent in the large volume limit,

e f so, the mass obtained is natural or not.



Evaluation of Q(A4)

_ i [ d*x 0 ,pdH¢ a1 .0
0 = fag e [4500" 5 (fax 1o (fii)l .
=fd¢f_oodmzelf X300t ,—im x ~¢
= foo dm? e!™*4 7(m?)

logZ(mZ)———Trlog( oy o* — m? +lO)
_ 1 V space -time volume
=—-V f(2n)4 log(p* — m? +10) o

d*
= ; Vf(zf)’f; log(pz + m? —i 0) + const.
Q) = [© dm? eV (m?)

1 ~d%p . A
f(m?) = m?a ——f(m)’f; log(p§+m2—10),a=;.

large V' = highly oscillating = stationary phase?

more complicated!




Q(4) = [~ dm? etV (m?)

A
f(mz) = m?a ——f(z )4 log(pE+m —lO) 1=y
A: UV cutoff
i0)
2
= m?* {log( + — — 10) -+ logAz}
=& ANa — g(f) + (const. depending only on A

32n2

g(®) = [ dx xlog(x + & — i0), fzﬁ.

[dm? = [ d¢
As a function of &, f is a linear combination of ¢ and g.
We next examine the ¢ dependence of g.



g(€) = fol dx xlog(x + & —i0)

g (&) has negative imaginary part for ¢ < 0:

(0 (0<¥) Im g
ﬂfz 1<&<0 1
Img(§) =472° — Ve
T ; T
k_E (5 < _1) negative 2
Re g

g (&) is monotonic for & > 0:

Reg(f):fo dx xlog|x + &| \\// ¥
monotonic
—1




Contribution fromm? < 0to Q(4) = [* dm? eVf(m?)

is exponentially small in V' — oo
A4-
p V()| — emlmg(f) =
2 At
f=¢Aa—-=g()

limit:

(1

Vm4

641

(m? > 0)

e (—A% <m* <0)

vA%

Le wn (m? < —A%)

On the other hand, as we will see, contribution from m? > 0

is O(V_% Yoro(V™1).

Therefore, it is enough to consider
Q(4) = f0°° dm? eiVf(m?)



Formulas on e V7™ for large V



eV (%) for large V

(1)

(2)

f

]

\/

f (x): real function

smooth and one extremum

VS ()
1

fis continuous

f'is discontinuous at x

Xo Need not be extremum
monotonic on each side x s x;

etV f(x)

~1( 11 )
V \f'(xot0) f'(x0—0)
. el Vf(xo) 5(x — xp)




3) 7 f, f'are continuous

1 f"'is discontinuous at x
Xo Need not be extremum
monotonic on each side x s x;

X0 "X

f e lVf(X)

~ ] ~Eads e+ 0) — (o — O)




proof of (2), (3)
f f: [XOI OO] - R

(0) | / smooth

monotonically increasing

X0 "X For any test function,
@ € C%, finite support,

Cdx eV p(x
fxo (p( ) <—y=f(x),)’0=f(xo)»yoo=f(°°)

o 5. dx _
= [, dy ™ o(f () d
_ fyyoo dy e g(v) g =g e
0
— 1 vy ]yoo_ 0 1 vy
.ive g(y) N I, &y—e" g'®)
— ieiVyog(yO) +0 (i) « ¢ has finite support = g(y,) = 0
%4 V2

_ L ivf(xe) 1 1
Ve 0 f’(xo) (p(xO) + O(Vz)



Behavior of 2(A)



Q(4) = fooo dm? ein(mz)’

f= 00— g(©), g(®) = [ drxlog(x +8).
{ A: UV cutoff

a=z <—5(fd4x%gb2—/l)

S is convex
g($) = two cases

—g'(0) = -1
4 f“
2 A ..
case 1. A’a <. — \/ 3 minimum
*$
fi
2 A4- /
case2. A%a>_—— monotonic
"<



Q(4) = fooo dm? eiVf(m?)

i
2 A"
case 1. Aa < _—— \/5
1 $o
. 2 : 2
elVf(m )~\/—76(€ — 50) = Q(A) = elVf(foA )

mZ

¢ =¢o © —5 =¢o~0(1) quadratic divergence

f“
4
case 2. A2a > > /

32712

&3
ivfm?) 1 _1 « plVf(0)
e sz,(o)(S(f) = Q(4) =e
E=0 & Z_ =0 massis automatically tuned to O

AZ



phase diagram

6(fd4x%q§2—/1), a=§
space of A

m?~0(A>) m*=0
< = >

- ~a

T

AZ

3212

In a finite region of the parameter space, the physical
mass is automatically tuned to O.

m#* = 0 is as natural as quadratic divergence m%~0(A?%).



More general cases



Generalized mass term

So far, we have considered microcanonical mass term
Q(A) = [ d et “*xudd’e s (f d*x > ¢? — A )
Here we discuss more gleneral form
Q= [dpe ! THEuIN [ ([dbx 27— 4)
To be concrete we consider

flo) =e'2*

This can be thought of as the result of baby
universe'

S =2 ([ d*x y=g292) + L(f d*x y=g)’
+ﬁ fd4x\/_2qb)(fd4xﬁ)+---



o 2
Q= fdgb eifd‘*xgauqba“qb eiE(f d4x%¢2—c V)

= [dm? e 5™) [ qgp ot 4% 309" —im?(J dtxig-cv)
4

A 2
32n2‘g(€)> « ¢ = m

1282 iV(EAzc—
= [dm? e 2" ¢

T

The only difference from microcanonical mass term.
This factor does not depend on V.

The large-V behavior is the same as before.

m?~0(A%) m?=0
< — .
T
AZ
327172




Comment on m? < 0
In the ordinary Euclidian FT, free scalar field with

m? < 0is not well defined:
Z(m? < 0) = oo.

On the other hand, in the Lorentzian case we found
(1 (m? > 0)

Vm4

|Z(m?)| =< e eamr (—A*> <m? <0)

_vat
e ear (m? < —A%),

which may represent the decay of the vacuum.

In this way we can formally define Z(m?) for all m?,

but the physical meaning is not clear.
It is better to consider models without such problem.




Models with well-defined ground state.

Order of phase transition does not matter.



15t order phase transition

GL theory for 1t order phase transition
F=m?¢* + (¢* — 1D?¢p*

As a function of m?, the minimum of F
behaves as

0 (m? > 0) —
F = m?
~m? (m* < 0) /

F' is discontinuous at the phase transition point.




In general if m? = 0 is the 1%t order phase transition
point, we have two cases depending on the parameters:

F F,
Z F'is discontinuous./—b\/

/ :mZ
:mz m(z)
F is monotonic on each F has an extremum at
sidem? s 0. m? = m2.
: 1
lVF 5(7712) elVF~ \/_Va(mz _ mg)

The same situation as the free field.

In a finite region of the parameter space of generalized
QFT, automatic fine tuning to 1%t order phase transition
point occurs. The same as classical MPP.



29 order phase transition m? > 0

F
GL theory for 2" order phase transition

F=m2¢2+¢4 m? <0

¢
As a function of m?, the minimum of F F
behaves as
0 (m?>0
o (m? > 0)

" |~m®)2 (m? < 0) S

F'"is discontinuous.



In general, if m? = 0 is the 2" order phase transition
point, we have two cases depending on the parameters:

F 4 \F
4 F'"is discontinuous. \;.\/

/ :mz
:mz m(z)
F is monotonic on each F has an extremum at
- 2 <L 2 .2
sidem* s i) mé = rrllo_
iVF 2 iVF 2 2
e"'~—06(m e’ ~—o(mc —m
V2 ( ) N ( O)

The coupling constants are automatically tuned to
either a phase transition point or the minimum of F.
The same is true for any higher-order phase transition.



Quantum version of MPP:

In generalized QFT, the coupling constants of the
equivalent canonical QFT are automatically adjusted either
to minimize the vacuum energy density or to one of the
critical points of the quantum phase transition.



Time evolution of universe



Time evolution of universe

So far we have considered static vacuum to evaluate
the path integral:

Z=[Il;da;w(a)Z(a)
In this case, we can regard
7(a) = el Ve@
where & is the vacuum energy density.

If we consider the time evolution of universe, the
notion of critical point should be generalized to critical
point of the history of universe, which means coupling
constants that significantly change the time evolution
of universe when they are changed.



Generalize MPP:

The coupling constants of the low energy effective
canonical FT of MM or quantum gravity are automatically
adjusted either to minimize the vacuum energy density or
to one of the critical points of the history of universe.

Examples
1. QCD @-parameter
6 = 0 minimizes the vacuum energy.

2. Cosmological constant 1
A = 0 is the critical point. finite \ / oo

3. Higgs inflation at criticality

Flat potential is the critical VL/—/
point of the history of universe. >

M




SM Higgs is close to MPP.

non-renormalizable coupling
¢Rh? with £~10.

1 1060 | o 1121710796V

- — 1f=1710798GeV

In the Einstein frame the
effective potential becomes

8y 10%+ M= 17108006V
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Summary



We have discussed the following possibilities:

The low energy effective theory of the matrix model
or quantum gravity is a generalized QFT.

Generalized MPP is realized.

The coupling constants of the low energy effective
canonical FT of MM or quantum gravity are automatically
adjusted either to minimize the vacuum energy density or
to one of the critical points of the history of universe.

Some of the parameters of the (modified) standard
model may be fixed by GMPP, independent of the
detailed dynamics.



Thank you.



Appendix



RG analysis of SM

1.4- All the couplings are small and the

j perturbative picture is very good up to
the Planck scale.

In particular, Higgs parameters are
almost zero at the Planck scale.

VI R N

U(1)
S __,_—r:-:;"f—H SU(2)

T viop  SU®)

Higgs self coupling
5 10 15 20 25 Higgs mass 2

log,; A[GeV}

It is natural to imagine that SM is directly connected to the
string theory at the Planck scale without large modification.



A,WY:NXN,

[subsystem in 1B I\/II\/I} |
can. or microcan. ens.

n
n X n submatrices ~——~

=@ Y= ) v

U
effective action for the submatrices }hemical pot.
Z 2 7! —
Sett = =5 tr([ap a]") =% @) +utr(D)

corresponding continuum action n

Z
Sschita =57 J 0 (X4, XV 4+ +p [ w
w = p d*& : symplectic (volume) form

if, 9} =% €9, f 0,9 : Poisson bracket

eliminate p = S = k[ /(6*)2, Kk = \JZH. o = %9, X"9,X"

String appears as a subsystem of 1I1B MM.



'comment on Green’s functions |

[ Dq f(Si[q] —Ap) 0[q] « 0[q]: product of local operators

= [Dq [lide; f(a) e'2i @ Slal=40 o[ q]

= [Tlide,w(a) [ Dge'Zi %iSilalg[q]

quzz @ Sildlgq
—fHdaw(a) R ATTERC fqu‘Zl“l ilal

= [Tl dey w(@) <o 4D, [ Dy et st

(Olqgl)y : Ordinary FT with coupling constants «; .
w(@) = f(@) e~ ! Zecit:

(0]q]), is intensive. = Does not affect ai(o).
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