Graded Manifolds: Some Issues

Jan Vysoký

(joint work with Rudolf Šmolka)

Higher Structures and Field Theory ESI Wien, 11 September 2020 \mathbb{Z} -graded (or simply graded) manifolds, \mathbb{Z} -graded supermanifolds:

Suitable mathematical theory of "generalized manifolds", where functions locally depend on \mathbb{Z} -graded variables (which do commute accordingly).

There are two basic approaches to this problem:

- Consider (smooth) Z₂-supermanifolds with an additional Z-grading. Kontsevich (1997), Ševera (2001), Roytenberg, Voronov (2002).
- Oefine Z-graded (henceforth just graded) manifolds without an underlying supermanifold. Mehta (2006), Cattaneo & Schätz (2010), Fairon (2017).

Optimal scenario

Mimic Berezin-Leites approach to supermanifolds (1983) with "purely graded" coordinates of all degrees (not just N-manifolds).

Definition (graded "object")

- An object (vector space, ring, algebra) V is graded, if it can be written as as a direct sum V = ⊕_{k∈Z} V_k of its subspaces V_k ⊆ V. Elements of V^h := ∪_{k∈Z} V_k {0} have defined degree |v| ∈ Z and are called homogeneous elements.
- Algebraic structures (e.g. ring multiplication) satisfy additional grading requirements (e.g. |v · w| = |v| + |w|).
- Object morphisms $\varphi: V \to W$ have to preserve the grading, that is $|\varphi(v)| = |v|$ (or shift it by a given number, when required).

Example

$$V = \bigoplus_{k \in \mathbb{Z}} V_k$$
 a graded vector space. Symmetric algebra $S(V)$ is

$$S(V) = T(V)/J, \ J = \langle \{v \otimes w - (-1)^{|w||v|} w \otimes v \mid v, w \in V^h \} \rangle.$$

It is a graded commutative associative algebra.

Definition (graded manifold)

- Let *M* be a second countable Hausdorff space.
- We have a **structure sheaf** of graded commutative associative algebras $\mathcal{C}^{\infty}_{\mathcal{M}}$ on M.
- $\mathcal{M} = (\mathcal{M}, \mathcal{C}^{\infty}_{\mathcal{M}})$ is a **locally ringed space**, that is stalks $\mathcal{C}^{\infty}_{\mathcal{M},m}$ are local rings for every $m \in M$.
- There is a finite-dimensional graded vector space V, such that $V_0 = \{0\}$ and $\mathcal{C}^{\infty}_{\mathcal{M}}$ is **locally isomorphic** to the sheaf

$$U \subseteq \mathbb{R}^n \mapsto \mathcal{C}^{\infty}_{n,V}(U) := \mathcal{C}^{\infty}(U) \otimes_{\mathbb{R}} \mathcal{S}(V),$$

Remark (they are just polynomials!)

If $(\xi_{\mu})_{\mu=1}^{\dim(V)}$ is a homogeneous basis of V, then elements of $\mathcal{C}_{n,V}^{\infty}(U)$ are polynomials in $\{\xi_{\mu}\}_{\mu=1}^{\dim(V)}$ with coefficients in $C^{\infty}(U)$, and

$$\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}.$$

Issue number one

I. $C_{n,V}^{\infty}$ is *not* a sheaf.

• Consider $V = V_{-2} \oplus V_2$, where $V_{-2} = V_2 = \mathbb{R}$.

• Let n=1 and consider an open subset $U\subseteq \mathbb{R}$ in the form

$$U:=\cup_{m\in\mathbb{N}}U_m,\ U_m:=(m-1,m).$$

 $\{U_m\}_{m\in\mathbb{N}}$ is an open cover of U.

• V has a basis (ξ_1, ξ_2) with $|\xi_1| = -2$ and $|\xi_2| = 2$. Define local sections $f_m \in C^{\infty}_{1,V}(U_m)$ as

$$f_m := (\xi_1)^m (\xi_2)^m.$$

• $\{f_m\}_{m\in\mathbb{Z}}$ cannot be glued to $f \in \mathcal{C}^{\infty}_{1,V}(U)$, hence $\mathcal{C}^{\infty}_{1,V}$ is not a sheaf. The same problem arises even for non-negatively graded V, if we do not restrict the degree of glued local sections.

Easy solutions? Issue number two

- Can we simply relax the gluing axiom to finite open covers? Not a good idea! A lot of constructions require infinite open covers (e.g. those using partition of unity).
- Can one somehow employ the "sheafification mantra"? However, sheafification does preserve stalks, hence it does not cure the following:

II. Stalks of $\mathcal{C}_{n,V}^{\infty}$ are *not* local rings.

- For each $m \in M$, $(\mathcal{C}_{n,V}^{\infty})_m$ is a local ring, iff its non-invertible elements form an ideal.
- With n = 1 and V as above, consider sections $s_{\pm} := 1 \pm \xi_1 \xi_2$ in $\mathcal{C}^{\infty}_{1,V}(\mathbb{R})$. Their germs $[s_{\pm}]_m$ are not invertible.
- Their sum $[s_+]_m + [s_-]_m = [2]_m$ is invertible. Whence $(\mathcal{C}^{\infty}_{1,V})_m$ is not a local ring.

Morphisms of "non-locally" ringed spaces are not so easy to work with.

III. One cannot calculate pullbacks.

- Let us again consider the example above. We have coordinates (x, ξ_1, ξ_2) , where |x| = 0, $|\xi_1| = -2$ and $|\xi_2| = 2$.
- A (graded) smooth map should be (locally) determined by pullback of coordinate functions. Define e.g.

$$\varphi^*(x) = x + \xi_1 \xi_2, \ \varphi^*(\xi_{1,2}) = \xi_{1,2}.$$

What is a pullback of f = f(x)? The formula (e.g. in supergeometry) would be (for above φ):

$$\varphi^*(f) = \sum_{m=0}^{\infty} \frac{1}{m!} \frac{\mathrm{d}^m f}{\mathrm{d} x^m} (\xi_1)^m (\xi_2)^m.$$

But this is does not converge (in any sense).

Definition (Graded manifold by Fairon (2017))

Replace $C_{n,V}^{\infty}$ with a sheaf

$$U \subseteq \mathbb{R}^n \mapsto \bar{\mathcal{C}}^\infty_{n,V}(U) := \mathcal{C}^\infty(U) \otimes_\mathbb{R} \bar{\mathcal{S}}(V),$$

where $\bar{S}(V) = \prod_{p=0}^{\infty} S^p(V)$ (formal power series in variables $\{\xi_{\mu}\}_{\mu=1}^{\dim(V)}$).

There is a minor oversight - $C^{\infty}(U) \otimes_{\mathbb{R}} \overline{S}(V)$ is not a space of formal power series in $\{\xi_{\mu}\}_{\mu=1}^{\dim(V)}$ with coefficients in $C^{\infty}(U)$, it should be

$$ar{\mathcal{C}}^{\infty}_{n,V}(U) = \prod_{p=0}^{\infty} C^{\infty}(U) \otimes_{\mathbb{R}} S^p(V).$$

IV: $\overline{C}_{n,V}^{\infty}(U)$ is not a graded vector space.

It cannot be written as a direct sum of its "elements of degree k" subspaces, that is $\overline{C}_{n,V}^{\infty}(U) \neq \bigoplus_{k \in \mathbb{Z}} (\overline{C}_{n,V}^{\infty}(U))_k$.

Graded algebra revisited

There are other inconveniences with the graded algebra:

- For $V = \bigoplus_{k \in \mathbb{Z}} V_k$ and $W = \bigoplus_{k \in \mathbb{Z}} W_k$, Lin(V, W) is not a graded vector space, instead $Lin(V, W) = \prod_{k \in \mathbb{Z}} Lin_k(V, W)$.
- In particular, $V^* = Lin(V, \mathbb{R})$ is not a graded vector space.

Definition (graded "object" again)

- A graded object V is a sequence V = {V_k}_{k∈Z}. We write v ∈ V, if v ∈ V_k for some k ∈ Z, and write |v| := k. There is no space for inhomogeneous elements!
- A graded morphism $\varphi: V \to W$ is a collection $\varphi = \{\varphi_k\}_{k \in \mathbb{Z}}$ where $\varphi_k: V_k \to W_k$ for all $k \in \mathbb{Z}$. We write $\varphi(v)$ for $\varphi_{|v|}(v)$.
- Algebraic structures are introduced naturally.

Example (category gVect)

 $V = \{V_k\}_{k \in \mathbb{Z}}$ is graded (real) vector space, iff V_k is a vector space for each $k \in \mathbb{Z}$. φ is graded linear, iff $\varphi_k : V_k \to W_k$ are linear.

Graded commutative associative algebras

Many constructions are "more natural" from a categorical viewpoint.

• gVect is a symmetric monoidal category where

$$(V\otimes_{\mathbb{R}}W)_k:=igoplus_{j\in\mathbb{Z}}V_j\otimes_{\mathbb{R}}W_{k-j},$$

where the unit object is \mathbb{R} (with the trivial grading), and $\tau_{VW}(v \otimes w) = (-1)^{|v||w|} w \otimes v$ is the braiding.

• $\operatorname{Lin}(V, W) = {\operatorname{Lin}_k(V, W)}_{k \in \mathbb{Z}}$ where

$$\operatorname{Lin}_{k}(V,W) = \{\varphi = \{\varphi_{j}\}_{j \in \mathbb{Z}} \mid \varphi_{j} : V_{j} \to W_{j+k}\},\$$

is the internal hom in gVect. $V^* = \text{Lin}(V, \mathbb{R})$ is a dual object.

Definition (category gcAs)

Graded (commutative) associative algebras are (commutative) monoids in **gVect**, that is (A, μ, η) with $\mu : A \otimes_{\mathbb{R}} A \to A$ and $\eta : \mathbb{R} \to A$.

• In plain English, we write $v \cdot w := \mu(v \otimes w)$ and $1_A := \eta(1)$, finding

 $v \cdot (w \cdot x) = (v \cdot w) \cdot x, \ v \cdot 1_A = 1_A \cdot v = v,$ distributivity.

Graded commutativity reads $v \cdot w = (-1)^{|v||w|} w \cdot v$.

An ideal is a graded abelian subgroup I ⊆ A with µ(A ⊗_ℝ I) ⊆ I.

Definition (local graded commutative ring)

For any $A \in \mathbf{gcAs}$, we get a graded ring multiplication $\overline{\mu} : A \otimes_{\mathbb{Z}} A \to A$. $(A, \overline{\mu}, \eta)$ is a graded commutative ring.

It is a **local graded commutative ring**, if it has a unique maximal ideal. **Local graded ring morphisms** preserve those ideals.

• This has many equivalent definitions. Let $\mathfrak{U}(A) = {\mathfrak{U}_k(A)}_{k \in \mathbb{Z}}$

$$\mathfrak{U}_k(A) = \{ v \in A_k \mid (\exists w \in A_{-k})(v \cdot w = w \cdot v = 1_A) \}.$$

Then A is local, iff $A - \mathfrak{U}(A)$ is an ideal.

- In this case $\mathfrak{J}(A) := A \mathfrak{U}(A)$ is the unique maximal ideal, called the Jacobson radical of **A**.
- The ring $A = \bigoplus_{k \in \mathbb{Z}} A_k$ is not necessarily local!

Sheaves of graded commutative algebras

Let X be a topological space. Op(X) a category of open subsets.

Definition

• A presheaf of graded commutative algebras on X is a functor

$$\mathcal{F}: \mathbf{Op}(X)^{\mathsf{op}} o \mathbf{gcAs}$$
 .

For each $k \in \mathbb{Z}$, we have a presheaf $\mathcal{F}_k(U) := (\mathcal{F}(U))_k$. Together with natural transformations, we have a category $\mathbf{PSh}(X, \mathbf{gcAs})$.

- *F* ∈ PSh(X, gcAs) is a sheaf, iff *F_k* is a sheaf of vector spaces for every *k* ∈ ℤ. We have a full subcategory Sh(X, gcAs).
- The definition of a sheaf coincides with the "category friendly" definition using products and equalizers.

Definition

For each $x \in X$, a stalk \mathcal{F}_x of a presheaf \mathcal{F} at x is defined as a filtered colimit of \mathcal{F} over the opposite to $\mathbf{Op}_x(X) = \{U \in \mathbf{Op}(X) \mid U \ni x\}.$

Graded locally ringed spaces

Definition

A graded locally ringed space (X, \mathcal{O}_X) is a pair, where

- X is a topological space.
- $\mathcal{O}_X \in \mathbf{Sh}(X, \mathbf{gcAs})$ is a sheaf of graded commutative algebras.
- Stalks of \mathcal{O}_X are local graded rings.

A morphism of graded locally ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) is a pair $\varphi = (\varphi, \varphi^*)$, where $\varphi : X \to Y$ is continuous and

9
$$\varphi^*: \mathcal{O}_Y o \underline{\varphi}_*(\mathcal{O}_X)$$
 is a sheaf morphism.

Some ach x ∈ X, the map [s]_{\varphi(x)} → [\varphi_U^*(s)]_x is a morphism of local graded rings, s ∈ O_Y(U) any U ∈ Op_{\varphi(x)}(Y).

We obtain a category **gLRS**.

Remark

If φ is an isomorphism, the condition (2) is satisfied automatically.

Graded domain

- Let $(n_j)_{j\in\mathbb{Z}}$ be a sequence $n_j\in\mathbb{N}_0$, such that $n:=\sum_{j\in\mathbb{Z}}n_j<\infty$.
- Construct a graded vector space denoted as $\mathbb{R}^{(n_j)}_*$ by setting $(\mathbb{R}^{(n_j)}_*)_0 := \{0\}, \ (\mathbb{R}^{(n_j)}_*)_k := \mathbb{R}^{n_k}$ for $k \neq 0$.

Example (graded domain $\mathbb{R}^{(n_j)}$)

By a graded domain, we mean $\mathbb{R}^{(n_j)} := (\mathbb{R}^{n_0}, \mathcal{C}^\infty_{(n_j)}) \in \mathbf{gLRS}$, where

$$U\subseteq \mathbb{R}^{n_0}\mapsto \mathcal{C}^\infty_{(n_j)}(U):=\prod_{p=0}^\infty C^\infty(U)\otimes_\mathbb{R} S^p(\mathbb{R}^{(n_j)}_*).$$

• Let $n_* := n - n_0$. Fix the standard "total basis" $(\xi_\mu)_{\mu=1}^{n_*}$ of $\mathbb{R}_*^{(n_j)}$.

• We define a subset $\mathbb{N}_k^{n_*} \subseteq (\mathbb{N}_0)^{n_*}$. Let $\mathbf{p} := (p_1, \dots, p_{n_*})$. Then

$$\mathbb{N}_k^{n_*} := \{ \mathbf{p} \in (\mathbb{N}_0)^{n_*} \mid \sum_{\mu=1}^{n_*} p_\mu |\xi_\mu| = k, \; p_\mu \in \{0,1\} \; ext{if} \; |\xi_\mu| \; \mathsf{odd} \}.$$

Graded domain: properties

• Every $f \in (\mathcal{C}^{\infty}_{(n_i)}(U))_k$ can be written as a formal power series

$$f = \sum_{\mathbf{p} \in \mathbb{N}_k^{n_*}} f_{\mathbf{p}} \xi^{\mathbf{p}},$$

for the unique sequence $\{f_{\mathbf{p}}\}_{\mathbf{p}} \subseteq C^{\infty}(U), \ \xi^{\mathbf{p}} = (\xi_1)^{p_1} \dots (\xi_{n_*})^{p_{n_*}}.$

• Multiplication of f with $g = \sum_{\mathbf{p} \in \mathbb{N}_{\ell}^{n_*}} g_{\mathbf{p}} \xi^{\mathbf{p}}$ is the expected one:

$$f \cdot g = \sum_{\mathbf{p} \in \mathbb{N}_{k+\ell}^{n_*}} (f \cdot g)_{\mathbf{p}} \xi^{\mathbf{p}}, \ \ (f \cdot g)_{\mathbf{p}} := \sum_{\mathbf{q} \leq \mathbf{p}} \epsilon_{\mathbf{q},\mathbf{p}-\mathbf{q}} f_{\mathbf{q}} g_{\mathbf{p}-\mathbf{q}},$$

where $\xi^{\mathbf{p}} =: \epsilon_{\mathbf{q},\mathbf{p}-\mathbf{q}} \xi^{\mathbf{q}} \cdot \xi^{\mathbf{p}-\mathbf{q}}$ obtained by $\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}$.

- For $V \subseteq U$, the restriction is obviously $f|_V := \sum_{\mathbf{p} \in \mathbb{N}_k^{n_*}} f_{\mathbf{p}}|_V \xi^{\mathbf{p}}$. It is now easy to see that $\mathcal{C}_{(n_i)}^{\infty} \in \mathbf{Sh}(\mathbb{R}^{n_0}, \mathbf{gcAs})$.
- $[f]_x = [g]_x$, iff $\exists W \in \mathbf{Op}_x(X)$, such that $f_{\mathbf{p}}|_W = g_{\mathbf{p}}|_W$, $\forall \mathbf{p} \in \mathbb{N}_k^{n_*}$.

Proposition $(\mathbb{R}^{(n_j)} \in \mathbf{gLRS})$

For each $x \in \mathbb{R}^{n_0}$, the stalk $\mathcal{C}^{\infty}_{(n_j),x}$ is a local graded ring.

- For $k \neq 0$, one has $\mathfrak{U}_k(\mathcal{C}^{\infty}_{(n_i),x}) = \{0\}$.
- $\mathfrak{U}_0(\mathcal{C}^{\infty}_{(n_j),x}) = \{ [f]_x \mid f_0(x) \neq 0 \}, \ \mathbf{0} = (0, \dots, 0) \in \mathbb{N}^{n_*}_0.$
 - $One may assume that f \in (\mathcal{C}^{\infty}_{(n_i)}(U))_0 \text{ and } f_0(y) \neq 0, \forall y \in U.$
 - **②** Then write $f = f_0(1 + f')$ and define $g \in (\mathcal{C}^\infty_{(n_i)}(U))_0$ by

$$g := rac{1}{f_0} \sum_{q=0}^{\infty} (-1)^q f'^q$$

• g is well-defined and $[f]_x \cdot [g]_x = 1$.

- Clearly $\mathfrak{J}(\mathcal{C}^{\infty}_{(n_j),x}) := \mathcal{C}^{\infty}_{(n_j),x} \mathfrak{U}(\mathcal{C}^{\infty}_{(n_j),x})$ is an ideal, Q.E.D.
- In fact, one has a direct sum decomposition of graded vector spaces
 C[∞]_{(n:1) ×} = ℝ ⊕ 𝔅(C[∞]_{(n:1) ×}).

For any $U \subseteq \mathbb{R}^{n_0}$, we have $U^{(n_j)} := (U, \mathcal{C}^{\infty}_{(n_j)}|_U) \in \mathbf{gLRS}$ called a graded domain over U.

Morphisms of graded domains

Theorem (the most important one)

The following data are equivalent:

- A morphism $\varphi \equiv (\underline{\varphi}, \varphi^*) : U^{(n_j)} \to V^{(m_j)}$ of graded domains.
- A smooth map $\varphi: U \to V$ together with
 - A collection {θ^{*}_ν}^{m*}_{μ=1} where θ^{*}_ν ∈ C[∞]_(nj)(U)_{|θ_ν|} and (θ_ν)^{m*}_{ν=1} denotes the standard total basis for ℝ^(mj)_{*}.
 A collection {fⁱ_i}^{m0}_{i=1} where fⁱ_s ∈ C[∞]_(ni)(U)₀ and (fⁱ_s)₀ = 0.
- They are pullbacks of $y^j \in \mathcal{C}^{\infty}_{(m_j)}(V)_0$ and $\theta_{\nu} \in \mathcal{C}^{\infty}_{(m_j)}(V)_{|\theta_{\nu}|}$: $\varphi^*_V(\theta_{\nu}) =: \theta^*_{\nu}, \ \varphi^*_V(y^j) =: y^j \circ \underline{\varphi} + f^j_*.$

• A pullback of general $f = \sum_{\mathbf{p}} f_{\mathbf{p}} \theta^{\mathbf{p}} \in \mathcal{C}^{\infty}_{(m_j)}(V)$ given by a formula

$$\varphi_V^*(f) = \sum_{\mathbf{p}} \varphi_V^*(f_{\mathbf{p}}) \theta_*^{\mathbf{p}}, \ \varphi_V^*(f_{\mathbf{p}}) := \sum_{r=0}^{\infty} \frac{1}{r!} \sum_{\mathbf{j}, |\mathbf{j}| = r} (\frac{\partial f_{\mathbf{p}}}{\partial y^{\mathbf{j}}} \circ \underline{\varphi}) f_*^{\mathbf{j}}.$$

Definition (graded chart)

Let M be a second countable Hausdorff. Let $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}}) \in \mathbf{gLRS}$. A pair (U, φ) is called a **graded chart for** M, if

- $U \in \mathbf{Op}(M)$.
- $\varphi : \mathcal{M}|_U \to \hat{U}^{(n_j)}$ is an isomorphism (in **gLRS**) for some sequence $(n_j)_{j \in \mathbb{Z}}$ with $\sum_{j \in \mathbb{Z}} n_j < \infty$ and $\hat{U} \in \mathbf{Op}(\mathbb{R}^{n_0})$.

Definition (graded manifold)

Let *M* be second countable Hausdorff. Let $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}}) \in \mathbf{gLRS}$. We say that \mathcal{M} is a **graded manifold**, if one can find a collection $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in I}$ of graded charts, such that $M = \bigcup_{\alpha \in I} U_{\alpha}$ and there is a common sequence $(n_j)_{j \in \mathbb{Z}}$ such that $\varphi_{\alpha} : \mathcal{M}|_{U_{\alpha}} \to \hat{U}_{\alpha}^{(n_j)}$.

 \mathcal{A} is called a **graded smooth atlas for** \mathcal{M} and $(n_j)_{j \in \mathbb{Z}}$ is called a **graded dimension** of \mathcal{M} . We usually write $\mathcal{C}_{\mathcal{M}}^{\infty}$ instead of $\mathcal{O}_{\mathcal{M}}$.

Graded manifolds: basic properties

- Graded manifolds form a full subcategory gMan[∞] of gLRS. A gLRS morphism φ : M → N is called a graded smooth map.
- It follows that A₀ := {(U_α, <u>φ_α</u>)}_{α∈I} is a smooth atlas on M, making it into an ordinary smooth n₀-dimensional manifold. Write M ≡ <u>M</u>.
- Viewing M as a graded manifold M = (M, C[∞]_M), there is a canonical graded smooth map i_M : M → M. For each each f ∈ C[∞]_M(U), we define the **body of the function** f as

$$\underline{f}:=(i_M)^*_U(f)\in \mathcal{C}^\infty_M(U).$$

- In general, there is no canonical projection π_M : M → M. This is not the case for non-negatively graded manifolds (N-manifolds).
- In fact, for N-manifolds, $(S^{p}(\mathbb{R}^{(n_{j})}))_{k} = \{0\}$ for p > k and so

$$\mathcal{C}^{\infty}_{(n_j)}(U) = \bigoplus_{p=0}^{\infty} C^{\infty}(U) \otimes_{\mathbb{R}} S^p(V) = C^{\infty}(U) \otimes_{\mathbb{R}} S(V),$$

and formal power series reduce to polynomials.

Graded manifolds: the example

Definition (graded vector bundle)

Let $\mathcal{M} = (\mathcal{M}, \mathcal{C}^{\infty}_{\mathcal{M}})$ be a graded manifold. A sheaf $\Gamma(\mathcal{E}) \in \mathbf{Sh}(\mathcal{M}, \mathbf{gVect})$ is called a graded vector bundle over \mathcal{M} , if

- It is a sheaf of $C^{\infty}_{\mathcal{M}}$ -modules, that is $\Gamma_{U}(\mathcal{E})$ is a $C^{\infty}_{\mathcal{M}}(U)$ -module and restrictions are compatible with the module structures.
- As a sheaf of $\mathcal{C}^{\infty}_{\mathcal{M}}$ -modules, it is locally isomorphic to the sheaf $U \in \mathbf{Op}(M) \mapsto \mathcal{C}^{\infty}_{\mathcal{M}}(U) \otimes_{\mathbb{R}} \mathbb{R}^{(m_j)}$ for some sequence $(m_j)_{j \in \mathbb{Z}}$, $\sum_{j \in \mathbb{Z}} m_j < \infty$. $(m_j)_{j \in \mathbb{Z}}$ is called the **graded rank** of $\Gamma(\mathcal{E})$.

Example (prototypical example of gMan^{∞})

For a given graded vector bundle $\Gamma(\mathcal{E})$ over \mathcal{M} , there is a canonical (up to an isomorphism) vector bundle $q : E \to M$ and a graded manifold $\mathcal{E} = (E, \mathcal{C}_{\mathcal{E}}^{\infty})$ together with a graded smooth map $\pi : \mathcal{E} \to \mathcal{M}$. The most usual case $M = (M, \mathcal{C}_{M}^{\infty})$ an ordinary manifold together with $\Gamma(\mathcal{E}) := \Gamma(F)[k]$ for an ordinary vector bundle $r : F \to M$. Then $\mathcal{E} \equiv F[k] = (M, \mathcal{C}_{F[k]}^{\infty})$ is called the **degree shifted vector bundle**.

Relation to supermanifolds

 Let S = (M, C[∞]_S) be a supermanifold, that is C[∞]_S is a sheaf of superalgebras locally isomorphic to a superdomain sheaf

$$U \subseteq \mathbb{R}^p \mapsto \mathcal{C}^\infty_{p|q}(U) = \mathcal{C}^\infty(U) \otimes_\mathbb{R} \Lambda(\mathbb{R}^q).$$

- By Batchelor's theorem, there is a superdiffeomorphism S ≅ ΠA for some vector bundle q : A → M, that is C[∞]_S ≅ C[∞]_{ΠA} = Ω(A*). There is an obvious Z-grading on Ω(A*), and we obtain a graded manifold A[1]. It is highly **non-canonical** though!
- Conversely, let *M* = (*M*, C[∞]_{*M*}) be a graded manifold. There is the even part submanifold *M*₀ = (*M*, C[∞]_{*M*₀}) of *M*. Suppose that it is non-negatively graded.

One can then construct a canonical (up to a superdiffeomorphism) supermanifold $S = (S, C_S^{\infty})$, together with a smooth surjective submersion $\pi : S \to M$.

- Both S and C[∞]_S are glued together by transition maps of M, there is no direct functor.
- There is a kind of Batchelor's theorem for N-manifolds.

Vector fields

Definition (sheaf of vector fields)

Let $\mathcal{M} = (M, \mathcal{C}^{\infty}_{\mathcal{M}})$ be a graded manifold. $\forall k \in \mathbb{Z}$ and $U \in \mathbf{Op}(M)$ let $\mathfrak{X}_{\mathcal{M}}(U)_k := \operatorname{Der}_k(\mathcal{C}^{\infty}_{\mathcal{M}}(U)).$

This defines $\mathfrak{X}_{\mathcal{M}} \in \mathbf{Sh}(X, \mathbf{gVect})$. It is a sheaf of $\mathcal{C}_{\mathcal{M}}^{\infty}$ -modules. Its sections are called **vector fields on** \mathcal{M} .

- It is locally isomorphic to $C^{\infty}_{\mathcal{M}} \otimes_{\mathbb{R}} \mathbb{R}^{(n_{-j})}$, where $(n_j)_{j \in \mathbb{Z}}$ is the graded dimension of \mathcal{M} . Local generators are usual $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial \xi_{\mu}}\}$.
- Hence X_M is a graded vector bundle and we can construct a tangent bundle τ_M : TM → M, a graded manifold over τ_M : TM → M of graded dimension (n_j + n_{-j})_{j∈Z}.
- For each $m \in M$, there is a **tangent space at** m:

$$(T_m\mathcal{M})_k := \operatorname{Der}_k(\mathcal{C}^{\infty}_{\mathcal{M},m},\mathbb{R}).$$

It has a graded dimension $(n_{-j})_{j\in\mathbb{Z}}$ and there is a canonical (surjective) graded linear map $X \in \mathfrak{X}_{\mathcal{M}}(U) \mapsto X|_m \in T_m \mathcal{M}$.

Differential forms

Let $\mathcal{M} = (\mathcal{M}, \mathcal{C}^{\infty}_{\mathcal{M}})$ be a graded manifold. Let $s \in \mathbb{Z}$ be an **even** integer, such that $|\xi_{\mu}| + s > 0$ for all $\mu \in \{1, \ldots, n_*\}$.

Definition (differential forms on \mathcal{M})

A sheaf of differential forms $\Omega_{\mathcal{M}}$ is defined as

$$\Omega_{\mathcal{M}}(U) := \mathcal{C}^{\infty}_{T[s+1]\mathcal{M}}(U),$$

where $T[s+1]\mathcal{M} = (M, \mathcal{C}^{\infty}_{T[s+1]\mathcal{M}})$ is a graded manifold obtained from the sheaf $\mathfrak{X}_{\mathcal{M}}(M)[s+1]$.

• If $\{x^i, \xi_\mu\}$ are local coordinates on \mathcal{M} , we have additional local coordinates $\{dx^i, d\xi_\mu\}$ on $\mathcal{T}[s+1]\mathcal{M}$ with

$$|\mathrm{d}x^i| = s + 1, \ |\mathrm{d}\xi_\mu| = |\xi_\mu| + s + 1.$$

For each p ∈ N₀, one has a subsheaf Ω^p_M of p-forms, which are locally sums of monomials of degree p in {dxⁱ, dξ_μ}.

de Rham cohomology

• For $\omega \in \Omega^{p}_{\mathcal{M}}(U)$, it is convenient to introduce an alternative grading:

$$\mathsf{deg}(\omega) = |\omega| - p(s+1). \;\; \omega \in \Omega^p_\mathcal{M}(U)_{(\mathsf{deg}(\omega))}.$$

• Form operations are introduced as vector fields on $\Omega_{\mathcal{M}} = \mathcal{C}^{\infty}_{\mathcal{T}[s+1]\mathcal{M}}$:

- exterior derivative d : Ω^p_M(U)_(k) → Ω^{p+1}_M(U)_(k);
 interior product i_X : Ω^p_M(U)_(k) → Ω^{p-1}_M(U)_(k+|X|);
 Lie derivative L_X : Ω^p_M(U)_(k) → Ω^p_M(U)_(k+|X|).
 One obtains a full set of Cartan relations.
- *p*-th de Rham cohomology of \mathcal{M} is a sequence $\{H_{(k)}^{p}(\mathcal{M})\}_{k\in\mathbb{Z}}$

Proposition (...it is not interesting)

- For $k \neq 0$, one has $H^{p}_{(k)}(\mathcal{M}) = \{0\}$: For every closed $\omega \in \Omega^{p}_{\mathcal{M}}(U)_{(k)}$, one has $\omega = \frac{1}{k}i_{E}(\omega)$, E is the Euler vector field E(f) := |f|f.
- Using Čech cohomology and double complexes: H^p₍₀₎(M) ≅ H^p(M).
 Poincaré lemma still works.

Most of the things are working as expected:

- Inverse function theorem, immersions and submersions;
- Submanifolds (embedded, immersed), transversal submanifolds, level sets, fiber products, intersections;
- Graded Lie groups, graded Lie algebras and their (one way) relation. graded Lie group actions, infinitesimal generators;
- Graded symplectic geometry;
- Multivectors (shifted cotangent bundle), Schouten-Nijenhuis bracket, graded Poisson geometry.

Many things remain to be verified:

- Better justification for coordinates of all degrees (BV?);
- Vector field flows, distributions, Frobenius theorem;
- Integration of graded Lie algebras;
- Darboux theorem for graded symplectic manifolds;

Thank you for your attention slide

Overview paper focused on "differential geometry" of graded manifolds to appear soon (if I am not eaten by founders of the genre).

Thank you for your attention!