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“The aim of philosophy, abstractly formulated, is to
understand how things in the broadest possible sense
of the term hang together in the broadest possible
sense of the term. (Sellars 1962)

”
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If one is interested in how the world hangs together at what
philosophers call the fundamental level, then they are naturally
drawn to quantum field theory.
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ae (theory) = 0.00115965218178(77)

ae (experiment) = 0.00115965218073(28)

(Theory) T. Aoyama et. al. Prog. Th. Ex. Phys. A01 107 (2012).
(Experiment) D. Hanneke et. al. Phys. Rev. Lett. 100 120801 (2008).
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This kind of empirical success suggests that the theory is
getting some aspects of the stucture of the world correct.

So the structure lying behind the theoretical prediction seems
like the best available guide to how things hang together at
the fundamental level. But what is that structure?
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s-matrix =
∞∑
n=0

ane
n

= finite +∞+∞+ . . .

ultraviolet/infrared divergences

regularization/renormalization

= finite + finite + finite + . . .

= ∞

large-order divergence
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Two views have dominated philosophical discussions of the
nature of scientific theories:

◦ Syntactic View: theories are collections of sentences

◦ Semantic View: theories are collections of models
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“ ...philosophers of physics have taken their object of study to be

theories, where theories correspond to mathematical objects (per-

haps sets of models). But it is not so clear where “quantum

field theory” can be located in the mathematical universe. In

the absence of some sort of mathematically intelligible descrip-

tion of QFT, the philosopher of physics has two options: either

find a new way to understand the task of interpretation, or remain

silent about the interpretation of quantum field theory. (Halvor-

son 2006, pp. 731-2)

”
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“ Given a theory T, . . . we confront the exemplary interpretive ques-

tion of how exactly to establish a correspondence between T’s

models and worlds possible according to T. That is, we confront

that question if T is the sort of thing that has models. ‘A col-

lection of partially heuristic technical developments’ isn’t read-

ily attributed a set of models about whose underlying ontology

or principles of individuation philosophical questions immediately

arise. This isn’t to say that ‘a collection of partially heuristic

technical developments’ is unworthy of philosophical attention. It

is in itself a philosophically provocative circumstance that such a

collection can enjoy stunning empirical success. (Ruetsche 2012,

pp. 102-3)

”
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How can such a broken theory be so profoundly empirically
successful? Can we separate out what we are getting right
from what seems to be going wrong?

Epstein-Glaser renormalization provides us with the resources
to provide a partial answer to this question.
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The standard story: the infrared and large-order divergences
are conceptually unproblematic.
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The standard story: ultraviolet divergences result from the
theory treating arbitrarily short distances.

12



The standard story:

I ∝
∫∞ k3dk

k4
=⇒

∫ Λ dk
k

= ln(Λ)

The integral is finite for finite Λ. By studying the behavior of
the theory as Λ→∞, we can determine redefinitions of
parameters in the theory to generate a collection of infinite
counterterms to add to the Lagrangian.
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The standard story: power counting methods show us how
many counterterms are required to render the theory
ultraviolet finite.
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In perturbatively renormalizable theories, only a finite number
of redefinitions are required, and these can be fixed with
experimental data.

Assuming infrared divergences are also handled during this
process, the output of this procedure is a well-defined formal
power series.
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The standard story: renormalization was once rightly regarded
with suspicion, but now we know how to do better.
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The standard story: the renormalization group provides a
physically well-motivated account of why renormalization is
required, and it has led to novel empirical predictions.
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There are different ways that one might go about adjusting the
language in which a theory is articulated in face of difficulties.

Recast: One might completely recast the theory and search for
a model to show that the principles constitutive of the theory
are consistent.
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Repair: But one might also attempt to directly identify the
source of the difficulties in the language of the theory as it was
originally articulated and repair it.

This approach has played an important role in understanding
the status of perturbative ultraviolet divergences in quantum
field theory.
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Question: If renormalization is about describing a real physical
process, and not about cancelling divergences, why are the
divergences present in the theory at all?

Can’t we just write down a completely finite theory? In order
to answer this question, we first need to understand the origin
of the divergences.
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An alternative story: renormalization is required to resolve
ambiguities stemming from the distributional character of field
theoretic expressions.
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The original architects of field theory did not realize the
expressions they were writing contained distributions (a
systematic theory of such objects was not yet available).

Products and divisions of objects which are distributional in
character can lead to ambiguities. Just because an expression
is ambiguous doesn’t entail that it is meaningless!
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La normalisation des constantes dans la théorie des quanta*)
par E. C. G. Stueekelberg et A. Petermann.

(Lausanne et Genève.)

(28. III. 53.)**)

Summary. This article proposes a mathematical foundation to the method pre¬

viously employed (Stueckelberg and Rivier1)), (Stueckelberg and Green2))
to give a définit meaning to the products of invariant distributions such as,

(41l,^-, + W(1!)l K^Xl-XL-z+'-O' etc. in terms of arbitrary con¬

stants Cj, c2. ct. .cr(ny The n'th approximation SW of the S[V] matrix (defined
for a given space-time region V) depends on these r (n) arbitrary constants in
addition to the arbitrary physical parameters (masses x, /x, and coupling con¬

stants e, g

In the introduction (§ 1), we see that a définit physical meaning can be given
to the masses x, /x. A coupling parameter, however, can only be specified in terms
of a chosen development of a junction 8 (xy.., x.., cx.. of physical significance.
However, the terms of the actual correspondence development (in terms of e2) 8=S2
+ /S4+ have no physical meaning. Therefore the coefficient e2 in S2 has only
a mathematical significance. It requires that the functions of xy. 8t, 8S, .8n
have all been specified. As this specification involves the c/s, we must expect that
a group of infinitesimal operations Pt (djdct)c„Q exists, satisfying

Pi S hìe {x, p, e) d S(x pi e, 00.. .)/de,

admitting thus a renormalization of e.

§ 2 contains an outline of the general problem without referring to correspond¬
ence.

However the only way of attack being the correspondance principle, we discuss

(§3) the invariance properties of a classical theory, linear in the Dirac field. In
addition to the Weyl group of Gauge invariance, a group exists whose consequence
is the equivalence theorem between pseudoscalar and pseudovector coupling with the
pseudoscalar meson field. In § 4, we show that the definition of distributions in
terms of the c,-'s is a generalization of the method of M. L. Schwartz6). This permits
to discuss the group of normalization given by the Pi's. § 5 imposes certain restric¬
tions on this group, if we require invariance of S with respect to the corresponding
classical groups (Weyl and equivalence). The limiting case of photons with zero
rest mass then can be defined. - ;,,

*) Recherche subventionnée par la Commission Suisse d'énergie Atomique
(C.S.A.). „,

**) Le présent travail constitue, à des détails près, une thèse présentée par l'un
de nous (P) à l'Université de Lausanne, le 9 mai 1952, pour l'obtention du grade
de Docteur es Sciences.

Realization that
ambiguities stem from
products and divisions of
distributions.
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The role of locality
in perturbation theory

H. EPSTEIN and V. GLASER
C. E. R. N., Geneva

Ann. Inst. Henri Poincare,

Vol. XIX, n° 3, 1973,

Section A :

Physique théorique.

ABSTRACT. - It is shown how an inductive construction of the renor-
malized perturbation series of quantum field theory automatically yields,
at each order, finite terms satisfying the requirements of locality. This
method whose result is equivalent to the Bogoliubov-Parasiuk-Hepp
prescriptions, also establishes the usual classification between renor-

malizable and non-renormalizable theories.

RESUME. - On montre qu’une construction recurrente de la serie
des perturbations renormalisee, en theorie quantique des champs, four-
nit automatiquement, a chaque ordre, des termes finis satisfaisant aux
conditions de localite. Cette methode, dont le resultat equivaut aux pres-
criptions de Bogoliubov-Parasiuk-Hepp, établit egalement la classifi-
cation habituelle des theories renormalisables et non renormalisables.

INTRODUCTION

The theory of renormalization in perturbative Lagrangian quantum
field theory [1]-[6] ( 1 ) has been brought by recent investigations ([7]-[11])
to a high degree of elegance and mathematical rigour. However, it does
not seem to have been proved, so far, that the renormalized series, as a
formal series, satisfies the two requirements of microcausality (or local

(1) It is impossible to quote all the original papers about the theory of renormalization.
Many of them are reprinted in [1] while [2]-[6] give a sample of works not contained in [1].

Annales de l’Institut Henri Poincaré - Section A - Vol. XIX, n° 3 - 1973. 1

Connection between the
Bogoliubov-Parasiuk
causality condition and
distribution theoretic
ambiguities.
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Standard perturbative QFT:

s-matrix =
∞∑
n=0

−in

n!

∫
T (φ(x1) · · ·φ(xn))d4x1 . . . d

4xn

↓
Causal perturbation theory:

s-matrix =
∞∑
n=0

−in

n!

∫
T (T (x1) · · ·T (xn))g(x1) . . . g(xn)d4x1 . . . d

4xn

The aim of CPT is to produce an order-by-order construction
of the S-matrix where each term, Sn, is a well-defined
operator valued distribution.
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What you find when you produce this construction is that

Sn ∈ D′(Rn \ {0}) = {T : D(R \ {0})→ C}

where,

D(R \ {0}) = {f ∈ D(Rn)|0 /∈ supp(f)}

So we almost get elements of D′(Rn) but not quite.

Can we uniquely extend a T 0 ∈ D′(Rn \ {0}) to a
T ∈ D′(Rn)?

26



To answer this question, we need a measure of the singularity
of a distribution at the origin.

The scaling degree of T ∈ D′(Rn) at x = 0 is given by:

sd(T ) = inf{ω ∈ R|λωT (λ)
λ→0−→ 0}

The power counting arguments of standard perturbative field
theory can be thought of as estimating this scaling degree.

27



If T 0 ∈ D′(Rn \ {0}) is a distribution with sd(T 0) < n, there
is a unique distribution T ∈ D′(Rn) with sd(T ) = sd(T 0)
extending T 0.
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What happens when sd(T 0) ≥ n? Then there is not a unique
extension. However, there is a unique extension of:

T 0 +
∑

α≤sd(T 0)

Cα∂
αδ(x)

To produce a unique extension we need to fix a finite set of
numbers, the Cα.
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These are analogs of the counterterms in the standard story.

Moreover, one can even recover the scaling behaviour in this
formalism.
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Causal perturbation theory shows us how to write down a
perturbatively ultraviolet finite theory from the outset.

This demonstrates that the perturbative ultraviolet
divergences that occur in the standard story are artifacts of
the wrong choice of mathematical objects.
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There is a sense in which this incorrect choice was forced on
the original architects of the theory because a systematic
theory of the correct objects was not yet available.
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There are different ways that one might go about adjusting the
language in which a theory is articulated in face of difficulties.

Recast: One might completely recast the theory and search for
a model to show that the principles constitutive of the theory
are consistent.
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Repair: But one might also attempt to directly identify the
source of the difficulties in the language of the theory as it was
originally articulated and repair it.

Causal perturbation theory thus provides us with the resources
to address Ruetsche’s question.
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Annales de l’Université de Grenoble, Volume 23, pp. 7–24.

Schwartz, L. (1947b). Theorie generale des fonctions moyenne-periodiques. Annals
of Mathematics 48(4), 857–929.
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Additional slides



“The quantum theory of fields never reached a stage
where one could say with confidence that it was
free from internal contradictions – nor the converse.
In fact, the Main Problem of quantum field theory
turned out to be to kill it or cure it: either to show
that the idealizations involved in the fundamental
notions of the theory (relativistic invariance, quan-
tum mechanics, local fields, etc.) are incompatible
in some physical sense, or to recast the theory in
such a form that it provides a practical language
for the description of elementary particle dynamics.
(Streater and Wightman, 1964)

”



The Dirac delta function

δ(x) =

{
0 x 6= 0

∞ x = 0

subject to the constraint∫ ∞
−∞

δ(x) dx = 1

was in wide use in physics and was known not to be
well-defined.



Beginning in 1943, Schwartz, a mathematician in the Bourbaki
group developed a systematic theory of this type of object. He
published a number of articles on his theory throughout the
1940’s (Schwartz 1945; Schwartz 1947a; Schwartz 1947b;
Schwartz 1948).

By 1951, Schwartz had developed a reasonably general theory
of distributions and published a two-volume textbook on the
subject (Schwartz 1951a; Schwartz 1951b).



Schwartz considered the space of infinitely differentiable
functions with compact support, D(Rn).

A distribution T is then defined to be a functional which maps
each element ϕ(x) ∈ D to R.



The Schwartz space of distributions, D′, is the set of such
functionals which are linear and continuous in an appropriate
topology:

D′ =def {T : D(Rn)→ R | T is linear and continuous}.

The mapping is generated by integrating the distribution
against the test function.



It is possible to uniquely associate a locally integrable
function, f(x), with a functional that takes test functions,
ϕ(x) ∈ D, to the numbers:

Tf : ϕ(x)→
∫ ∞
−∞

f(x)ϕ(x)dx.

D′ thus includes all of the functionals associated with locally
integrable functions, the so-called regular distributions.



But D′ also contains additional objects, the singular
distributions.

The first example that Schwartz provides of such an object is
the Dirac delta distribution, defined above, which can be
identified with the distribution:

Tδ : ϕ(x)→
∫ ∞
−∞

δ(x)ϕ(x)dx = ϕ(0), (1)

This is a well-defined distribution which is not well-defined as
a function.



Schwartz showed that it is possible to extend many standard
mathematical operations on functions, such as differentiation,
integration and the Fourier transform, to the broader space of
objects, D′.

However, there are two very basic operations on functions
which do not straightforwardly generalize to distributions;
multiplication and division.



The singular support of a distribution T is the closed set of Rn

in which it is not possible to find a locally integrable function,
f(x), such that T = Tf .

The singular support of the Dirac distribution, for instance, is
{0} since at all other points it can be identified with the
regular distribution associated with f(x) = 0.



If two distributions have disjoint singular support we can give a
natural meaning to their product as it is always possible to
define the product of a singular distribution with a locally
integrable function.

The product of two distributions with overlapping singular
support, such as δ2 however, is not a well-defined distribution
in general.



A closely connected problem arises for the inverse problem of
the division of distributions. Schwartz observes that for a
given distribution S, and some ϕ(x) ∈ D which has no zeros,
there is a unique distribution T which satisfies, S = ϕT .



This ensures that S can be divided by ϕ and yields a unique,
well-defined distribution. However, if ϕ has zeros, there is no
guarantee that there is a unique well-defined T .

Schwartz investigates this problem but does not resolve it in
complete generality.



He considers the restricted case where S is a distribution on R
and he shows that there are an infinity of distributions T
satisfying S = xT which differ from one another by terms like
Cδ for C a constant and δ is the Dirac distribution.

As a corollary he is able to show that for S a distribution on
R, there are infinity of distributions T satisfying S = xlT .

In this case the T differ between each other by linear
combinations of arbitrary constants multiplied by derivatives of
order ≤ l − 1 of the Dirac distribution.



These results show that division of a well-defined distribution
by a function does not always yield a unique distribution and
such expressions can be ambiguous.



Further progress on the problem of division in Hormander
(1958) and Lojasiewicz (1961). A complete solution was
developed in a series of papers by Malgrange (1959-1963).

In the process of solving the problem of division, Malgrange
also solved two closely related problems: the problem of
splitting and the problem of extension.

Each case involves ambiguities of the form:

T (X) = T ′(X) +
∑
i≤ω

ci∂
iδ(X).



It is well known the [products of D(xy), ∆(xy), etc.],
considered as products of functions, lead to summa-
tion difficulties (divergences) as well as inconsistencies
(ambiguities such as the loss of gauge invariance in
Fourier space, etc.). Furthermore, the D, ∆ . . ., are
distributions, tempered solutions of hyperbolic equa-
tions. Their analysis relies strictly on the theory of
distributions established in detail by M. L. Schwartz.
Unlike the other recent formalisms (Dyson and oth-
ers), in which the divergences are accepted as such
and “renormalized” by means of an algebra of infi-
nite quantities, the constants of the problem, we con-
sider that the multiplicative products T of distribu-
tions A,B, . . . , that is to say T = AB . . ., are not
in general well defined. The series expansion that
involves such products thus doesn’t have a precise
meaning. (Stueckelberg and Petermann 1953, p. 509)
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It is however possible to define the products T each
time that they appear in the series by using the fol-
lowing detour: One first searches for a distribution
Q = θT defined uniquely for any combination of fac-
tors θ and T . Then, by division of Q by θ, one ob-
tains the definition of T , up to the indeterminacy of
the problem of division. This definition can thus be
implemented in two distinct steps:

1) Find distributions Q which, by division by θ give
the desired product T .
2) Discussion of the indeterminacy induced by the di-
vision. (Stueckelberg and Petermann 1953, p. 509,
original emphasis)
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The definition by division makes available an infin-
ity of different distributions which differ by terms of
the type [linear combinations of the Dirac distribu-
tion and its derivatives]. The problem of determining
the S-matrix can thus at first sight seem completely
indeterminate. However, it is possible to show that
changes in the (real) parameters of the group δci,
don’t do anything other than to change the values
of the constants χ, µ0 . . . , g. (Stueckelberg and Pe-
termann 1953, pp. 513-4)
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